
Bit Error Recovery in MMR Coded Bitstreams

Using Error Detection Points

Hyunju Kim and Abdou Youssef

Department of Computer Science

The George Washington University

Washington, DC, USA

Email: {hkim, ayoussef}@gwu.edu

Abstract

This paper investigates the relationships between

single-bit errors and their detection points, which

occur in bitstreams that have been compressed with

Group 3, Extended 2 Dimensional MMR coding

scheme, and develops a bit error recovery algorithm

using the detection points. When single-bit errors

occur in an MMR coded bitstream, the bitstream

cannot, without some recovery, be correctly decoded

after the errors. Our bit error recovery algorithm

applies bit inversions and re-decoding to a specific

set of candidate error bits within the error region,

which have been determined by the algorithm. The

testing results show that around 70% of multiple

single-bit errors are corrected with the algorithm.

Keywords: Error detection, Bit error recovery, MMR

coding, Facsimile image

1. Introduction

The amount of data traffic over communication

lines is vast and growing daily, in part because

images consist of massive volumes of data. As a

result, images are often compressed. Since

nearly all communication media are noisy and

incur error, the impact of noise is very serious on

compressed data and the errors are hard to detect

and recover from. Yet, without error recovery,

compressed data cannot be decoded.

 Most receivers solve this problem by

requesting a retransmission of the corrupted data.

But retransmission adds more traffic to the

networks as well as requires more time and

resources. Even worse, retransmission is not

possible in surveillance applications. In case

retransmission request is not desirable or

possible, the decoder should try to recover as

much lost data as possible with received data

only.

 Most of the research on error recovery has

focused on error concealment methods for lossy

block-based DCT compression as in JPEG or

MPEG [1,2,7]. These methods assume that a

bitstream has been fully decoded and the

position of the erroneous block is known. For

error recovery in losslessly compressed

bitstream, which is relevant to this paper,

relatively little research has been done [6,8]. In

[8], a generic error recovery scheme is presented

where the error patterns are assumed to be

known, which is the case in the older modems.

In the more recent modems, the error patterns

are unknown. In our research, the error patterns

are assumed to be unknown. In [6], a facsimile

error recovery is presented without assuming any

knowledge of error patterns, but the image in

their research is not compressed in MMR, which

is used in most current facsimile machines. Our

research is the first address error recovery in

MMR coded bitstreams. In two other papers

[4,5], we developed symbol error recovery in

MMR fax over modems. In this paper, we

address multiple single-bit error recovery in

MMR. We define a single-bit error as an

isolated wrongly flipped bit, which usually

occurs in fax over IP. Thus, this paper assumes

the following error model:

 The decoder cannot request retransmission

of corrupted data.

 There is no error resiliency tool or code

provided by the encoder or network

channel.

 Bitstreams are coded with MMR code.

 The errors are single-bit errors.

 The next section provides a brief overview of

MMR coding. Section 3 provides behaviors of

error detection points in MMR coded bitstreams,

and section 4 presents an error recovery

algorithm. Section 5 provides the performance

of the approach, and section 6 provides

conclusions.

2. Extended 2 dimensional

 MMR code

The majority of facsimile machines in the world

apply Extended 2 Dimensional MMR (Modified

Modified READ) coding to compress facsimile

images. This scheme is used for Group 3 and

Group 4 facsimile images and defined at ITU

(formerly CCITT) T.4 and T.6 recommendations

[3].

 MMR makes use of vertical relationships

between black runs and white runs in two

adjacent scan lines. It codes an image one scan

line (1728 pixels) at a time and uses the previous

line to code the current scan line being coded.

Figure 1 shows the elements of MMR coding.

 In MMR, when coding the topmost line, the

Reference line is assumed to be an imaginary

blank line above the page. Also, when coding a

Current line, the initial value of the first

changing element is taken to be an imaginary

blank pixel left of the line. The position of a0

changes according to the rules in Figure 1, and

the position of a1, a2, b1, and b2 change in a way

that is consistent with their definitions relative to

a0.

 When an error occurs in an MMR coded

bitstream, the error propagates through the

bitstream because MMR coding scheme does not

provide any resynchronization point. As a

result, the decoder produces a corrupted image

beyond the error position.

Coding
Modes

Conditions Codes
Next
values of
a0

Pass
Mode
(P Mode)

a1 > b2 0001 a0 := b2

Horizontal
Mode
(H Mode)

a1 ≤ b2 &
| a1 - b1 | > 3

001 +
M*(a0a1) +
M*(a1a2)

a0 := a2

Vertical
Mode
(V Mode)

a1 ≤ b2 &
| a1 - b1 | ≤ 3

V(0) a1 = b1 1 a0 := a1

VL(1) a1 = b1 – 1 010 a0 := a1

VL(2) a1 = b1 – 2 000010 a0 := a1

VL(3) a1 = b1 – 3 0000010 a0 := a1

VR(1) a1 = b1 + 1 011 a0 := a1

VR(2) a1 = b1 + 2 000011 a0 := a1

VR(3) a1 = b1 + 3 0000011 a0 := a1

* M(a0a1) and M(a1a2) are Huffman codewords of the

lengths (a1 – a0) and (a2 – a1). Two Huffman tables are

specified in T.4/T.6, one for white runs and one for black

runs.

(b) MMR coding and update of a0

Figure 1. MMR coding

Reference line

Current line

b2

a0 a1 a2

a0: The position of the first changing element on

 the current line.

a1: The next changing element to the right of a0 on

 the current line.

a2: The next changing element to the right of a1 on

 the current line.

b1: The first changing element in the reference line to

 the right of a0 and of opposite color of a0.

b2: The next changing element to the right of b1 on

 the reference line.

(a) Changing picture elements

b1

3. Bit error detection points

To detect an error, we use the constraints

implied in MMR shown in Figure 1. Each MMR

code mode has conditions. When our error

recovery system finds any inconsistencies

between a code mode and the corresponding

conditions, it assumes that an error occurred in

the bitstream. Specifically, our error detection is

done by checking for the following violations of

the constraints:

 No codeword in the code table matches

the received bit pattern.

 The Pass mode occurs, but the changing

element b2 is off the right end of the scan

line.

 VR(i), i = 1, or 2, or 3 occurs, but the

changing element b1 is off the right end of

the scan line.

 VL(i), i = 1, or 2, or 3 occurs, but the

changing element are such that b1 – a0 – i

≤ 0.

 The Horizontal mode occurs and the run-

length a0a1 is decoded, but the changing

elements are either | a1 – b1 | ≤ 3 or b2 < a1.

 The Horizontal mode occurs and the run-

lengths a0a1 and a1a2 are decoded, but the

a1a2 is off the right end of the scan line.

 The Horizontal mode occurs and the run-

length a0a1 is decoded, but the

corresponding a1a2 does not exist.

 The Horizontal mode occurs and the color

of the run-length a0a1 is determined, but

there is no codeword in the color runs

table that matches the received bit pattern.

 To investigate the relationships between bit

errors and their detection points determined by

our detection method, we conducted an

extensive test, which introduced randomly

generated pairs of bit errors into the ITU test

images and measured their Detection Points

(DP). The Inter-Error Distance (IED), which is

the distance in bits between two adjacent bit

errors, was distributed between 0 to 800 bits (0 <

IED < 800).

 The test results show that around 83% of the

error pairs were detected before proceeding to

the second bit error because the first bit error

violates the constraints. These errors are called

one single-bit errors. This means that when we

detect single-bit error(s), there would be 83%

chance to correct the error by using the

sequential backward bit-inversion and re-

decoding, which is explained next. Our system

that implemented the bit-inversion and re-

decoding method detects an error, determines the

error region, which is practically defined 800

bits backward from the DP (the start of the

region is defined by DP – 800 bits), and applies

bit-inversion and re-decoding to every bit in the

region. The system checks for the violations of

the constraints during the re-decoding step to see

whether the bit-inversion is valid or not by

decoding the next 25 scan lines. If there are any

violations, the system re-instates the bit and

moves to the next bit. If there is no violation,

the bit-inversion is assumed to be valid.

 For the remaining 17% of the test cases

(called multiple single-bit errors), the bit-

inversion and re-decoding does not work since

there are more than one single-bit errors. In

these cases, a brute-force way to correct the error

would try all 2800 (assuming there are 800 bits in

the error region) bit-combinations, which is

unfeasible. Fortunately, our testing results show

that there are some relationships between IED

and DP, which could be used to reduce the

number of trials to a realistic range. Figure 2

shows a histogram of the one single-bit errors,

which represents the relationship between IED

and P(d) that is defined as follows:

errorsbitsingleoneofnumbertotal

dIEDdthattimesofnumber
)d(P

1

 The average IED is around 410 bits, and the

standard deviation of the IEDs on the one single-

bit errors is 225 bits. Figure 3 shows a

histogram of the multiple single-bit errors. Its

average IED is around 260 bits, and the standard

deviation of the IEDs is 235 bits. As Figure 2

shows, there is no relationship between IED and

P(d) in one single-bit errors. On the other hand,

in multiple single-bit errors, there is a strong

relationship between IED and P(d) compared to

the one single-bit errors. This is because of

levels of error impacts and persistence of the

impacts to our error detection constraints. If the

first bit error causes significant error impacts, it

would be detected right after the occurrence with

our detection method; if the first bit error causes

insignificant error impacts, these impacts will

last until the second bit error without causing

any violations of the detection constraints. In

this case, a small IED is likely to lead to a

multiple single-bit error since the first bit error’s

insignificant error impacts will persist over the

small IED.

Figure 2. IEDs on one single-bit errors

Figure 3. IEDs on multiple single-bit errors

 We also measured Detection Latency (DL),

which is the length in bits from the latest error

bit to the DP, on these two types of single-bit

errors. In one single-bit errors, average DL is

around 40 bits and its standard deviation is

around 75 bits; in multiple single-bit errors,

average DL is around 600 bits and its standard

deviation is around 4000 bits. The big

differences over these values are also because of

the levels of error impacts; one single-bit errors

cause significant error effects, thus they are

detected right after the occurrences; multiple

single-bit errors cause insignificant error effects,

thus they are not well detected and produce long

DLs. In some extreme cases, multiple single-bit

errors produce long DLs up to tens of thousands.

 Since one single-bit errors are corrected with

the bit-inversion and re-decoding, we need to

develop a new algorithm to correct multiple

single-bit errors. As the multiple single-bit

errors have the unique characteristics presented

above, we investigated the behaviors of DPs in

the errors by measuring three DPs for each pair

of multiple single-bit errors as follows:

 DPpair: DP of a pair of bit errors

 DPfirst: DP of the first bit error only (the

second bit error is assumed to be corrected)

 DPsecond: DP of the second bit error only

(the first bit error is assumed to be

corrected)

 The results show that around 97% of the

multiple single-bit errors produce DPpair values

such as DPpair ≤ DPfirst or DPpair ≤ DPsecond,

which indicates that more bit errors produce

smaller DLs. We also found the following DP

behaviors:

 DPpair is equal to DPsecond (75% of the

multiple single-bit errors)

 DPpair is less than DPfirst (93% of the

multiple single-bit errors)

 Based on these observations, we can

conclude that (1) correcting the first error bit of a

pair of bit errors is likely to produce a DP that is

the same as DPpair and (2) correcting the second

error bit of a pair of bit errors is likely to

produce a DP that is equal to or greater than

DPpair. As a result, we can use DP values when

we define candidate error bits since correcting

error bit(s) produce a DP that is equal to or

greater than the original DP in most cases. Our

sequential bit-inversion and re-decoding would

flip each bit in an error region and produce a set

of DP values from the re-decoding. Then, by

selecting bits produced DP values, which are

equal to or greater than the original DP, we can

make up a set of candidate error bits. The next

section explains an algorithm that utilizes these

DP values.

4. Bit error recovery algorithm

Our approach to bit error recovery is to (1)

detect the error, (2) determine the region of error,

and (3) apply bit-inversion and re-decoding to

bits within the region. If the third step fails to

recover an image from errors, our system tries to

find a portion of the bitstream that can be used

somehow as a synchronization point. We

developed white-line resynchronization and all-

H line resynchronization modules to search for

the portions, as described in our paper [4].

These modules skip erroneous regions and

resume decoding from the potions that can be

used as synchronization points.

 In the first step, bit errors will be detected by

checking any violations of the detection

constraints. As already mentioned, an error

region is practically set to 800 bits backward

from the DP. Figure 4 shows an algorithm that

would be used in the third step assuming that

there are at most two single-bit errors in the error

region. The algorithm can be modified for more

than two bit errors by extending step 3 in Figure

4.

5. Performance evaluation

The error recovery system has been implemented

on a Pentium 4, 1.6 GHz using the C

programming language. We evaluated the

system with 7 facsimile test images provided by

1. Detect a bit error, set DPpair to its DP value, and define its error region.

2. For each bit in the region

 2.1 Flip the bit.

 2.2 Check if the bit-inversion is valid or not by re-decoding the line that

 contains the bit.

 2.2.1 If it is valid, exit the error recovery module and keep decoding.

2.2.2 If it is not valid, record its DP.

 2.3 If the DP is equal to or greater than DPpair

 2.3.1 Create a candidate error bit, Ci (i, DPi) where i is

 the bit address and DPi is the DP from the flipped bit, i.

 2.4 Re-flip the bit

3. For each Ci where its DPi is equal to DPpair

 3.1 Flip the bit, i.

 3.2 For each Cj where j > i

 3.2.1 Flip the bit, j.

 3.2.2 Check if the bit-inversion is valid or not by the re-decoding step.

 3.2.2.1 If it is valid, go to step 4.

 3.2.2.2 If it is not valid, re-flip the bit, j.

 3.3 Re-flip the bit, i.

4. Check if the step 3 corrected the error.

 4.1 If it did not correct the error, call the resynchronization modules.

Figure 4. Single-bit error recovery algorithm

ITU, using what we call the Relative Error (RE)

metric, defined as

bE

o
S

o
E

RE

where Eo is the total number of erroneous binary

pixels in the output image, So is the size of the

uncompressed image, and Eb is the number of

error bits in the bitstream. RE ranges from 0

(best) to 1 (worst).

 Test results show that around 70% of

multiple single-bit errors are corrected with our

algorithm presented in Figure 4. About 90% of

the corrected test cases produced 0 values of RE.

The remaining 10% of the test cases did not

correct errors, but passed the re-decoding

checking without any violation detection and

produced decoded images where the error is

barely noticeable in the output. In these cases,

the RE ranges from 2×10-6 to 7×10-4, and

averages at 10-4.

6. Conclusion

In this paper, behaviors of error detection points

are presented, and a single-bit error recovery

algorithm using the detection points for MMR

coded bitstreams is proposed. We developed an

error recovery system, which detects an error

and applies the algorithm to correct errors within

the error region. Around 70% of multiple

single-bit errors are corrected with our

algorithm.

 If the error cannot be corrected with the

algorithm, the system calls the resynchronization

modules to find a resynchronization point from

which it resumes decoding. The test results

show that our algorithm successfully corrects

most of single-bit errors.

7. References

[1] Alkachouh, Z., and Bellanger, M., “Fast

DCT-Based Spatial Domain Interpolation of

Blocks in Images”, IEEE Trans. on Image

Processing, vol. 9, no. 4, Apr. 2000, pp. 729-

732.

[2] Hemami, S., and Meng, T., “Transform

Coded Image Reconstruction Exploring

Interblock Correlation”, IEEE Trans. on

Image Processing, vol. 4, no. 7, Jul. 1995, pp.

1023-1027.

[3] ITU-T Recommendation T.6, Facsimile

Coding Schemes and Coding Control

Functions for Group 4 Facsimile Apparatus,

1988.

[4] Kim, H., and Youssef, A., “Error Recovery

in Facsimile without Retransmission”,

accepted to appear in CATA2003, Mar. 26-

28, Honolulu.

[5] Kim, H., and Youssef, A., “Interactive Error

Recovery in Facsimile without

Retransmission”, accepted to appear in

ITCC2003, Apr. 28-30, Las Vegas.

[6] Shyu, W., and Leou, J., “Detection and

Correction of Transmission Errors in

Facsimile Images”, IEEE Trans. on

Communications, vol. 44, no. 8, Aug. 1996,

pp. 938-948.

[7] Wang, Y., Zhu, Q., and Shaw, L.,

“Maximally Smooth Image Recovery in

Transform Coding”, IEEE Trans. on

Communications, vol. 41, no. 10, Oct. 1993,

pp.1544-1551.

[8] Youssef, A., and Ratner, A., “Error

Correction in HDLC without

Retransmission”, In Proceedings of CISST,

vol. 2, 2001, pp. 526-532.

