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ABSTRACT 

 

This paper proposes a bit error recovery method for 

Extended 2 Dimensional MMR coded bitstreams.  When 

an error occurs in an MMR coded bitstream, the bitstream 

cannot be decoded correctly after the error point.  To 

prevent losing valid information after an error, we 

developed an error recovery system that detects bit errors 

and applies bit-inversion to correct the errors.  In case the 

bit-inversion cannot correct the error, the system applies 

new algorithms that utilize syntactical structure 

information of the coded bitstream to recover nearly all 

the data. 

 

 

1. INTRODUCTION 

 

The amount of data traffic over communication lines is 

vast and growing daily, in part because images consist of 

massive volumes of data.  As a result, images are often 

compressed.  Since nearly all communication media are 

noisy and incur error, the impact of noise is very serious 

on compressed data and the errors are hard to detect and 

recover from.  Yet without error recovery, compressed 

data cannot be decoded.  

Most receivers solve this problem by requesting 

retransmission.  But this adds more network traffic, 

requires more time, and incurs additional costs.  Even 

worse, retransmission is not possible in surveillance 

applications.  In case retransmission is not desirable or 

possible, the decoder should try to recover as much lost 

data as possible with received data only. 

Most of the research on error recovery has focused on 

error concealment methods for lossy block-based DCT 

compression as in JPEG or MPEG [1,2,7].  These 

methods assume that a bitstream has been decoded and the 

position of the erroneous block is known.  For error 

recovery in losslessly compressed bitstream, which is 

relevant to this paper, relatively little research has been 

done [6,8].  In [8], a generic error recovery scheme is 

presented where the error patterns are assumed to be 

known, which is the case in the older modems.  In [6], an 

error recovery method is presented for facsimile image 

without assuming any knowledge of error patterns, but the 

image in their research is not compressed in MMR, which 

is used in most current facsimile machines.  Our research 

is the first to address error recovery in MMR coded 

bitstreams.  In two other papers [4,5], we developed 

symbol error recovery in MMR fax over modems.  In this 

paper, we address single-bit error recovery in MMR.  We 

define a single-bit error as an isolated wrongly flipped bit, 

which usually occurs in fax over IP.  Thus, this paper 

assumes the following error model: 

 There is no retransmission. 

 There is no error resiliency tool or code provided 

by the encoder or network channel. 

 Bitstreams are coded with MMR code. 

 The errors are single-bit errors. 

 

The next section provides a brief overview of MMR 

coding.  Error detection, resynchronization conditions, 

and our error recovery approach are presented in section 

3.  Section 4 illustrates the performance of the approach, 

and section 5 provides conclusions. 

 

2. X2D MMR CODE 

 

The majority of facsimile machines in the world apply 

Extended 2 Dimensional (X2D) MMR (Modified 

Modified READ) coding to compress facsimile images.  

This scheme is used for Group 3 and Group 4 facsimile 

images and defined in ITU (formally CCITT) T.4 and T.6 

recommendations [3].   

MMR makes use of vertical relationships between 

black runs and white runs in two adjacent scan lines.  It 

codes an image one scan line (1728 pixels) at a time and 

uses the previous line to code the current scan line.  

Figure 1 shows the elements of MMR coding. 

In MMR, when coding the topmost line, the 

Reference line is assumed to be an imaginary blank line 

above the page.  Also, when coding a Current line, the 

initial value of the first changing element is taken to be an 

imaginary blank pixel left of the line.  The position of a0 

changes according to the rules in Figure 1, and the 

position of a1, a2, b1, and b2 change in a way that is 

consistent with their definitions relative to a0. 

When an error occurs in an MMR coded bitstream, 

the error propagates through the bitstream because MMR 

coding does not provide any resynchronization point.  As 

a result, the decoder produces a corrupted image beyond 

the error position. 



 

Coding Modes Conditions Codes 
Next values 

of a0 

Pass Mode  

(P Mode) 
a1 > b2 0001 a0 := b2 

Horizontal Mode 
(H Mode) 

a1 ≤ b2 & 
| a1 - b1 | > 3 

001 + M*(a0a1) + 
M*(a1a2) 

a0 := a2 

Vertical Mode  
(V Mode) 

a1 ≤ b2 &  
| a1 - b1 | ≤ 3     

V(0) a1 = b1 1 a0 := a1 

VL(1) a1 = b1 – 1 010 a0 := a1 

VL(2) a1 = b1 – 2 000010 a0 := a1 

VL(3) a1 = b1 – 3 0000010 a0 := a1 

VR(1) a1 = b1 + 1 011 a0 := a1 

VR(2) a1 = b1 + 2 000011 a0 := a1 

VR(3) a1 = b1 + 3 0000011 a0 := a1 

* M(a0a1) and M(a1a2) are Huffman codewords of the lengths (a1 – a0) 

and (a2 – a1).  Two Huffman tables are specified in T.4/T.6, one for 

white runs and one for black runs.  

       

(b) MMR coding and update of a0 

 

Figure 1 MMR coding 

 

 

3. OUR APPROACH TO BIT ERROR RECOVERY 

 

Our approach to bit error recovery is to (1) detect the 

error, (2) determine the region of error, and (3) apply bit 

inversion and re-decoding to bits within the region.  If the 

third step fails to recover an image from error, our system 

tries to find a resynchronization point in the bitstream to 

resume decoding. 

 

3.1 Error detection 

To detect an error, we use the constraints implied in 

MMR shown in Figure 1.   

Each MMR code mode has conditions.  When our 

error recovery system finds any inconsistencies between a 

code mode and the corresponding conditions, it declares 

that an error occurred in the bitstream.  Specifically, our 

error detection is done by checking for the following 

violations of the constraints: 

 No codeword in the code table matches the 

received bit pattern. 

 The Pass mode occurs, but the changing element b2 

is off the right end of the scan line. 

 VR(i), i = 1, or 2, or 3 occurs, but the changing 

element b1 is off the right end of the scan line. 

 VL(i), i = 1, or 2, or 3 occurs, but the changing 

element are such that b1 – a0 – i ≤ 0. 

 The Horizontal mode occurs and the run-length 

a0a1 is decoded, but the changing elements are 

either | a1 – b1 | ≤ 3 or b2 < a1. 

 The Horizontal mode occurs and the run-lengths 

a0a1 and a1a2 are decoded, but the a1a2 is off the 

right end of the scan line. 

 The Horizontal mode occurs and the run-length 

a0a1 is decoded, but the corresponding a1a2 does 

not exist. 

 The Horizontal mode occurs and the color of the 

run-length a0a1 is determined, but there is no 

codeword in the color runs table that matches the 

received bit pattern. 

 

3.2 Error region determination 

An error detection point, denoted by EDi, occurs after 

the error position, denoted by Ei.  The distance EDi –  Ei 

is called the detection latency.  The region of error ranges 

from Ei to EDi (Ei < EDi) in the bitstream.  However, the 

exact position of the error, Ei, is not known when the error 

is detected.  Thus, we need to find an earlier start point, 

denoted by ESi, of the error region (ESi < Ei < EDi).  

Thus, practically, the region of error ranges from ESi to 

EDi in the bitstream.  The length EDi – Ei of the error 

region has been estimated experimentally to be 815 bits, 

as discussed in Section 4.  Thus, EDi is found by the error 

detection module, and ESi = EDi –  815, leading to a full 

determination of the error region. 

 

3.3 Error recovery 

Once an error region is determined, bit-inversion and 

re-decoding is applied to every bit in the region.  The 

system checks for the violations of the constraints during 

the re-decoding step to see whether the bit-inversion is 

valid or not.  If there are any violations, the system re-

instates the bit and moves to the next bit.  After all bits in 

the region have been tried, if the error persists, the system 

assumes that there are more than one bit error or the error 

occurs outside of the presumed error region.  In this case, 

it finds a resynchronization point Si (ESi < Ei < EDi < Si) 

to resume decoding.   

In this approach, the problem is that MMR coding 

does not provide any synchronization codeword.  Thus, 

we must find a portion of the bitstream that can be used 

somehow as a synchronization point.  The next sub-

b1 

Reference line 

Current line 

b2 

a0 a1 a2 

a0: The position of the first changing element on the current line. 

a1: The next changing element to the right of a0 on the current line. 

a2: The next changing element to the right of a1 on the current line. 

b1: The first changing element in the reference line to the right of a0  

     and of opposite color of a0. 

b2: The next changing element to the right of b1 on the reference  

     line. 

(a) Changing picture elements 



section explains our approach to locate a synchronization 

point within an MMR coded bitstream. 

 

3.4 Resynchronization in MMR 

A bitstream portion should satisfy one of the following 

two conditions in order to provide a synchronization 

point: 

(1) A portion has a guessable Reference line, or 

(2) A portion needs no Reference line for decoding. 

Derived from the syntactical information in MMR, 

two types of scan lines can be used as a synchronization 

point: a white line (blank line) and a line consisting of the 

Horizontal modes only (all-H line).  A white line, which 

satisfies the first condition, can be used as a Reference 

line for the next line since it consists of only white pixels.  

Then, decoding can be resumed from the following line.  

An all-H line does not refer to the previous line since the 

Horizontal mode explicitly codes the run-lengths of white 

runs and black runs, thus it satisfies the second condition. 

For each type of the scan line to be used as a 

resynchronization point, we determined a regular 

expression (pattern) to search for in the bitstream to locate 

such a resynchronization point, as explained next. 

According to MMR, a white line following a non-

white line is coded with one or more Pass modes followed 

by one V(0) mode: P … P V(0), represented by the regular 

expression P+ V(0).  Each white line that follows a white 

line is coded as V(0).  The first non-white line after the 

white lines is coded by one or more Horizontal modes 

followed by one Vertical mode, which is represented by a 

regular expression H+ VD(i), where D is either L or R and i 

= 0, 1, 2, or 3.  In summary, the first type of 

synchronization point, called white line 

resynchronization, is accomplished by searching in the 

bitstream for a regular expression of the form P+ (V(0))+ 

H+ VD(i). 

An all-H line is represented by H … H (that is, H+).  

But the pattern is extremely rare since most of the binary 

images have right and left margins that are represented by 

Vertical modes in MMR code.  Consequently, the 

expression can be modified by adding two Vertical modes 

at the beginning, so VD(i) VD(j) H+ will be reflecting the 

margins, where D is L or R, and i, j =  0, 1, 2, or 3.  VD(i) 

represents the right margin of the previous non-all-H line, 

and VD(j) represents the left margin of the current all-H 

line.  Thus, the second type of synchronization point, 

called all-H line resynchronization, is accomplished by 

searching in the bitstream for the regular expression VD(i) 

VD(j) H+. 

These resynchronizations are used when the error 

recovery system fails to correct bit error(s) with the bit-

inversion.  The system calls the resynchronization 

modules to find a synchronization point so that it skips the 

error region and keeps decoding.  

The white line resynchronization works very well for 

text images because usually many successive blank lines 

intervene between non-blank lines.  As long as a binary 

image has a blank line, our system is able to resynchronize 

decoding by the line.  The all-H line resynchronization 

applies well when a binary image has graphic contents. 

 

4. PERFORMANCE EVALUATION 

 

The error recovery system has been implemented on a 

Pentium 4, 1.6 GHz using the C programming language.  

We evaluated the system with 7 facsimile test images 

provided by ITU, using what we call the Relative Error 

(RE) metric, defined as 

bE

o
S

o
E

RE   

where Eo is the total number of erroneous binary pixels in 

the output image, So is the size of the uncompressed 

image, and Eb is the number of error bits in the bitstream. 

RE ranges from 0 (best) to 1 (worst). 

Our test results show that the average detection 

latency, denoted by DLμ, is about 80 bits, and the standard 

deviation of the detection latency, denoted by DLσ, is 

about 245 bits.  This means when error bits are more than 

80 bits apart, which is the case when the Bit Error Rate 

(BER) is less than 1.25%, recovery is 100% successful on 

average.  It also means that by setting the error region 

length to DLμ + 3DLσ = 815 bits, there is an estimated 

99.87% chance that the error bit will be found and 

corrected in that region (assuming the detection latency 

follows a normal probability distribution). 

Indeed, we have found that about 90.5% of the test 

cases successfully corrected errors with the bit inversion 

(RE = 0).  About 8% of the test cases did not correct 

errors, but passed the re-decoding checking without any 

violation detection and produced decoded images where 

the error is barely noticeable in the output.  The RE 

ranges from 2×10-6 to 7×10-4, and averages at 10-4.  On 

the other hand, assuming no error recovery for the same 

test cases, the RE increases to the range from 0.0014 to 

0.2, and averages at 0.04.  The remaining 1.5% of the test 

cases failed to recover from errors with bit inversion.   

When bit inversion cannot recover an image, the 

resynchronization module is applied to the image.  Figure 

2 shows an example of the resynchronization approach.   

Figure 2(b) shows the effect of no recovery: the image has 

nothing beyond the error detection point when no error 

recovery is applied.  Figure 2(c) presents a recovered 

image with our white line resynchronization module.  

Obviously, the recovered image has a much smaller RE 

value compared to the value of the remaining image.  



 
 

Figure 2(a) Original ITU test image 

 

 
RE = 0.0561 

Figure 2(b) Decoded image without error recovery 

 

5. CONCLUSION 

 

In this paper, a bit error recovery approach for MMR 

coded bitstreams is proposed.  We developed an error 

recovery system, which detects an error and applies bit-

inversion and re-decoding to correct error(s) within the 

error region.  If the error cannot be corrected with this 

step, it finds a resynchronization point from which it 

resumes decoding.  

 
RE = 0.0026 

Figure 2(c) Recovered image with resynchronization 

 

The test results show that our approach successfully 

recovers images from bit errors when BER is less than 

1.25%.  In case BER is greater than 1.25%, our system 

calls the resynchronization modules that also recover 

images rather well by locating specific patterns of 

codewords within MMR coded bitstreams. 
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