
ERROR RECOVERY IN FACSIMILE WITHOUT RETRANSMISSION

Hyunju Kim Abdou Youssef
Department of Computer Science Department of Computer Science

The George Washington University The George Washington University
Washington, DC 20052 USA Washington, DC 20052 USA

 hkim@gwu.edu youssef@seas.gwu.edu

Abstract

This paper develops and studies techniques for recovery
from transmission errors that occur in facsimile images
compressed with the Group 3, Extended 2 Dimensional
MMR coding. When an error occurs in an MMR coded
bitstream, the bitstream cannot be decoded after the error
point, and the decoded image will have nothing after the
error position. To prevent losing all information after an
error, we develop techniques that utilize syntactical
structure information of the coded bitstream to recover
nearly all the data.

Keywords: Error Recovery, Resynchronization, MMR
Coding, Facsimile image

1 INTRODUCTION

 The amount of data traffic over communication lines is
vast and growing daily, in part because images consist of
massive volumes of data. As a result, images are often
compressed. Since nearly all communication media are
noisy and incur error, the impact of noise is very serious
on compressed data and the errors are hard to detect and
recover from. Yet, without error recovery, compressed
data cannot be decoded.

 Highly efficient compression methods remove various
redundancies within the original data so as to produce a
compact representation of the data. When transmission
errors occur, the compact representation causes serious
problems to a decoder: the decoder cannot reproduce the
original data after the errors because of the propagation of
the error effect.

 Most receivers solve this problem by requesting
retransmission. But retransmission adds more network
traffic, requires more time, and incurs additional costs.
Even worse, retransmission is not possible in surveillance
applications. In case retransmission request is not
desirable or possible, the decoder should try to recover as
much lost data as possible with received data only.

 Most of the research on error recovery has focused on
error concealment methods for lossy block-based DCT
compression as in JPEG or MPEG [1,2,4,6]. These

methods assume that a bitstream has been fully decoded,
and the position of the erroneous block is known. For
error recovery in losslessly compressed bitstream, which
is relevant to this paper, relatively little research has been
done [5,7]. In [7], a generic error recovery scheme is
presented where the error patterns are assumed to be
known, which is the case in the older modems. In [5], a
facsimile error recovery is presented without assuming
any knowledge of error patterns, but the image in their
research is not compressed with MMR, which is used in
most current facsimile machines. Our research is the first
to address error recovery in MMR, and we assume the
following error model:

• There is no retransmission.
• There is no error resiliency tool or code provided

by the encoder or network channel.
• Bitstreams are coded with MMR code.
• The errors are symbol errors (multi-byte errors) of

unknown patterns.

 This paper is organized as follows. Section 2 provides
a brief overview of MMR coding. Error detection and
resynchronization conditions are presented in section 3,
and our error recovery approach is presented in section 4.
Section 5 illustrates the performance of the approach, and
section 6 provides conclusions.

2 EXTENDED 2 DIMENSIONAL MMR CODE

 The majority of facsimile machines in the world apply
Extended 2 Dimensional MMR (Modified Modified
READ) coding to compress facsimile images. This
scheme is used for Group 3 and Group 4 facsimile images
and defined at ITU (formerly CCITT) T.4 and T.6
recommendations [3].

 MMR makes use of vertical relationships between
black runs and white runs in two adjacent scan lines. It
codes an image one scan line (1728 pixels) at a time and
uses the previous line to code the current scan. Figure 1
shows the elements of MMR coding.

 In MMR, when coding the topmost line, the Reference
line is assumed to be an imaginary blank line above the
page. Also, when coding a Current line, the initial value
of the first changing element is taken to be an imaginary
blank pixel left of the line. The position of a0 changes

according to the rules in Figure 1, and the position of a1,
a2, b1, and b2 change in a way that is consistent with their
definitions relative to a0.

 When an error occurs in an MMR coded bitstream, the
error propagates through the bitstream because MMR
coding does not provide any resynchronization point. As
a result, the decoder produces a corrupted image beyond
the error position.

3 CONDITIONS OF ERROR DETECTION AND
 RESYNCHRONIZATION IN MMR

3.1 Error detection

 To detect an error in the bitstream, we use the
constraints implied in MMR shown in Figure 1. Error
detection is done by checking for the following violations
of the constraints:

• No codeword in the code table matches the
received bit pattern.

• P mode occurs, but the changing element b2 is off
the right end of the scan line.

• H mode occurs and the run-length a0a1 is decoded,
but the changing elements are either | a1 – b1 | � 3
or b2 < a1.

• VR(i), i = 1, or 2, or 3 occurs, but the changing
element b1 is off the right end of the scan line.

• VL(i), i = 1, or 2, or 3 occurs, but the changing
elements are such that b1 – a0 – i � 0.

3.2 Conditions of resynchronization in MMR

 Since MMR does not provide any synchronization
codeword, we must find a portion of the bitstream that can
be used somehow as a synchronization point. There are
two possible conditions that a portion should satisfy in
order to be a synchronization point:

(1) A portion has a guessable Reference line, or
(2) A portion does not need any Reference line for

decoding.
Derived from the syntactical information in MMR, two
types of scan lines can be used for synchronization point:
a white line (blank line) and a line consisting of H modes
only (all-H line).

 A white line, which satisfies the first condition, can be
used as a Reference line for the next line. An all-H line
does not refer to the previous line since the H mode
explicitly codes the white runs and black runs, thus it
satisfies the second condition. More generally, a line
consisting of one V mode and followed by one or more H
modes can also be a synchronization point by guessing the
length of the V mode that is likely to represent the length
of the left margin in the line. As a result, our approach for
error recovery consists of the following steps:

Coding Modes Conditions Codes Next

values of a0
Pass Mode
(P Mode)

a1 > b2 0001 a0 := b2

Horizontal Mode
(H Mode)

a1 � b2 &
| a1 - b1 | > 3

001 + M*(a0a1) +
M*(a1a2)

a0 := a2

Vertical Mode
(V Mode)

a1 � b2 &
| a1 - b1 | � 3

V(0) a1 = b1 1 a0 := a1

VL(1) a1 = b1 – 1 010 a0 := a1

VL(2) a1 = b1 – 2 000010 a0 := a1

VL(3) a1 = b1 – 3 0000010 a0 := a1

VR(1) a1 = b1 + 1 011 a0 := a1

VR(2) a1 = b1 + 2 000011 a0 := a1

VR(3) a1 = b1 + 3 0000011 a0 := a1

* M(a0a1) and M(a1a2) are Huffman codewords of the lengths (a1 – a0)
and (a2 – a1). Two Huffman tables are specified in T.4/T.6, one for
white runs and one for black runs.

(b) MMR coding and update of a0

Figure 1 MMR coding

1. Detect an error using constraint violation detection.
2. Search for a synchronization point.
3. Determine a Reference line (if needed).
4. Resume decoding from the synchronization point.

 The white line resynchronization works very well for
text binary images because in most text documents, many
successive blank lines intervene between non-blank lines.
As long as a binary image has a blank line, the algorithm
is able to resynchronize decoding by the line. The all-H
line resynchronization can be used when a binary image
has graphic contents.

4 RESYNCHRONIZATION ALGORITHMS IN
 MMR CODED BITSTREAM

4.1 Algorithms to search for synchronization point

 According to MMR, a white line following a non-
white line is coded with one or more P modes followed by
one V(0) mode: P … P V(0), represented by the regular
expression P+ V(0). Each white line that follows a white
line is coded as V(0). The first non-white line after the

b1

Reference line

Current line

b2

a0 a1 a2

a0: The position of the first changing element on the current line.
a1: The next changing element to the right of a0 on the current line.
a2: The next changing element to the right of a1 on the current line.
b1: The first changing element in the reference line to the right of a0
 and of opposite color of a0.
b2: The next changing element to the right of b1 on the reference
 line.

(a) Changing picture elements

white lines is coded by one or more H modes followed by
one V mode, which is represented by a regular expression
H+ VD(i) where D is either L or R and i = 0, 1, 2, or 3. In
summary, the first type of synchronization point, called
white line resynchronization, is accomplished by
searching in the bitstream for a regular expression of the
form P+ (V(0))+ H+ VD(i). Figure 2 presents a pseudocode
of resynchronization using a white line synchronization
point. The validation checking is accomplished by
checking if decoding the next 25 scan lines proceeds
without any error; if so, the point is assumed to be valid.

 For the second type of resynchronization (All-H line
resynchronization), an all-H line should be found, which
is represented by H … H (that is, H+). But the pattern is
extremely rare since most of the binary images have right
and left margins that are represented by V modes in MMR
code. Consequently, the expression can be modified by
adding two V modes at the beginning, so VD(i) VD(j) H+
will be reflecting the margins, where D is L or R and i, j =
0, 1, 2, or 3. The first V mode represents the right margin
of the previous non-all-H line, and the second V mode
represents the left margin of the current all-H line.

 Once this pattern is found in the bitstream, a Current
line is constructed with the pixels that are decoded from
the H modes, and decoding resumes from the first bit after
the last H mode in the pattern with the newly constructed
Reference line. Figure 3 shows a pseudocode of
resynchronization using the all-H line synchronization.

Figure 2 White line resynchronization

 Figure 3 All-H line resynchronization

4.2 An error recovery system

 We developed an error recovery system, which
incorporates the previous two resynchronization modules.
After detecting an error, the system calls the white line
resynchronization module to find a white line since most
facsimile images are likely to have white lines. But the
white line resynchronization module cannot detect all-H
lines that are possibly located between the error detection
point and the white line synchronization point. Thus, the
system calls the all-H line resynchronization module to
search for any all-H line located before the white line. If
the system finds an all-H line during the searching step,
the line will be the next synchronization point. If it fails,
the system resumes decoding from the white line.
Therefore, our error recovery system has the following
steps:

1. Detect an error.
2. Call the white line resynchronization module and

set Rw to the synchronization bit address from the
module.

3. Set bit address to the error detection point.
4. While bit address is less than Rw

4.1 Call the all-H line resynchronization module.
 4.1.1 If it found a valid synchronization point,
 set Rh to the point and exit the loop.
 4.1.2 If it fails to find a point, increase

 bit address by one.
5. Resume decoding from the synchronization point,

either Rw or Rh.

5 ILLUSTRATIONS OF THE ERROR RECOVERY
 PERFORMANCE

 The error recovery system has been implemented on a
Pentium 4, 1.6 GHz using the C programming language.
Testing has been done with 7 ITU facsimile test images
and 8, more selective, sample images. Figure 4 shows an
image that has been recovered from two errors with the
white line resynchronization module. Figure 5 shows an
image recovered with the all-H line resynchronization
module.

6 CONCLUSION

 In this paper, algorithms for error recovery in MMR
coded bitstreams have been proposed. Since MMR
coding does not provide any resynchronization points,
each algorithm attempts to find a portion in the bitstream
that could be used as a resynchronization point. The
testing shows that our system recovers well an image
from error(s) as long as the image has the characteristics
that the algorithms work for. We have also developed an
interactive version of the error recovery system, described
elsewhere, which solicits characteristic information on an
image from the user and invokes different recovery
approaches according to the information.

1. Detect error using the error condition of subsection 3.1.
2. Search for the next white line synchronization expression,
 P+ (V(0))+ H+ VD(i).
3. Check if the synchronization point is valid or not by
 checking for error-free decoding of the next 25 lines.
 3.1 If it is not valid, go to step 2.
4. Set a Reference line with 1728 white pixels.
5. Decoding the bitstream from the first H mode in the
 expression.

1. Detect error using the error condition of subsection 3.1.
2. Search for the all-H synchronization expression,
 VD(i) VD(j) H1 … Hn.
3. For (cnt = 1; cnt < n+1; cnt++)
 3.1 Decode Hcnt, add the runs into the end of the Current
 line’ s right side, and fill the remaining left side with a
 white run.
 3.2 Check if the Current line is valid or not (by decoding
 the next 25 lines).
 3.2.1 If it is valid, exit the For-loop and go to step 4.
4. Check if step 3 found a valid synchronization point.
 4.1 If the point is not valid, go to step 2.
5. Decode the bitstream from the first bit after the last H
 mode, Hn, with the Current line constructed by step 3.

7 REFERENCES

[1] Alkachouh, Z., and Bellanger, M., “Fast DCT-

Based Spatial Domain Interpolation of Blocks in
Images” , IEEE Trans. on Image Processing, vol.
9, no. 4, Apr. 2000, pp. 729-732.

[2] Hemami, S., and Meng, T., “Transform Coded
Image Reconstruction Exploring Interblock
Correlation” , IEEE Trans. on Image Processing,
vol. 4, no. 7, Jul. 1995, pp. 1023-1027.

[3] ITU-T Recommendation T.6, Facsimile Coding
Schemes and Coding Control Functions for
Group 4 Facsimile Apparatus, 1988.

[4] Kwok, W., and Sun, H., “Multi-Directional
Interpolation for Spatial Error Concealment” ,

IEEE Trans. on Consumer Electronics, vol. 39,
no. 3, Aug. 1993, pp. 455-460.

[5] Shyu, W., and Leou, J., “Detection and
Correction of Transmission Errors in Facsimile
Images” , IEEE Trans. on Communications, vol.
44, no. 8, Aug. 1996, pp. 938-948.

[6] Wang, Y., Zhu, Q., and Shaw, L., “Maximally
Smooth Image Recovery in Transform Coding” ,
IEEE Trans. on Communications, vol. 41, no. 10,
Oct. 1993, pp. 1544-1551.

[7] Youssef, A., and Ratner, A., “Error Correction in
HDLC without Retransmission” , In Proceedings
of CISST, vol. 2, 2001, pp. 526-532.

Figure 5(a) Original ITU test image Figure 5(c) Recovered image with
the all-H line resynchronization
module

Figure 5(b) Decoded image without
error recovery

Figure 4(a) Original ITU test image Figure 4(b) Decoded image without
error recovery (no data after the error
position)

Figure 4(c) Recovered image with
the white line resynchronization
module

