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Abstract

Due to the large number and size of �ngerprint images, data compression has to be applied to
reduce the storage and communication bandwidth requirements of those images. In response
to this need, the FBI developed a �ngerprint compression speci�cation, called Wavelet Scalar
Quantization (WSQ). As the name suggests, the speci�cation is based on wavelet compression.
In this chapter, we will review the WSQ speci�cation, and discuss its most important theoretical
and practical underpinnings. In particular, we present the way wavelet compression generally
works, and address the choice of the wavelet, the structure of the subbands, the di�erent
quantizations of the various subbands, and the entropy coding of the quantized data. The
performance of WSQ will be addressed as well.

1 Introduction

In the beginning of the 1990s, the United States Department of Justice, Federal Bureau of
Investigation, was confronted with a challenge. It had a rapidly growing collection of 35 million
inked �ngerprint cards in its repository, a considerable backlog of �ngerprint cards needing
to be classi�ed, and a steadily increasing volume of �ngerprint identi�cation requests. The
FBI needed a modern system to capture, classify, and identify �ngerprints. It called upon
other federal government agencies and private companies to help it create a system capable
of gathering �ngerprints at state and local law enforcement agencies, transmitting the digital
�ngerprint images to a central location where they could be classi�ed in real time, matched
to known �ngerprints in a central database, and stored for future reference. The most current
techniques in digital image capture and �ngerprint pattern matching promised to make such
a system possible, but one other critical piece in such a system had to be developed: image
compression.

Digital �ngerprint images of suÆcient resolution for use in legal proceedings are quite large,
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presenting problems in rapidly transmitting and economically storing the images. In addition,
there are 500 million such images to be stored in and retrieved from a central database and
possibly transmitted to state, local and other Federal government law enforcement agencies. To
address these issues of transmission speed, bandwidth, and storage capacity, image compression
is the logical approach [27].

A crucial question in such situations is the kind of compression to employ. Considering the
high demand on reconstruction quality in �ngerprint identi�cation, lossless compression may
seem the only option. However, lossless image compression techniques o�er at most a 2-to-1
or 3-to-1 compression ratio, not suÆcient to ease the transmission bandwidth requirements or
reduce the amount of media needed to store the volume of �ngerprint images at the FBI's central
processing facility. A lossy image compression technique had to be developed which could
achieve greater than 10-to-1 compression ratios while preserving the essential characteristics of
the �ngerprint image for both mechanized pattern matching and �ngerprint identi�cation by
human examiners. The compression technique had to be non-proprietary, allowing it to be used
by vendors supplying �ngerprint image gathering, storage, retrieval, and processing hardware
to local, state, and federal law enforcement agencies.

The FBI, together with the help and cooperation of the other agencies and private �rms,
developed a lossy compression technique for �ngerprint images which it described in a doc-
ument entitled \WSQ Gray-scale Fingerprint Image Compression Speci�cation" [3, 4, 5, 12].
This chapter presents the theory behind, a description of, and practical implementation con-
siderations of WSQ.

It should be noted that there are several techniques and standards for compressing general
images, including �ngerprints. Among the best-known and most widely used image compres-
sion standards are JPEG [20] and JPEG 2000 [24], and examples of well-known compression
techniques include transform coding [7], DCT-based compression [21], subband coding [33],
and fractal compression [2]. Also, there have been studies and development of compression
techniques for �ngerprint images speci�cally, such as model-based compression [15, 11] and
JPEG adapted to �ngerprint images [29]. However, none of those standards and techniques
has been oÆcially adopted by law enforcement for �ngerprint compression. Instead, WSQ is
now the primary speci�cation for �ngerprint compression, used by the FBI and other law en-
forcement agencies and departments. Therefore, we focus primarily on WSQ, and compare its
performance with JPEG.

This chapter is organized as follows. The next section discusses the general framework of
wavelet compression, which is the theory underlying WSQ. Section 3 addresses the various
choices to be made by the designer for a complete wavelet compression system, and identi�es
briey the choices made by WSQ. Section 4 elaborates more on the WSQ speci�cation, and
section 5 discusses the WSQ implementation experience of the �rst author. The last section
concludes the chapter.

2 General Framework of Wavelet Compression

Wavelet-based compression has received considerable attention in the 1990s [1, 31], and has been
adopted by various important standards such as JPEG 2000 [24] and MPEG4 [8]. The reasons
for the high interest in wavelet compression are largely due to the competitive compression
ratios that can be achieved at high quality without the bothersome blocking artifacts of the
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JPEG-style discrete-cosine-transform (DCT) compression [7, 21].

Like any transform-based compression algorithm, wavelet compression works in three stages:
transform, quantization, and entropy coding. In quantization and entropy coding, the same
choices are available to wavelet compression as to other transform-based compression tech-
niques. For quantization, one can choose between scalar [13] and vector quantizers [14], and
from each category one can select from several types that will be discussed later. Similarly,
for entropy coding, a variety of lossless bit-packing techniques can be used, such as run-length
encoding (RLE) [23], Hu�man coding [16], RLE+Hu�man, or arithmetic coding [26], to name
a few of the most commonly used ones. The choices made by WSQ will be discussed later in
the chapter.

In the transform stage, however, wavelet compression di�ers signi�cantly from other transform-
based compression techniques. Speci�cally, in standard transform-based compression such as
DCT, the transform is a matrix-vector multiplication, where the vector represents the signal to
be transformed and compressed, while the matrix is �xed for any given signal size. In wavelet
compression, on the other hand, the transform is a pair of �lters, where one is low-pass and
the other is high-pass, and the output of each �lter is downsampled by two. Each of those two
output signals can be further transformed similarly, and this process can be repeated recur-
sively several times, resulting in a tree-like structure, called the decomposition tree. Unlike in
DCT compression where the transform matrix is �xed, in wavelet transform the designer has
the choice of what �lter-pair to use and what decomposition tree structure to follow.

To aid the reader in understanding wavelet compression, the basic concepts of �lters and
downsampling are reviewed in the next subsection. (For additional details, the reader can refer
to any digital signal processing text such as [18].) The rest of the section de�nes wavelets and
wavelet transforms, and outlines the wavelet based compression scheme.

2.1 Linear Filters

A (linear) �lter is a process characterized by a (�nite or in�nite) sequence (fk), called the �lter
coeÆcients. The �lter takes as input any sequence (signal) (xk) and outputs another sequence
(yk) which is the convolution of the (xk) and (fk). That is, for all index values k, yk =

P
r fk�rxr

where r ranges over all values for which fk�r is nonzero.

To understand the e�ect of a �lter, it is better to view it from the frequency domain
perspective using the z-transform and the Fourier transform. The z-transform of any sequence
(ak) is the complex function A(z) =

P
k akz

k, where k ranges over all values for which ak is
nonzero, and z is a complex variable. The Fourier transform of (ak) is the function A(e�i�),
where � is a real variable. Note that A(e�i�) is periodic of period 2�. The value A(ei�) is
referred to as the frequency content of the signal (ak) at frequency �. In the range from ��
to �, the values of A(ei�) at � near 0 are typically referred to as the low-frequeny contents (or
simply the low frequencies) of the signal, and those at � away from 0 and near �� are referred
to as the high-frequeny contents (or simply the high frequencies) of the signal. Note also that
if the signal sequence (ak) is �nite (say that k = 0; 1; :::; N � 1), then the discrete Fourier

transform of (ak) is a new sequence (Ak) where Ak = A(e�i
2k�

N ), for k = 0; 1; :::; N � 1.

The relationship between the input (xk) and the output (yk) of a �lter (fk) can be easily
expressed using the z-transform: Y (z) = F (z)X(z), that is, the z-transform of (yk) is the
product of the z-transforms of (fk) and (xk). In particular, Y (e�i�) = F (e�i�)X(e�i�), that is,
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the Fourier transform of the output is the product the Fourier transforms of the input and the
�lter.

Therefore, the frequencies in the output signal (yk) of a �lter are the frequencies of the
input signal (xk) but scaled (i.e., multiplied) by the frequencies of the �lter coeÆcients (fk).
In particular, if the low frequencies of the �lter are equal to 1 and the high frequencies are all
equal to 0, then the �lter e�ect is the preservation of the low frequencies of the input (xk) and
the zeroing out of the high frequencies of the input. In such a case, the �lter is called a low-pass
�lter. Conversely, if the low frequencies of the �lter are 0 and the high frequencies are all 1,
then e�ect of the �lter is to zero out the low frequencies of the input and preserve the high
frequencies. In this case, the �lter is called a high-pass �lter.

In intutive terms, the low frequencies of a signal generally represent the overall outline of
the shape of the signal, while the high frequencies represent the �ne details of the signal shape.
Thus, a low-pass �lter preserves the broad features of a signal (such as an image) but eliminates
much of the details, whereas a high-pass �lter eliminates much of the texture and and preserves
the outlines (edges) of an image.

In addition to �ltering, the wavelet transform and inverse transform involve downsampling
by 2 and upsampling by 2. The downsampling by 2 of a signal (u0k) is simply the dropping
of the odd-index terms of the sequence, resulting in sequence (u02k) consisting of the even-
indexed terms only. Thus, the output of �ltering (xk) into (u

0
k) and then dowsampling by 2 is

(uk) = (u02k) where uk = u02k =
P

i f2k�ixi. The upsampling by 2 of a signal (uk) is achieved
by interspersing a zero between every two consecutive sample values of the signal. That is, the
upsampling by 2 of (uk) results in a signal (wk) where w2k = uk and w2k+1 = 0 for all k. In
particualr, if (uk) was the result of downsampling by 2 of (u0k), then the upsampling by 2 of
(uk) is (wk) where w2k = u02k and w2k+1 = 0 for all k.

2.2 De�nition of Wavelets

A function  (t) is called a wavelet if there exists a corresponding function �(t), called a scaling
function, and four sequences of real (or complex) numbers (gk), (hk), (pk) and (qk), all satisfying
the following equations:

�(t) =
X
k

pk�(2t� k); and  (t) =
X
k

qk�(2t� k)

�(2t� n) =
1

2

X
k

[g2k�n�(t� k) + h2k�n (t� k)]

where for most wavelets of interest to compression the four sequences are real and �nite. Fur-
thermore, in order for � and  to form a legitimate wavelet system, certain constraints have to
be satis�ed by the four sequences. Some of these constraints areX

k

gk =
X
k

pk = 2; and
X
k

hk =
X
k

qk = 0:

Other more stringent constraints are known as the perfect reconstruction (PR) conditions in
the subband coding community [30, 31, 33]. The PR conditions can be stated succinctly by
means of the z-transform:

G(z)P (z) +H(z)Q(z) = 4 and G(�z)P (z) +H(�z)Q(z) = 0

where G(z); H(z); P (z) and Q(z) are the z-transforms of (gk); (hk); (pk) and (qk).
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2.3 Wavelet Transforms

Given a wavelet de�ned through the fours sequences (gk), (hk), (pk) and (qk), the wavelet
transform of an input data sequence (xk) of length N transforms the sequence (xk) into another
sequence (yk) of same length N . The �rst dN

2
e terms of (yk) form a sequence (uk) called a low-

frequency subband, and the remaining bN
2
c terms of (yk) form a second sequence (vk) called a

high-frequency subband, computed as follows:

uk =
X
n

g2k�np
2
xn and vk =

X
n

h2k�np
2
xn:

That is, (uk) is derived by �rst passing the (xk) through a linear �lter of coeÆcients ( gkp
2
),

yielding a sequence (u0k) where u0k =
P

n
gk�np

2
xn, and then downsampling (u0k) by two, i.e.,

uk = u02k. The subband (vk) is derived similarly using the �lter ( hkp
2
). Note that the �rst �lter

is low-pass because
P

k gk is nonzero, while the second �lter is high-pass because
P

k hk = 0.

Because of the equations of the PR conditions, the original sequence (xk) can be perfectly
reconstructed from the two subbands (uk) and (vk) by the following equation:

xk =
X
n

"
pk�2np

2
un +

qk�2np
2
vn

#
;

which is equivalent to the following three steps: (1) upsampling (uk) by 2 and then �ltering
through a linear �lter of coeÆcients ( pkp

2
), (2) upsampling (vk) by 2 and then �ltering through a

linear �lter of coeÆcients ( qkp
2
), and �nally (3) adding the two resulting sequences. This whole

reconstruction process implements the inverse wavelet transform. Figure 1 shows graphically
both the transform (or analysis) stage and the reconstruction (or synthesis) stage. The dotted
lines, labeled \process", in the �gure, refers in our context to the other stages of compression,
that is, quantization and entropy coding, which are discussed later.
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Figure 1: The Subband Coding Scheme Corresponding to Wavelets

Note that the low-pass subband (uk) contains basically the same features as the original
signal, albeit with slightly fewer details. Those missing details are indeed what is stored in the
high-frequency subband (vk). Since the subband (uk) still has most of the original features, its
data elements must still carry considerable correlation. This warrants further transforms on
(uk). Indeed, in actual wavelet-based compression systems, the wavelet transform is applied
several times on the subbands, resulting in many subbands which are then quantized and
entropy-coded. Figure 2 shows a typical wavelet coding/decoding structure.
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Figure 2: An Example structure of a Typical Wavelet Coder (above) and its Corre-
sponding Decoder (below)

In the case of multidimensional data (e.g., images), the transforms are typically performed
on the various dimensions independently. The reconstruction (i.e., decompression) follows the
exact reverse process: entropy decoding, dequantization, and inverse wavelet transforms applied
as many times as, and in the opposite order of, the direct transform.

3 Choices and Tradeo�s in Wavelet Compression

Clearly, many di�erent decomposition tree structures can be followed. Also, many di�erent
choices of wavelets (i.e., wavelet �lters) are available to choose from. Similarly, for the next two
stages of the compression scheme, namely, quantization and entropy coding, the designer can
choose from a variety of techniques. These choices and some of the tradeo�s will be discussed
in this section, and the choices made by WSQ will be identi�ed.

3.1 Choice of Good Wavelets

As mentioned earlier, the designer has the choice of which wavelet to use, that is, which 4-
�lter set to employ. One of the earliest questions addressed in wavelet compression was which
wavelets yield good compression performance [9, 25, 32, 34]. This subsection addresses this
question briey.

First of all, biorthogonal wavelets are better than non-biorthogonal ones for compression
because the corresponding �lters have the very desirable property of being linear-phase �lters,
that is, symmetric or antisymmetric. In other terms, biorthogonal wavelets do not exhibit
frequency aliasing artifacts, while other wavelets do.

Still, there is an unlimited number of biorthogonal wavelets, and many families have been
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de�ned and shown to yield good compression performance. One of the extensive studies of
best-wavelet selection was conducted by one of the authors on a very large set of wavelets [34].
This large set and the wavelet evaluation process and �ndings are outlined next.

To start, it is worthwhile to mathematically characterize biorthogonal wavelets. The perfect
reconstruction equations, the standard choice of P (z) = zH(�z) and Q(z) = �zG(�z), and
the linear-phase (symmetry) property of the �lters together imply that for z = e�i!,

P (z)G(z) = cos2N(
!

2
)

"
N�1X
k=0

 
N � k + 1

k

!
sin2k(

!

2
) + sin2N (

!

2
)T (cos(!))

#

where N is an arbitrary positive integer and T is an arbitrary odd polynomial (T (�x) = �T (x))
[6, 10]. Wavelet designers have many choices for T (x) and N , and, even for a �xed T and N ,
the designer can �nd many choices for P and G that satisfy the equations just stated.

In [34], T (x) was taken to be simply 0, in which case the �lters (gk) and (hk) have a
total of 4N coeÆcients. All biorthogonal �lters where the total number of coeÆcients of (gk)
and (hk) range from 4 to 56, corresponding to N = 1; 2; :::; 14, were generated and evaluated.
The total number of those wavelets is 4297. The reason the total �lter length was capped
at 56 was because longer �lters incur high computation cost. The evaluation was based on
the frequency response of the �lters as well as on direct experimentation, that is, each 4-�lter
set was tested by compressing several test images and evaluating the reconstruction quality at
various compression ratios.

The �ndings of this extensive study revealed that out of the 4297 wavelets tested, only
about 18 of them were good for compression. The rest had inferior reconstruction quality, and
in most cases the quality was very unacceptable. Interestingly, the wavelet speci�ed in WSQ
turned up among the 18 good wavelet. Furthermore, although the WSQ wavelet was not the
absolute best, its �lter lengths were the shortest (thus most eÆcient) and its performance was
very close to the best wavelet.

3.2 Choices of Decomposition Trees

As just mentioned, many di�erent tree structures can be followed. For example, the tree
depth can vary depending on the size of the signal, the amount of correlation of the data,
and the desired speed of the system, among others. Also, the high-frequency subband can be
transformed further, although its tree need not be so elaborate because high-frequency subbands
do not have much correlation left in them to warrant many additional decompositions.

In images, as in 1D signals, various tree structures can be used. Figure 3 shows two tree
structures for wavelet image compression. The �rst structure, due to Mallat [19], is well known,
and the second is the structure used in the FBI's WSQ Speci�cation.

The structure of the decomposition tree can be determined dynamically at compression
time. The general approach is to measure the level of \energy" in each subband generated
after each application of the transform. The term \energy" is often used in this context as a
metaphor for the amount of details and variations present in the subband: the more variations
and the �ner the details, the more energy. This can be measured in various ways, such as
the spectrum and the statistical variance of the subband. If the energy level of a subband is
found to be above a certain threshold, that subband is transformed further (i,.e, decomposed
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The FBI TreeThe Mallat tree
(b)(a)

Figure 3: Examples of Tree Decompositions of Images

into smaller subbands), and then the same energy test is applied on the smaller subbands.
While this dynamic approach can yield high compression ratios, its advantage is o�set by the
overhead of (1) extra execution time to measure the energy level, and (2) the extra bits needed
to represent the shape of the resulting decomposition tree.

The logical alternative is to perform tests on several benchmark images in the intended
application domain, such as �ngerprints. From those tests, a reasonably optimal decomposition
(on average) can be deduced and used thereafter on all images in the application. This has the
advantage of avoiding the overhead of dynamic decisions, while still producing nearly optimal
results. This route was the one taken in WSQ.

3.3 Quantization in Wavelet Compression

Roughly speaking, quantization is a process of further discretization of the data, and can be
done at the individual data element (e.g., pixel) level, or at a vector (or block) level. In the
�rst case, it is called scalar quantization [13], and in the second case vector quantization [14].

A scalar quantizer is speci�ed by (1) subdividing the entire range of the data to be quantized
into intervals labeled with integer values, and (2) designating a reconstruction value for each
interval. If interval i is denoted (di; di+1], and its reconstruction value denoted ri, where di <
ri � di+1, then quantizing a value x is nothing more than replacing x by the integer label i of
the interval in which x falls (di < x � di+1). Dequantizing i amounts to replacing it by the
reconstruction value ri.
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Di�erent classes of scalar quantizers have been de�ned, most notably uniform quantizers and
optimalMax-Lloyd quantizers [17]. In uniform quantizers, all the intervals have the same length,
and the reconstruction values are the exact middle points of their respective intervals. Clearly,
uniform quantizers are eÆcient to specify and eÆcient to quantize with. In optimal Max-Lloyd
quantizers [17], the end-points of the intervals and the reconstruction values are determined so
that the error between the original data and the reconstructed (i.e., quantized then dequantized)
data is minimized, where the error measure is the Euclidean distance (or mean-square error).
Max-Lloyd quantizers optimize reconstruction quality, and are fairly eÆcient to derive and
apply. Nevertheless, they are not always used because they do incur additional overhead over
uniform quantizers.

Scalar quantization works very well when the data elements are rather independent (i.e.,
uncorrelated). If, however, the data elements are correlated, scalar quantization causes consid-
erable distortions because it quantizes the various elements independently, that is, irrespective
of inter-element relations. When data is correlated, vector quantization is preferable because
it maintains better the correlations and thus the patterns and features represented thereof.

Vector quantization is speci�ed by a dictionary of patterns (vectors), which are relatively
small 2D n �m blocks in the case of images. Quantizing an image involves subdiving it into
contiguous nonoverlapping n � m blocks, and coding each block by the index of the best-
matching block in the dictionary. Dequantizing is simply replacing each index in the quantized
image by the corresponding dictionary block. A typical block size is 4 � 4 or 8 � 8, and the
number of blocks in a dictionary range from a few hundred to a few thousand. Various clustering
techniques are used to construct good dictionaries [14].

In the context of wavelet compression, the coeÆcients of low-frequency subband may still
be quite correlated and thus a vector quantizer may yield better performance than a scalar
quantizer. However, in practice, the decomposition tree is so deep that the low-frequency
subband size is so small that little gain can be derived from vector quantization, in which case
scalar quantization of that subband is adequate. As for all the other (high-frequency) subbands,
if the wavelet chosen is a very good wavelet, the coeÆcients in all those subbands are highly
decorrelated, making the use of vector quantization unnecessary and even undesirable because
of the high overhead as compared to scalar quantization. Therefore, scalar quantization of the
high-frequency subbands is the quantizer of choice.

Of course, not all the subbands should necessarily be quantized with the same scalar quan-
tizer. Rather, each subband is better processed with a quantizer whose speci�cations are tailored
to that subband's statistics. (Note that the more intervals are used, and thus the smaller the
intervals, the less the error, but of course the less the compression ratio.)

The FBI WSQ Speci�cation opted for subband-adaptive scalar quantization. The quan-
tizer of each subband is nearly a uniform quantizer: all the intervals are of the same length
except for the middle interval centered at 0, which is 40% larger than the other intervals.
The reconstruction values are all near the middle points of their intervals. Those quantizers
are subband-adaptive in that the length of most of the intervals are inversely proportional to
the logarithm of the variance of the subband. The length of the intervals depends also on a
scalar multiplicative value, which is set depending on the desired compression ratio. The more
compression is desired, the smaller that scalar factor is.
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3.4 Entropy Coding

Entropy coding is the process of representing information eÆciently but losslessly. Many entropy
coding techniques have been developed over the last several decades, such as run-length encoding
(RLE) [23], Hu�man coding [16], arithmetic coding [26], and Lempil-Ziv [35], among others.
Entropy coders are used either as standalone lossless compression systems or as the last stage of
lossy compression. In the latter case, which is the one of interest to us here, the entropy coder
is used to represent the quantized data. Among the many entropy coders, the most commonly
used ones in lossy compression are arithmetic coding and RLE+Hu�man.

Arithmetic coding encodes binary decisions as well as data bits using a probabilistic model of
the information to be coded. It achieves optimal compression performance (in terms of bitrate
or compression ratio). As a result, it has been adopted in many standards such as JPEG 2000,
MPEG-4, and JBIG. It is also an option in JPEG. However, there are numerous patents on
arithmetic coding. This complicates matters for many users, and hinders their ability to utilize
arithmetic coding.

The situation with RLE and Hu�man coding is much simpler as users are free to use them
at will. Furthermore, they are easy to implement, fast to run, and yield very good compression
performance. Therefore, they have been adopted in many standards such as JPEG and MPEG-
2, as well as in the FBI WSQ speci�cation.

RLE works well when the data to be coded consists of relatively long sequences of repeated
values. Such sequences are called runs. RLE represents each run by a pair (n; v) where n is
the length of the run, and v is the repeated value. In applications where only one type of runs
is represented (e.g., runs of zeros only), the runs are coded simply by their lengths since the
repeated value is implicit.

Hu�man coding represents a data set of symbols (be they numeric, alphabetic or other-
wise) by coding each symbol with a binary string whose length depends on the probability(
or frequency) of occurrence of that symbol in the data set. The individual symbol codes are
constructed in such a way that (1) the more frequently occurring a symbol is, the shorter its
binary code is, and (2) no symbol binary code is a pre�x of another symbol code. The alphabet
symbol codes are derived as follows.

Suppose the symbols that make up the data set are drawn from an alphabet of m dis-
tinct symbols fa1; a1; :::; amg, and let pi be the probability of occurrence of symbol ai, for
i = 1; 2; :::; m. The Hu�man coding algorithm for coding the alphabet is a greedy algorithm
that builds a binary tree. First, a node is created for each alphabet symbol; afterwards, the al-
gorithm repeatedly selects two unparented nodes of smallest probabilities, creates a new parent
node for them, and makes the probability of the new node to be the sum of the probabilities of
its two children. Once the root is created, each left-pointing edge of the tree is labeled with 0,
and each right-pointing edge is labeled with 1. Finally, each symbol is coded with the binary
sequence that labels the path from the root to the leaf node of that symbol.

In WSQ, each quantized subband is turned into a one-dimensional sequence, then RLE is
applied to code runs of zeros, and �nally the run-lengths and other remaining data are coded
with Hu�man.
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3.5 Other Approaches to Wavelet Compression

In recent years, wavelet techniques for lossless compression and for lossy-to-lossless transmis-
sion/compression have been developed [28, 22]. Prior to this development, the �lter coeÆcients
of the wavelets used in compression were non-integer numbers that make their use lossy be-
cause of the limited precision of computer hardware. Later on, integer wavelets were developed,
especially what is called the lifting scheme [22], allowing for lossless compression.

Furthermore, because of the multiresolution nature of wavelet representations, they can
be used for progressive transmission, also called lossy-to-lossless. The idea is to format the
bitstream in such a way that any number leading bits in it allows for a reconstruction of the
whole image at a resolution level that depends on the number of those leading bits. This allows
the user to control the tradeo� between image quality and amount of bits transmitted. It also
allows for error tolerance and data loss in image transmission. For example, if some bits of
the transmitted bitstream are lost or corrupted by noise, the receiver-decoder can use the bits
that preceded the error/loss to reconstruct the whole image at whatever resolution a�ordable
by those bits.

JPEG 2000 has adopted this scheme of wavelet compression for still images. WSQ, how-
ever, does not have provisions for lossless or lossy-to-lossless coding. The initial intent of WSQ,
namely, to save not only on transmission bandwidth but also on storage, makes both of these
modes undesirable because the resulting compression ratio would still be too modest as com-
pared to the WSQ target compression ratios of at least 10 to 1 and above.

4 Fingerprint Image Compression: - The WSQ Speci�-

cation

4.1 Intended Use of WSQ Compression

The WSQ compression technique developed by the FBI and other entities was designed to
compress source �ngerprint images between ratios of 10 to 1 and 20 to 1. At these compression
ratios, suÆcient friction ridge and pore detail is retained for the purposes of identi�cation, by
�ngerprint matching hardware and by human latent �ngerprint examiners. The technique is
designed to discard information which is not necessary for the reconstruction of a �ngerprint
image usable by a latent �ngerprint examiner to make a positive identi�cation and by devices
which classify the �ngerprint pattern and extract minutia by mechanized means. Minutia, that
is, the friction ridge endings and bifurcations, are the features by which �ngerprint patterns
are distinguished from one another.

4.2 The Source Fingerprint Image

This lossy compression technique produces best results when the source �ngerprint image is a
result of scanning an inked or chemical process �ngerprint image from a card, or the output
image produced by a livescan �ngerprint capture device with a spatial resolution from 500 to
520 samples per inch in both the vertical and horizontal directions and an intensity resolution
of 8 bits. The source image is also required to be continuous tone (i.e. having a reasonably
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diverse intensity histogram with signi�cant contribution from pixel values other than white
(integer value 255) and black (integer value 0). The reasons for these requirements are:

� Using less than the required spatial resolution results in a source image with features
too small to produce a signi�cant result in the wavelet analysis, resulting in loss of these
features in the quantization step of the WSQ encoding process.

� A source image with less than 8 bits per pixel in intensity resolution will also su�er from
high loss of information in the quantization step of the WSQ encoding process.

� Source images with most of their pixel intensities consisting of white and black will ex-
hibit excessive \ringing" or \echos" in the reconstructed image, again, resulting from
information discarded in the quantization step of WSQ encoding.

Using a source �ngerprint image with the correct characteristics will produce a reconstructed
�ngerprint image remarkably similar to the source �ngerprint image.

Before wavelet analysis, the 8-bit image pixel values must be shifted and scaled, in that
order. The statistical mean of the pixel data is obtained, then subtracted from all of the pixel
values in the source image. Finally the shifted image pixel data is divided by a value equal
to the absolute furthest shifted pixel value from 0. This ensures no input data to the wavelet
analysis process extends beyond the -1.0 to 1.0 range.

4.3 Wavelet Transform and Quantization in WSQ

The WSQ wavelet is a biorthogonal wavelet. The low-pass analysis �lter has nine coeÆcients,
and the high-pass analysis �lter has 7 coeÆcients. These short �lters make the transform rather
fast. The coeÆcients of these �lters are:

Low-Pass Analysis High-Pass Analysis

Filter Coefficients Filter Coefficients

0.037828455506995
-0.02384946501938 0.064538882628938
-0.11062440441842 -0.040689417609558
0.37740285561265 -0.41809227322221
0.85269867900940 0.78848561640566
0.37740285561265 -0.41809227322221
-0.11062440441842 -0.040689417609558
-0.02384946501938 0.064538882628938
0.037828455506995

The wavelet transform is as described in Section 2.3. The decomposition tree with labeled
subbands is shown in Figure 4.

The quantization is uniform scalar quantization of the subbands except that the interval
centered at 0 is 40% larger than the rest of the intervals, and the reconstruction value of each
interval (di; di+1] is di + 0:56(di+1 � di) rather than di + 0:5(di+1 � di). The precise length of
the intervals varies from subband to subband, and depends on the variance of the subband.
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Figure 4: The WSQ Decomposition Tree with Labeled Subbands

4.4 Run-Length Encoding and Decoding in WSQ

This encoding scheme uses integers, either 8-bit or 16-bit, to represent long sequences of zeros
(called runs) in a subband which result from scalar quantization. Only sequences of zeros
are coded with RLE. The lengths of these zero-runs are encoded with Hu�man encoding as
described in the next subsection. During the run length decoding process, the integers which
indicate a zero run are decoded from the Hu�man encoded bitstream and zeros are deposited
in the subband in preparation for wavelet synthesis. More information about this is found in
the section about Hu�man Coding.

4.5 Hu�man Coding and Decoding

Hu�man encoding, used as the last step in WSQ lossy compression, is based on assigning the
shortest binary codes to the most frequently occurring symbols in the Hu�man input table,
which is derived by a process described in subsection 3.4. Table 1 shows the codes of each
of the 254 valid input symbols for the Hu�man coder. These input symbols are �xed in the
WSQ Speci�cation. A Hu�man table transmitted with the entropy coded bitstream consists of
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Table 1: Hu�man Coder Input Symbols

Symbol Description

1 Zero run of length 1
2 Zero run of length 2
...
99 Zero run of length 99
100 Zero run of length 100
101 escape for positive 8-bit coeÆcient index
102 escape for negative 8-bit coeÆcient index
103 escape for positive 16-bit coeÆcient index
104 escape for negative 16-bit coeÆcient index
105 escape for 8-bit zero run
106 escape for 16-bit zero run
107 coeÆcient index value -73
108 coeÆcient index value -72
...

180 (same as symbol 1)
...

253 coeÆcient index value 73
254 coeÆcient index value 74

the number of each code length (1 through 16) and the Hu�man input symbol order. This is
suÆcient to generate the decoding table at the decoder. A maximum of eight Hu�man tables
may be included with each WSQ compressed �le.

Hu�man coding is simply the concatenation of variable length codes, each representing a
symbol, to create a bitstream. The boundaries of codes can, and most often will, occur within
bytes in a WSQ �le. No Hu�man code can begin with any other Hu�man code. This makes
decoding analogous to traversing a binary tree, concluding at a leaf containing the symbol
the code represents. The code associated with each symbol is generated using the population
distribution of the input symbols.

Hu�man coding starts at the upper-left corner of subband 1, proceeds left to right then top
to bottom exhausting all bin index values in subband 1. Subbands 2 through 64 are processed
in turn. At the end of Hu�man coding, the rest of the byte is �lled with '1' bits to signal
the end of the bitstream to the decoder. As Hu�man coding proceeds in the encoder, any
byte consisting of all '1' bits is immediately succeeded by a byte consisting of all '0' bits. This
eliminates any confusion between these Hu�man generated all '1' bytes and valid marker codes.
(See the subsection on markers to further explain the makeup and use of markers.)
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Table 2: WSQ Marker Codes

Second Byte Description

1010 0000 Start of Image
1010 0001 End of Image
1010 0010 Start Frame
1010 0011 Start Subband Group
1010 0100 Start Wavelet Filter Tap Table
1010 0101 Start Quantization Tables
1010 0110 Start Hu�man Tables
1010 0111 Restart Interval
1010 1000 Comment

4.6 Progressive Transmission

To facilitate the possibility of transmitting a half-resolution or quarter-resolution image using
the WSQ Speci�cation, frequency subbands have been separated into 3 groups. Decoding the
�rst group to completion yields an image one-quarter the resolution of the original source image.
A half-resolution image can be obtained by decoding the �rst two subband groups. Decoding
all subband groups to completion reconstructs the full-sized image. This feature is thought to
�nd application when a human is looking through many images to �nd candidate matches.

The fact that a smaller portion of the total data is transmitted and processed to produce
fractional resolution images quickens the search process and eliminates unnecessary process-
ing and transmission bandwidth usage. This segmentation also allows the calculation of 3
independent Hu�man coding tables to further optimize the compression performance of WSQ.

4.7 Marker Codes

Marker codes are two-byte sequences, the �rst of which is a byte with all bits set to 1, ending
with a byte indicating the type of marker. Some marker codes allow the WSQ encoded �le to be
quickly searched for items of interest such as the Hu�man tables, wavelet �lter coeÆcients (i.e.,
tap values), and image dimensions. Others allow recovery from bit or byte errors encountered
as a result of bad storage media, or interference during transmission.

A description of the marker secondary byte contents and their meaning appears in Table
2. Note that the second byte will never be all '0' bits because this sequence is reserved for the
purpose of indicating an all '1's byte generated by the Hu�man coder. Some of the more useful
marker codes are Start Frame, Start Subband Group, Start Wavelet Filter Tap Table, Start
Quantization Tables, and Start Hu�man Tables.

It is necessary to include information in the WSQ compressed �le to enable the decoder to
reconstruct an image with the same dimensions, brightness and contrast as the original source
image. The Start Frame marker indicates the point after which this data is found. Figure 5
shows the Start Frame header information content and sequence.

Each subband group is marked by a Start Subband Group marker code to enable progressive
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Start Frame
L A B Y X Em

M Er R SW

Marker Code

L  - indicates the length of the rest of the information
A  - scanner BLACK calibration value
B  - Scanner WHITE calibration value
Y  - number of lines in the source image
X  - number of columns in the source image
Em - the decimal point in M is shifted left Em places

Er - the decimal point in R is shifted left Er places
R  - the source image was divided by R before transformation
W  - specifies the WSQ encoder algorithm used on this image
S  - specifies the software implemantation that encoded this image

M  - source image pixel value mean subtracted before scaling

-

Figure 5: Start of Frame Information

transmission and reconstruction, and allows for multiple Hu�man code tables to be used, one
for each subband group. Figure 6 details the content of the Start Subband header.

The Wavelet Filter Tap information must be provided with the encoded bitstream to provide
some indication of the synthesis high-pass and low-pass �lter tap values needed to reconstruct
the image. A Start Wavelet Filter Tap Table marker signals the start of this group of informa-
tion. Figure 7 shows the content of this header.

The quantization bin centers and sizes used in the WSQ encoder must be supplied to the
decoder to enable the recovered integer bin index values to be converted to approximate wavelet
coeÆcients for processing by the wavelet synthesis stage. Figure 8 shows how these bin centers
and sizes are transmitted using the Start Quantization Table marker code.

Figure 9 shows the content and arrangement of information in the Start Hu�man Table
header. This information enables hu�man decoder tables to be constructed at the WSQ Decoder
and is crucial to extracting bin index integers from the entropy coded bitstream.

5 Implementation of WSQ

The practical portion of this chapter is based on experience with the reference WSQ en-
coder/decoder pair which was designed and tested by the �rst author at the National Institute
of Standards and Technology (NIST) in Gaithersburg, Maryland, USA. The encoder/decoder
pair was implemented in the C programming language.
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L H

L - length of Start Subband Group marker header
H - huffman code table number used in this subband group

Marker Code
Subband Group

Start

Figure 6: Subband Group Information

L Lh Tl1
Start Wavelet

Filter Tap
Marker Code Ll Sl1 El1 ...

...Sh1 Eh1... Slf Elf Tlf

... EhfShf

L   - indicates the length of the rest of the information
Ll  - number of taps in wavelet lowpass analysis filter

Th1

Thf

Lh  - number of taps in wavelet highpass analysis filter
Sl1 - sign of first wavelet lowpass analysis tap (0 = positive)
El1 - move decimal point left El1 places in Tl1
Tl1 - value of first wavelet lowpass analysis filter tap

Th1 - value of first wavelet highpass analysis filter tap
Eh1 - move decimal point left Eh1 places in Th1
Sh1 - sign of first wavelet highpass analysis tap (0 = positive)
Tlf - value of last wavelet lowpass analysis filter tap
Elf - move decimal point left Elf places in Tlf

.

.

.

Slf - sign of last wavelet lowpass analysis tap (0 = positive)

Thf - value of last wavelet highpass analysis filter tap
Ehf - move decimal point left Ehf places in Thf
Shf - sign of last wavelet highpass analysis tap (0 = positive)

.

.

.

Figure 7: Wavelet Filter Tap Information
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Table Marker

Start
Quantization Ec C

...
-

...

Eq0 Ez0Q0 Z0

L

Eq63 Q63 Ez63 Z63

L     - Total length of information in this header
Ec    - decimal point shifts left Ec0 digits in C
C     - quantizer bin center parameter
Eq0   - decimal point shifts left Eq0 digits in Q0
Q0    - quantization bin size for subband 0
Ez0   - decimal point shifts left Ez0 digits in Z0
Z0    - quantization zero bin size for subband 0
  .
  .
  .
Eq63  - decimal point shifts left Eq63 digits in Q63
Q63   - quantizer bin size for subband 63
Ez63  - decimal point shifts left Ez63 digits in Z63
Z63   - quantizer bin size for subband 63

Figure 8: Quantization Table Information

Table Marker

Start
Huffman Coder L Lh Th ... L16 ...L1 V

L     − Total length of information in this header
Th    − Huffman Table Identifier
L1    − Number of 1−bit huffman codes

  .
  .
  .

L16   − number of 16−bit huffman codes

  .
  .
  .

V 16,L16
1,1

V     − symbol associated with this huffman code
1,1

V     − symbol associated with last huffman code
16,L16

Figure 9: Start Hu�man Table Header
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5.1 Processing Speed

The coding process consists of the transform stage, the determination of the quantizer param-
eter value, the quantization stage, and the entropy coding stage. To estimate the time it takes
to code an N �M �ngerprint image, the transform stage let
t� = the time for a single oating-point multiplication operation
t+ = the time for a single oating-point addition/subtration operation
td = the time for a single oating-point division operation
tc = the time for a single oating-point comparison operation
tlog = the time for computing the natural logarithm.

The transform stage takes time equal to

Ttransform = (34t� + 30t+)NM

and the quantization stage takes time equal to

Tquantization = (10:5t+ + 5:25t� + 2:62tc)NM + 284td + 184t� � 56t+ + 56tlog:

The entropy coding stage involves scanning the quantized image and �nding runs of zeros,
and then Hu�man-coding the run lengths and the nonzero coeÆcients. The scanning time is
proportional to NM , but the number of runs encountered varies from image to image and,
within the same image, varies depending on the target bitrate. Due to this variability, it is
hard to come up with a quanti�ed time formula for the entropy coding stage. Rather, empirical
time measurements will be provided below.

For the determination of the value of the quantizer parameter that would meet the target
bitrate, the implementors of WSQ are free to follow any method they choose. The correctness
of the decoder depends on the value of the parameter, not on the method of derivation of that
value. Therefore, it is hard to give a time formula for this part of WSQ as well, but empirical
performance measures are provided instead.

The decoding process consists of the entropy decoding stage, the dequantization stage, and
the inverser trasnform stage. The entropy decoding stage takes time proportional to NM . The
dequatization stage takes time equal to

Tdequantization = (t� + 3t+)NM;

and the inverse transform stage take time equal to

Tinverse transform = (17t� + 13:77t+)NM:

In terms of real time, WSQ is quite fast. We ran WSQ on various images on a Pentium
II 733 MHz, and measured the speed. Table 3 gives representative �gures of encoding and
decoding speeds for two �ngerprint images of typical sizes, at compression ratio of 15:1.

Table 3: WSQ Speed on a Pentium 733 MHz at Compression Ratio of 15:1

Image Dimensions Encoding Speed Decoding Speed

768� 768 0.635 sec 0.994 sec
800� 856 0.741 sec 1.061 sec
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5.2 Compression Performance of WSQ: Compression Ratio vs. Qual-
ity

The compression ratio range of the WSQ speci�cation is 10:1 to 20:1. In this range, experi-
ence with many images has shown that the visual quality of the reconstructed images is very
good: adequate for �ngerprint identi�cation. Figures 10 illustrates the WSQ performance at
compression of 15:1 (15 to 1), and Figures 11 and 12 show the performance at mush higher
compression ratios (60:1 and 120:1). As the �gures show, the quality is very good at 15:1; it
also holds up well at much higher compression ratios, although echoing and smearing e�ects
begin to appear and adversely limit �ngerprint identi�cation.

Examining the performance limits of WSQ at high and low ends of compression ratios is,
indeed, of interest. At very high compression ratios in the mid-hundreds, the limit was reached
when the size of the additional information included in the WSQ �le (e.g. hu�man tables,
etc) dwarfed the encoded bitstream information and compression ratio could not be achieved.
Near this compression rate upper limit the reconstructed image showed ringing or echoing at
edges and blurring within the �ngerprint image, as already apparent in Figure 12. The blurring
within the �ngerprint obscured minutia and made even classi�cation impossible. The echoing
at edges created the opportunity for false minutia detection by automated methods.

At the low end of compression ratios the limit was noted when, during scalar quantization,
large wavelet coeÆcients in the lower subbands needed to be represented by integers larger
than the 16-bit maximum the WSQ speci�cation allows. Near this low compression ratio limit,
the image, as expected, showed very little di�erence from the source image. These di�erences
were only detectable using a pixel-by-pixel comparison of the two images. Because this low
compression ratio limit is lower than compression ratios achieved by other lossless compression
techniques (e.g., the lossless mode of JPEG), the WSQ technique is unsuitable for lossless
compression.

To appreciate the performance of WSQ relative to other lossy compression systems, we
compare the performance of WSQ with that of JPEG, which is one of the most widely used
lossy image compression standards. Figures 13, 14 and 15 show the same �ngerprint image
reconstructed by both compression systems at compression ratios of 15:1, 30:1 and 45:1, re-
spectively. To the untrained eye, JPEG seems to give the same performance at 15:1; however,
the FBI latent examiners found that even at this relatively modest compression ratio, JPEG
images hindered �ngerprint identi�cation. At higher compression ratios (e.g., 45:1), the block-
ing artifacts and loss of details in JPEG become more evident, as can be seen in Figure 15.
To help the reader see the performance di�erence, Figures 17-19 show the error (di�erence)
images between the original and the reconstructed for both compression systems at the three
compression ratios of 15:1, 30:1 and 45:1. Note how the error image of JPEG is much more
pronounced at compression ratios of 30:1 and 45:1 than those of WSQ.

5.3 Compliance Testing Using the WSQ Coder/Decoder

Vendors wishing to produce WSQ implementations must show compliance with the FBI's WSQ
speci�cation by participating in a Compliance Testing Program set up by Michael McCabe,
NIST. The vendor obtains test �les from NIST, processes them using their own implementation
of the WSQ speci�cation, and submits the �les they produce to NIST for evaluation. The
results are sent to the FBI for review and the FBI issues the Certi�cate of Compliance to the
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Figure 10: An Original Fingerprint Image (above) and its WSQ-Recosntructed at
15:1 (below)
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Figure 11: Original (above) and WSQ-Recosntructed at 60:1 (below)
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Figure 12: Original (above) and WSQ-Recosntructed at 120:1 (below)
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Figure 13: JPEG at 15:1 (above) and WSQ at 15:1 (below)
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Figure 14: JPEG at 30:1 (above) and WSQ at 30:1 (below)
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Figure 15: JPEG at 45:1 (above) and WSQ at 45:1 (below)
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Figure 16: The Error Images of JPEG at 15:1 (above) and WSQ at 15:1 (below)
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Figure 17: The Error Images of JPEG at 30:1 (above) and WSQ at 30:1 (below)
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Figure 18: The Error Images of JPEG at 45:1 (above) and WSQ at 45:1 (below)
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vendor for that implementation. The reference WSQ encoder/decoder software is used at NIST
to review a vendor's submissions for WSQ implementation certi�cation.

6 Summary

This chapter has addressed wavelet compression of images in general, and the FBI Wavelet
Scalar Quantization Speci�cation in particular. Choices for the wavelet �lters, the decompo-
sition trees, quantization, and entropy coding were discussed, and comparisons and tradeo�s
between those choices were examined. In light of those considerations and the underlying the-
ory of wavelet compression, the chapter shed some light on the careful choices made in WSQ. In
addition, practical implementation aspects of WSQ were presented, and performance �ndings
were briey reported.

Much has developed in wavelet compression since the release of the WSQ Speci�cation.
Integer wavelet, lifting schemes, and quantization and bit-packing methods have been devised
and shown to yield improved lossy compression performance and to allow for lossless and lossy-
to-lossless modes of compression. JPEG 2000, which incorporates those ideas and more, has
been �nalized and released. It will be interesting to test those new methods and especially
JPEG 2000 on �ngerprint compression, and determine their performance improvement while
preserving the ability to do �ngerprint identi�cation.
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