

BIT ERROR DETECTION AND RECOVERY FOR X2D MMR CODED BITSTREAMS

Hyunju Kim and Abdou Youssef

Department of Computer Science, The George Washington University

{hkim, youssef}@seas.gwu.edu

ABSTRACT

This paper proposes a bit error recovery method for

Extended 2 Dimensional MMR coded bitstreams. When

an error occurs in an MMR coded bitstream, the bitstream

cannot be decoded correctly after the error point. To

prevent losing valid information after an error, we

developed an error recovery system that detects bit errors

and applies bit-inversion to correct the errors. In case the

bit-inversion cannot correct the error, the system applies

new algorithms that utilize syntactical structure

information of the coded bitstream to recover nearly all

the data.

1. INTRODUCTION

The amount of data traffic over communication lines is

vast and growing daily, in part because images consist of

massive volumes of data. As a result, images are often

compressed. Since nearly all communication media are

noisy and incur error, the impact of noise is very serious

on compressed data and the errors are hard to detect and

recover from. Yet without error recovery, compressed

data cannot be decoded.

Most receivers solve this problem by requesting

retransmission. But this adds more network traffic,

requires more time, and incurs additional costs. Even

worse, retransmission is not possible in surveillance

applications. In case retransmission is not desirable or

possible, the decoder should try to recover as much lost

data as possible with received data only.

Most of the research on error recovery has focused on

error concealment methods for lossy block-based DCT

compression as in JPEG or MPEG [1,2,7]. These

methods assume that a bitstream has been decoded and the

position of the erroneous block is known. For error

recovery in losslessly compressed bitstream, which is

relevant to this paper, relatively little research has been

done [6,8]. In [8], a generic error recovery scheme is

presented where the error patterns are assumed to be

known, which is the case in the older modems. In [6], an

error recovery method is presented for facsimile image

without assuming any knowledge of error patterns, but the

image in their research is not compressed in MMR, which

is used in most current facsimile machines. Our research

is the first to address error recovery in MMR coded

bitstreams. In two other papers [4,5], we developed

symbol error recovery in MMR fax over modems. In this

paper, we address single-bit error recovery in MMR. We

define a single-bit error as an isolated wrongly flipped bit,

which usually occurs in fax over IP. Thus, this paper

assumes the following error model:

 There is no retransmission.

 There is no error resiliency tool or code provided

by the encoder or network channel.

 Bitstreams are coded with MMR code.

 The errors are single-bit errors.

The next section provides a brief overview of MMR

coding. Error detection, resynchronization conditions,

and our error recovery approach are presented in section

3. Section 4 illustrates the performance of the approach,

and section 5 provides conclusions.

2. X2D MMR CODE

The majority of facsimile machines in the world apply

Extended 2 Dimensional (X2D) MMR (Modified

Modified READ) coding to compress facsimile images.

This scheme is used for Group 3 and Group 4 facsimile

images and defined in ITU (formally CCITT) T.4 and T.6

recommendations [3].

MMR makes use of vertical relationships between

black runs and white runs in two adjacent scan lines. It

codes an image one scan line (1728 pixels) at a time and

uses the previous line to code the current scan line.

Figure 1 shows the elements of MMR coding.

In MMR, when coding the topmost line, the

Reference line is assumed to be an imaginary blank line

above the page. Also, when coding a Current line, the

initial value of the first changing element is taken to be an

imaginary blank pixel left of the line. The position of a0

changes according to the rules in Figure 1, and the

position of a1, a2, b1, and b2 change in a way that is

consistent with their definitions relative to a0.

When an error occurs in an MMR coded bitstream,

the error propagates through the bitstream because MMR

coding does not provide any resynchronization point. As

a result, the decoder produces a corrupted image beyond

the error position.

Coding Modes Conditions Codes
Next values

of a0

Pass Mode

(P Mode)
a1 > b2 0001 a0 := b2

Horizontal Mode
(H Mode)

a1 ≤ b2 &
| a1 - b1 | > 3

001 + M*(a0a1) +
M*(a1a2)

a0 := a2

Vertical Mode
(V Mode)

a1 ≤ b2 &
| a1 - b1 | ≤ 3

V(0) a1 = b1 1 a0 := a1

VL(1) a1 = b1 – 1 010 a0 := a1

VL(2) a1 = b1 – 2 000010 a0 := a1

VL(3) a1 = b1 – 3 0000010 a0 := a1

VR(1) a1 = b1 + 1 011 a0 := a1

VR(2) a1 = b1 + 2 000011 a0 := a1

VR(3) a1 = b1 + 3 0000011 a0 := a1

* M(a0a1) and M(a1a2) are Huffman codewords of the lengths (a1 – a0)

and (a2 – a1). Two Huffman tables are specified in T.4/T.6, one for

white runs and one for black runs.

(b) MMR coding and update of a0

Figure 1 MMR coding

3. OUR APPROACH TO BIT ERROR RECOVERY

Our approach to bit error recovery is to (1) detect the

error, (2) determine the region of error, and (3) apply bit

inversion and re-decoding to bits within the region. If the

third step fails to recover an image from error, our system

tries to find a resynchronization point in the bitstream to

resume decoding.

3.1 Error detection

To detect an error, we use the constraints implied in

MMR shown in Figure 1.

Each MMR code mode has conditions. When our

error recovery system finds any inconsistencies between a

code mode and the corresponding conditions, it declares

that an error occurred in the bitstream. Specifically, our

error detection is done by checking for the following

violations of the constraints:

 No codeword in the code table matches the

received bit pattern.

 The Pass mode occurs, but the changing element b2

is off the right end of the scan line.

 VR(i), i = 1, or 2, or 3 occurs, but the changing

element b1 is off the right end of the scan line.

 VL(i), i = 1, or 2, or 3 occurs, but the changing

element are such that b1 – a0 – i ≤ 0.

 The Horizontal mode occurs and the run-length

a0a1 is decoded, but the changing elements are

either | a1 – b1 | ≤ 3 or b2 < a1.

 The Horizontal mode occurs and the run-lengths

a0a1 and a1a2 are decoded, but the a1a2 is off the

right end of the scan line.

 The Horizontal mode occurs and the run-length

a0a1 is decoded, but the corresponding a1a2 does

not exist.

 The Horizontal mode occurs and the color of the

run-length a0a1 is determined, but there is no

codeword in the color runs table that matches the

received bit pattern.

3.2 Error region determination

An error detection point, denoted by EDi, occurs after

the error position, denoted by Ei. The distance EDi – Ei

is called the detection latency. The region of error ranges

from Ei to EDi (Ei < EDi) in the bitstream. However, the

exact position of the error, Ei, is not known when the error

is detected. Thus, we need to find an earlier start point,

denoted by ESi, of the error region (ESi < Ei < EDi).

Thus, practically, the region of error ranges from ESi to

EDi in the bitstream. The length EDi – Ei of the error

region has been estimated experimentally to be 815 bits,

as discussed in Section 4. Thus, EDi is found by the error

detection module, and ESi = EDi – 815, leading to a full

determination of the error region.

3.3 Error recovery

Once an error region is determined, bit-inversion and

re-decoding is applied to every bit in the region. The

system checks for the violations of the constraints during

the re-decoding step to see whether the bit-inversion is

valid or not. If there are any violations, the system re-

instates the bit and moves to the next bit. After all bits in

the region have been tried, if the error persists, the system

assumes that there are more than one bit error or the error

occurs outside of the presumed error region. In this case,

it finds a resynchronization point Si (ESi < Ei < EDi < Si)

to resume decoding.

In this approach, the problem is that MMR coding

does not provide any synchronization codeword. Thus,

we must find a portion of the bitstream that can be used

somehow as a synchronization point. The next sub-

b1

Reference line

Current line

b2

a0 a1 a2

a0: The position of the first changing element on the current line.

a1: The next changing element to the right of a0 on the current line.

a2: The next changing element to the right of a1 on the current line.

b1: The first changing element in the reference line to the right of a0

 and of opposite color of a0.

b2: The next changing element to the right of b1 on the reference

 line.

(a) Changing picture elements

section explains our approach to locate a synchronization

point within an MMR coded bitstream.

3.4 Resynchronization in MMR

A bitstream portion should satisfy one of the following

two conditions in order to provide a synchronization

point:

(1) A portion has a guessable Reference line, or

(2) A portion needs no Reference line for decoding.

Derived from the syntactical information in MMR,

two types of scan lines can be used as a synchronization

point: a white line (blank line) and a line consisting of the

Horizontal modes only (all-H line). A white line, which

satisfies the first condition, can be used as a Reference

line for the next line since it consists of only white pixels.

Then, decoding can be resumed from the following line.

An all-H line does not refer to the previous line since the

Horizontal mode explicitly codes the run-lengths of white

runs and black runs, thus it satisfies the second condition.

For each type of the scan line to be used as a

resynchronization point, we determined a regular

expression (pattern) to search for in the bitstream to locate

such a resynchronization point, as explained next.

According to MMR, a white line following a non-

white line is coded with one or more Pass modes followed

by one V(0) mode: P … P V(0), represented by the regular

expression P+ V(0). Each white line that follows a white

line is coded as V(0). The first non-white line after the

white lines is coded by one or more Horizontal modes

followed by one Vertical mode, which is represented by a

regular expression H+ VD(i), where D is either L or R and i

= 0, 1, 2, or 3. In summary, the first type of

synchronization point, called white line

resynchronization, is accomplished by searching in the

bitstream for a regular expression of the form P+ (V(0))+

H+ VD(i).

An all-H line is represented by H … H (that is, H+).

But the pattern is extremely rare since most of the binary

images have right and left margins that are represented by

Vertical modes in MMR code. Consequently, the

expression can be modified by adding two Vertical modes

at the beginning, so VD(i) VD(j) H+ will be reflecting the

margins, where D is L or R, and i, j = 0, 1, 2, or 3. VD(i)

represents the right margin of the previous non-all-H line,

and VD(j) represents the left margin of the current all-H

line. Thus, the second type of synchronization point,

called all-H line resynchronization, is accomplished by

searching in the bitstream for the regular expression VD(i)

VD(j) H+.

These resynchronizations are used when the error

recovery system fails to correct bit error(s) with the bit-

inversion. The system calls the resynchronization

modules to find a synchronization point so that it skips the

error region and keeps decoding.

The white line resynchronization works very well for

text images because usually many successive blank lines

intervene between non-blank lines. As long as a binary

image has a blank line, our system is able to resynchronize

decoding by the line. The all-H line resynchronization

applies well when a binary image has graphic contents.

4. PERFORMANCE EVALUATION

The error recovery system has been implemented on a

Pentium 4, 1.6 GHz using the C programming language.

We evaluated the system with 7 facsimile test images

provided by ITU, using what we call the Relative Error

(RE) metric, defined as

bE

o
S

o
E

RE

where Eo is the total number of erroneous binary pixels in

the output image, So is the size of the uncompressed

image, and Eb is the number of error bits in the bitstream.

RE ranges from 0 (best) to 1 (worst).

Our test results show that the average detection

latency, denoted by DLμ, is about 80 bits, and the standard

deviation of the detection latency, denoted by DLσ, is

about 245 bits. This means when error bits are more than

80 bits apart, which is the case when the Bit Error Rate

(BER) is less than 1.25%, recovery is 100% successful on

average. It also means that by setting the error region

length to DLμ + 3DLσ = 815 bits, there is an estimated

99.87% chance that the error bit will be found and

corrected in that region (assuming the detection latency

follows a normal probability distribution).

Indeed, we have found that about 90.5% of the test

cases successfully corrected errors with the bit inversion

(RE = 0). About 8% of the test cases did not correct

errors, but passed the re-decoding checking without any

violation detection and produced decoded images where

the error is barely noticeable in the output. The RE

ranges from 2×10-6 to 7×10-4, and averages at 10-4. On

the other hand, assuming no error recovery for the same

test cases, the RE increases to the range from 0.0014 to

0.2, and averages at 0.04. The remaining 1.5% of the test

cases failed to recover from errors with bit inversion.

When bit inversion cannot recover an image, the

resynchronization module is applied to the image. Figure

2 shows an example of the resynchronization approach.

Figure 2(b) shows the effect of no recovery: the image has

nothing beyond the error detection point when no error

recovery is applied. Figure 2(c) presents a recovered

image with our white line resynchronization module.

Obviously, the recovered image has a much smaller RE

value compared to the value of the remaining image.

Figure 2(a) Original ITU test image

RE = 0.0561

Figure 2(b) Decoded image without error recovery

5. CONCLUSION

In this paper, a bit error recovery approach for MMR

coded bitstreams is proposed. We developed an error

recovery system, which detects an error and applies bit-

inversion and re-decoding to correct error(s) within the

error region. If the error cannot be corrected with this

step, it finds a resynchronization point from which it

resumes decoding.

RE = 0.0026

Figure 2(c) Recovered image with resynchronization

The test results show that our approach successfully

recovers images from bit errors when BER is less than

1.25%. In case BER is greater than 1.25%, our system

calls the resynchronization modules that also recover

images rather well by locating specific patterns of

codewords within MMR coded bitstreams.

6. REFERENCES

[1] Alkachouh, Z., and Bellanger, M., “Fast DCT-Based

Spatial Domain Interpolation of Blocks in Images”, IEEE

Trans. on Image Processing, vol. 9, no. 4, Apr. 2000, pp.

729-732.

[2] Hemami, S., and Meng, T., “Transform Coded Image

Reconstruction Exploring Interblock Correlation”, IEEE

Trans. on Image Processing, vol. 4, no. 7, Jul. 1995, pp.

1023-1027.

[3] ITU-T Recommendation T.6, Facsimile Coding Schemes

and Coding Control Functions for Group 4 Facsimile

Apparatus, 1988.

[4] Kim, H., and Youssef, A., “Error Recovery in Facsimile

without Retransmission”, accepted to appear in

CATA2003, Mar. 26-28, Honolulu.

[5] Kim, H., and Youssef, A., “Interactive Error Recovery in

Facsimile without Retransmission”, accepted to appear in

ITCC2003, Apr. 28-30, Las Vegas.

[6] Shyu, W., and Leou, J., “Detection and Correction of

Transmission Errors in Facsimile Images”, IEEE Trans. on

Communications, vol. 44, no. 8, Aug. 1996, pp. 938-948.

[7] Wang, Y., Zhu, Q., and Shaw, L., “Maximally Smooth

Image Recovery in Transform Coding”, IEEE Trans. on

Communications, vol. 41, no. 10, Oct. 1993, pp.1544-1551.

[8] Youssef, A., and Ratner, A., “Error Correction in HDLC

without Retransmission”, In Proceedings of CISST, vol. 2,

2001, pp. 526-532.

