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Abstract 

 
This paper investigates the relationships between 

single-bit errors and their detection points, which 

occur in bitstreams that have been compressed with 

Group 3, Extended 2 Dimensional MMR coding 

scheme, and develops a bit error recovery algorithm 

using the detection points.  When single-bit errors 

occur in an MMR coded bitstream, the bitstream 

cannot, without some recovery, be correctly decoded 

after the errors.  Our bit error recovery algorithm 

applies bit inversions and re-decoding to a specific 

set of candidate error bits within the error region, 

which have been determined by the algorithm.  The 

testing results show that around 70% of multiple 

single-bit errors are corrected with the algorithm.   

 

Keywords: Error detection, Bit error recovery, MMR 

coding, Facsimile image 

 

 

1. Introduction 
 

The amount of data traffic over communication 

lines is vast and growing daily, in part because 

images consist of massive volumes of data.  As a 

result, images are often compressed.  Since 

nearly all communication media are noisy and 

incur error, the impact of noise is very serious on 

compressed data and the errors are hard to detect 

and recover from.  Yet, without error recovery, 

compressed data cannot be decoded.  

      Most receivers solve this problem by 

requesting a retransmission of the corrupted data.  

But retransmission adds more traffic to the 

networks as well as requires more time and 

resources.  Even worse, retransmission is not 

possible in surveillance applications.  In case 

retransmission request is not desirable or 

possible, the decoder should try to recover as 

much lost data as possible with received data 

only.   

      Most of the research on error recovery has 

focused on error concealment methods for lossy 

block-based DCT compression as in JPEG or 

MPEG [1,2,7].  These methods assume that a 

bitstream has been fully decoded and the 

position of the erroneous block is known.  For 

error recovery in losslessly compressed 

bitstream, which is relevant to this paper, 

relatively little research has been done [6,8].  In 

[8], a generic error recovery scheme is presented 

where the error patterns are assumed to be 

known, which is the case in the older modems.  

In the more recent modems, the error patterns 

are unknown.  In our research, the error patterns 

are assumed to be unknown.  In [6], a facsimile 

error recovery is presented without assuming any 

knowledge of error patterns, but the image in 

their research is not compressed in MMR, which 

is used in most current facsimile machines.  Our 

research is the first address error recovery in 

MMR coded bitstreams.  In two other papers 

[4,5], we developed symbol error recovery in 

MMR fax over modems.  In this paper, we 

address multiple single-bit error recovery in 

MMR.  We define a single-bit error as an 

isolated wrongly flipped bit, which usually 



occurs in fax over IP.  Thus, this paper assumes 

the following error model: 

 The decoder cannot request retransmission 

of corrupted data. 

 There is no error resiliency tool or code 

provided by the encoder or network 

channel. 

 Bitstreams are coded with MMR code. 

 The errors are single-bit errors. 

 

      The next section provides a brief overview of 

MMR coding.  Section 3 provides behaviors of 

error detection points in MMR coded bitstreams, 

and section 4 presents an error recovery 

algorithm.  Section 5 provides the performance 

of the approach, and section 6 provides 

conclusions. 

 
 

2. Extended 2 dimensional  

    MMR code 
 

The majority of facsimile machines in the world 

apply Extended 2 Dimensional MMR (Modified 

Modified READ) coding to compress facsimile 

images.  This scheme is used for Group 3 and 

Group 4 facsimile images and defined at ITU 

(formerly CCITT) T.4 and T.6 recommendations 

[3]. 

      MMR makes use of vertical relationships 

between black runs and white runs in two 

adjacent scan lines.  It codes an image one scan 

line (1728 pixels) at a time and uses the previous 

line to code the current scan line being coded.  

Figure 1 shows the elements of MMR coding.   

      In MMR, when coding the topmost line, the 

Reference line is assumed to be an imaginary 

blank line above the page.  Also, when coding a 

Current line, the initial value of the first 

changing element is taken to be an imaginary 

blank pixel left of the line.  The position of a0 

changes according to the rules in Figure 1, and 

the position of a1, a2, b1, and b2 change in a way 

that is consistent with their definitions relative to 

a0. 

      When an error occurs in an MMR coded 

bitstream, the error propagates through the 

bitstream because MMR coding scheme does not 

provide any resynchronization point.  As a 

result, the decoder produces a corrupted image 

beyond the error position. 
 

 
 

Coding 
Modes 

Conditions Codes 
Next 
values of 
a0 

Pass 
Mode  
(P Mode) 

a1 > b2 0001 a0 := b2 

Horizontal 
Mode  
(H Mode) 

a1 ≤ b2 & 
| a1 - b1 | > 3 

001 + 
M*(a0a1) + 
M*(a1a2) 

a0 := a2 

Vertical 
Mode  
(V Mode) 

a1 ≤ b2 &  
| a1 - b1 | ≤ 3 

    

V(0) a1 = b1 1 a0 := a1 

VL(1) a1 = b1 – 1 010 a0 := a1 

VL(2) a1 = b1 – 2 000010 a0 := a1 

VL(3) a1 = b1 – 3 0000010 a0 := a1 

VR(1) a1 = b1 + 1 011 a0 := a1 

VR(2) a1 = b1 + 2 000011 a0 := a1 

VR(3) a1 = b1 + 3 0000011 a0 := a1 

 

* M(a0a1) and M(a1a2) are Huffman codewords of the 

lengths (a1 – a0) and (a2 – a1).  Two Huffman tables are 

specified in T.4/T.6, one for white runs and one for black 

runs.  

 

(b) MMR coding and update of a0 

 

Figure 1. MMR coding 

 

 

 

 

Reference line 

Current line 

b2 

a0 a1 a2 

a0: The position of the first changing element on  

     the current line. 

a1: The next changing element to the right of a0 on  

     the current line. 

a2: The next changing element to the right of a1 on  

     the current line. 

b1: The first changing element in the reference line to  

     the right of a0 and of opposite color of a0. 

b2: The next changing element to the right of b1 on  

      the reference line. 

 

(a) Changing picture elements 

b1 



3. Bit error detection points 
 

To detect an error, we use the constraints 

implied in MMR shown in Figure 1.  Each MMR 

code mode has conditions.  When our error 

recovery system finds any inconsistencies 

between a code mode and the corresponding 

conditions, it assumes that an error occurred in 

the bitstream.  Specifically, our error detection is 

done by checking for the following violations of 

the constraints: 

 No codeword in the code table matches 

the received bit pattern. 

 The Pass mode occurs, but the changing 

element b2 is off the right end of the scan 

line. 

 VR(i), i = 1, or 2, or 3 occurs, but the 

changing element b1 is off the right end of 

the scan line. 

 VL(i), i = 1, or 2, or 3 occurs, but the 

changing element are such that b1 – a0 – i 

≤ 0. 

 The Horizontal mode occurs and the run-

length a0a1 is decoded, but the changing 

elements are either | a1 – b1 | ≤ 3 or b2 < a1. 

 The Horizontal mode occurs and the run-

lengths a0a1 and a1a2 are decoded, but the 

a1a2 is off the right end of the scan line. 

 The Horizontal mode occurs and the run-

length a0a1 is decoded, but the 

corresponding a1a2 does not exist. 

 The Horizontal mode occurs and the color 

of the run-length a0a1 is determined, but 

there is no codeword in the color runs 

table that matches the received bit pattern. 

 

      To investigate the relationships between bit 

errors and their detection points determined by 

our detection method, we conducted an 

extensive test, which introduced randomly 

generated pairs of bit errors into the ITU test 

images and measured their Detection Points 

(DP).  The Inter-Error Distance (IED), which is 

the distance in bits between two adjacent bit 

errors, was distributed between 0 to 800 bits (0 < 

IED < 800).   

      The test results show that around 83% of the 

error pairs were detected before proceeding to 

the second bit error because the first bit error 

violates the constraints.  These errors are called 

one single-bit errors.  This means that when we 

detect single-bit error(s), there would be 83% 

chance to correct the error by using the 

sequential backward bit-inversion and re-

decoding, which is explained next.  Our system 

that implemented the bit-inversion and re-

decoding method detects an error, determines the 

error region, which is practically defined 800 

bits backward from the DP (the start of the 

region is defined by DP – 800 bits), and applies 

bit-inversion and re-decoding to every bit in the 

region.  The system checks for the violations of 

the constraints during the re-decoding step to see 

whether the bit-inversion is valid or not by 

decoding the next 25 scan lines.  If there are any 

violations, the system re-instates the bit and 

moves to the next bit.  If there is no violation, 

the bit-inversion is assumed to be valid. 

      For the remaining 17% of the test cases 

(called multiple single-bit errors), the bit-

inversion and re-decoding does not work since 

there are more than one single-bit errors.  In 

these cases, a brute-force way to correct the error 

would try all 2800 (assuming there are 800 bits in 

the error region) bit-combinations, which is 

unfeasible.  Fortunately, our testing results show 

that there are some relationships between IED 

and DP, which could be used to reduce the 

number of trials to a realistic range.  Figure 2 

shows a histogram of the one single-bit errors, 

which represents the relationship between IED 

and P(d) that is defined as follows: 

errorsbitsingleoneofnumbertotal

dIEDdthattimesofnumber
)d(P
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      The average IED is around 410 bits, and the 

standard deviation of the IEDs on the one single-

bit errors is 225 bits.  Figure 3 shows a 

histogram of the multiple single-bit errors.  Its 

average IED is around 260 bits, and the standard 

deviation of the IEDs is 235 bits.  As Figure 2 

shows, there is no relationship between IED and 

P(d) in one single-bit errors.  On the other hand, 

in multiple single-bit errors, there is a strong 

relationship between IED and P(d) compared to 

the one single-bit errors.  This is because of 

levels of error impacts and persistence of the 

impacts to our error detection constraints.  If the 

first bit error causes significant error impacts, it 



would be detected right after the occurrence with 

our detection method; if the first bit error causes 

insignificant error impacts, these impacts will 

last until the second bit error without causing 

any violations of the detection constraints.  In 

this case, a small IED is likely to lead to a 

multiple single-bit error since the first bit error’s 

insignificant error impacts will persist over the 

small IED.   

      

 
Figure 2. IEDs on one single-bit errors 

 

 

 
Figure 3. IEDs on multiple single-bit errors 

 

       

      We also measured Detection Latency (DL), 

which is the length in bits from the latest error 

bit to the DP, on these two types of single-bit 

errors.  In one single-bit errors, average DL is 

around 40 bits and its standard deviation is 

around 75 bits; in multiple single-bit errors, 

average DL is around 600 bits and its standard 

deviation is around 4000 bits.  The big 

differences over these values are also because of 

the levels of error impacts; one single-bit errors 

cause significant error effects, thus they are 

detected right after the occurrences; multiple 

single-bit errors cause insignificant error effects, 

thus they are not well detected and produce long 

DLs.  In some extreme cases, multiple single-bit 

errors produce long DLs up to tens of thousands. 

      Since one single-bit errors are corrected with 

the bit-inversion and re-decoding, we need to 

develop a new algorithm to correct multiple 

single-bit errors.  As the multiple single-bit 

errors have the unique characteristics presented 

above, we investigated the behaviors of DPs in 

the errors by measuring three DPs for each pair 

of multiple single-bit errors as follows: 

 DPpair: DP of a pair of bit errors 

 DPfirst: DP of the first bit error only (the 

second bit error is assumed to be corrected) 

 DPsecond: DP of the second bit error only 

(the first bit error is assumed to be 

corrected) 

 

      The results show that around 97% of the 

multiple single-bit errors produce DPpair values 

such as DPpair ≤ DPfirst or DPpair ≤ DPsecond, 

which indicates that more bit errors produce 

smaller DLs.  We also found the following DP 

behaviors: 

 DPpair is equal to DPsecond (75% of the 

multiple single-bit errors) 

 DPpair is less than DPfirst (93% of the 

multiple single-bit errors) 

 

      Based on these observations, we can 

conclude that (1) correcting the first error bit of a 

pair of bit errors is likely to produce a DP that is 

the same as DPpair and (2) correcting the second 

error bit of a pair of bit errors is likely to 

produce a DP that is equal to or greater than 

DPpair.  As a result, we can use DP values when 

we define candidate error bits since correcting 

error bit(s) produce a DP that is equal to or 

greater than the original DP in most cases.  Our 

sequential bit-inversion and re-decoding would 

flip each bit in an error region and produce a set 

of DP values from the re-decoding.  Then, by 



selecting bits produced DP values, which are 

equal to or greater than the original DP, we can 

make up a set of candidate error bits.  The next 

section explains an algorithm that utilizes these 

DP values. 

 

 
 

 

4. Bit error recovery algorithm 
 

Our approach to bit error recovery is to (1) 

detect the error, (2) determine the region of error, 

and (3) apply bit-inversion and re-decoding to 

bits within the region.  If the third step fails to 

recover an image from errors, our system tries to 

find a portion of the bitstream that can be used 

somehow as a synchronization point.  We 

developed white-line resynchronization and all-

H line resynchronization modules to search for 

the portions, as described in our paper [4].  

These modules skip erroneous regions and 

resume decoding from the potions that can be 

used as synchronization points.   

      In the first step, bit errors will be detected by 

checking any violations of the detection 

constraints.  As already mentioned, an error 

region is practically set to 800 bits backward 

from the DP.  Figure 4 shows an algorithm that 

would be used in the third step assuming that 

there are at most two single-bit errors in the error 

region.  The algorithm can be modified for more 

than two bit errors by extending step 3 in Figure 

4.     

 

 

5. Performance evaluation 
 

The error recovery system has been implemented 

on a Pentium 4, 1.6 GHz using the C 

programming language.  We evaluated the 

system with 7 facsimile test images provided by 

1. Detect a bit error, set DPpair to its DP value, and define its error region. 

2. For each bit in the region 

 2.1 Flip the bit. 

             2.2 Check if the bit-inversion is valid or not by re-decoding the line that  

       contains the bit. 

         2.2.1 If it is valid, exit the error recovery module and keep decoding.  

2.2.2 If it is not valid, record its DP. 

 2.3 If the DP is equal to or greater than DPpair 

  2.3.1 Create a candidate error bit, Ci (i, DPi) where i is  

         the bit address and DPi is the DP from the flipped bit, i.  

 2.4 Re-flip the bit 

3. For each Ci where its DPi is equal to DPpair 

 3.1 Flip the bit, i. 

 3.2 For each Cj where j > i  

  3.2.1 Flip the bit, j. 

  3.2.2 Check if the bit-inversion is valid or not by the re-decoding step. 

   3.2.2.1 If it is valid, go to step 4. 

   3.2.2.2 If it is not valid, re-flip the bit, j. 

 3.3 Re-flip the bit, i. 

4. Check if the step 3 corrected the error. 

 4.1 If it did not correct the error, call the resynchronization modules.    

Figure 4. Single-bit error recovery algorithm 



ITU, using what we call the Relative Error (RE) 

metric, defined as 

bE

o
S

o
E

RE   

where Eo is the total number of erroneous binary 

pixels in the output image, So is the size of the 

uncompressed image, and Eb is the number of 

error bits in the bitstream. RE ranges from 0 

(best) to 1 (worst). 

      Test results show that around 70% of 

multiple single-bit errors are corrected with our 

algorithm presented in Figure 4.  About 90% of 

the corrected test cases produced 0 values of RE.  

The remaining 10% of the test cases did not 

correct errors, but passed the re-decoding 

checking without any violation detection and 

produced decoded images where the error is 

barely noticeable in the output.  In these cases, 

the RE ranges from 2×10-6 to 7×10-4, and 

averages at 10-4.   

 

 

6. Conclusion 
 

In this paper, behaviors of error detection points 

are presented, and a single-bit error recovery 

algorithm using the detection points for MMR 

coded bitstreams is proposed.  We developed an 

error recovery system, which detects an error 

and applies the algorithm to correct errors within 

the error region.  Around 70% of multiple 

single-bit errors are corrected with our 

algorithm.   

      If the error cannot be corrected with the 

algorithm, the system calls the resynchronization 

modules to find a resynchronization point from 

which it resumes decoding.  The test results 

show that our algorithm successfully corrects 

most of single-bit errors.     
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