
Math Search with Equivalence Detection Using
Parse-tree Normalization

Abdou Youssef

Department of Computer Science
 The George Washington University

Washington, DC 20052
Phone: +1(202)994.6569

ayoussef@gwu.edu

Mohammed Shatnawi
Department of Computer Science

 The George Washington University
Washington, DC 20052

Phone: +1(571)274.9289
shatnawi@gwu.edu

ABSTRACT

Searching the Web for a mathematical expression is not an accurate process; the result of the
search is unexpected most of the times. The inaccurate result is due to the nature of the
mathematical expression search process, which is not based on clear and structured rules. In
addition, the available techniques are not applicable to such expressions but they are designed
and tailored to work with normal text together with different kind of documents (e.g.
multimedia). For example, when you type y+x and hit Google search button, you are not sure
if you can get most of the documents that have y+x and the ones that contain the variant of
y+x (e.g. x+y). Searching for y+x gives some documents that have x and y (and maybe the
character +) as separate characters but not x+y as a one term mathematical expression.
The purpose of this research is to explore some proposed normalization rules then to develop
a general way that can be utilized to transform a user input expression into a normalized form.
Accordingly, this process will create some kind of standardization between a mathematical
expression as a search term and the contents of the database itself. Those rules at the
beginning of this research are fixed based on the properties of mathematical operations (e.g.
addition operation is associative and commutative, etc), this type of normalization between
the mathematical expression and the searchable database assists in increasing the accuracy of
searching in terms of evaluation measurements (Recall, Precision). This research will end up
with a general way of transforming a user expression input into a normalized form that is
necessary to enhance the searching process for a mathematical expression. The general way of
transforming the expressions into their normalized forms is based on our proposed Grammar
of Equivalence Rules (GER) subsystem, which contains some of predefined rules in which a
system can chose from based on the user input itself. The system may apply only one rule,
two, or any number of rules as appropriate to get the expression in its unique normalized
form. The normalized form will be searched for against a searchable database.

Key Words: mathematical expression parser (MEP), equivalence detection and normalization
(EDN), rules of equivalence, grammar of equivalence rules (GER).

1. Introduction
Finding needed information on the Web is
not easy to achieve with a high degree of
accuracy. Information retrieval systems
have been designed to help users locate
and retrieve their requests on the Web.
Information retrieval systems are
composed of some algorithms that try to
make the search and retrieval of the
requested information as accurate and fast
as possible.
The kind of information that information
retrieval systems deal with is comprised of
text, images, audio, video and other
multimedia objects. Among all of these,
"the text aspect has been the only data type
that lends itself to a full functional
processing" [2]. Many algorithms that
work together trying to refine text search
have achieved a good level of maturity.
For example, Google is a good example of
such search engines. Google has achieved
much more satisfying results than other
search engines in terms of text-based
search. Unfortunately those search engines
did not achieve the same progress in terms
of mathematical expression as a separate
distinguished type of text
The major obstacle to math search in
current text search systems is that those
systems do not differentiate between a user
query that contains a mathematical
expression and any other query that
contains text term. Therefore, they process
mathematical expressions as other texts,
regardless of its nature of being well-
structured and having properties that make
it different from other forms of text.
Here, in this context we will try to refine
the text search process that is specialized
in searching for mathematical expression.
We will add more algorithms to the
Information Retrieval System in order to
make it suitable to do search for a
mathematical expression as well as other
forms of text.

2. Expression Parser
The first step of our work is to create a
Mathematical Expression Parser (MEP).
MEP is part of the software that takes a
mathematical expression as input and
creates its expression tree. The work
process after creating the expression tree is
based on the expression tree itself.
Therefore, tree representation is used for
equivalence detection and normalization.

Example 1: The expression y+x is
translated into + using the MEP.
 / \
 y x

3. Equivalence Detection and
Normalization (EDN)
The equivalence detection and
normalization is the most important part of
our work. Indeed, it is the core of our
research. The EDN aims to transform the
expression tree that we have created earlier
using MEP into a normalized tree. This
tree is equivalent to the original tree but it
is an agreed upon representation, based on
some rules, to facilitate the search process.
Therefore, the normalized tree should be
the common form between the searchable
database and the mathematical expression
as a search term.
Using Google search engine to search for
the expression x+y gives inaccurate result
since it gives documents that have x, and y
without the character + in between, or
documents that have x/y/z but not x+y. The
reason behind that is that Google uses
techniques for matching and probabilities
of occurrences of x and y. Google does not
only search for the infix mathematical
expression x+y. For example, Google
retrieves the documents that have a high
frequency of x (and/or y) occurrences. In
spite of the above result of Google search,
Google may work and retrieve some of the
documents that have a high frequency of x,
y and + occurrences. But still this result is
not the one we are looking for; despite the

fact that those documents have x, y and +
they may not appear in the required order
(i.e. x, +, then y). For example, Google
retrieves the documents that have xy+yx,
which means x, y and + appear as part of
other expressions but not a stand alone
expression (e.g. x+y). In order to increase
the accuracy of searching for a
mathematical expression, we need
techniques that work better with these
searches.
Throughout this research paper we propose
four fixed rules that can be applied to the
above tree (example 1). Therefore, after
applying them as needed, we shall be able
to get the final normalized tree form. After
that, the last normalized tree is used for
comparison and matching during the
search process.
Before getting to those rules, let us study a
simple example so we can understand the
whole process. For example, suppose the
user query is y+x. Without equivalence
(normalization) detection, a math search
system will not retrieve documents
containing x+y. The reason is that,
typically y+x is stored as normal text in the
searchable database. So, text matching
does not work properly with this kind of
mathematical terms. Alternatively, math
expressions may be stored as parse tree
structures. For example, x+y may be stored
in the form of:

If the search term is transformed to its tree

representation, which is , then a
straightforward tree-matching algorithm
will not work for search.
Thus, the above form is not matched with
the one stored in the database even though
we have one equivalent to it already in the
database, which is x+y. In this research
paper, we will make both terms equivalent
by applying some rules called the Rules of
Equivalence. For the above example, we
can apply the rule of reordering the tree
elements; therefore, the tree of y+x is
reordered alphabetically to be x+y since x

comes alphabetically before y. Applying
this rule results in a new tree
representation which now matches the one
in the searchable database. Thus far, we
can start the interpretation of each rule
with more details since the idea of our
work has become more understandable.

4. Rules of Equivalence
In the first part of this research we will
study a few fixed rules of equivalence.
Then after finishing this part we will
expand our work to be more generalized
and more applicable to include most of
mathematical expression search process.
Those rules have been implemented using
Java.

4.1 Group Removal Rule.
A mathematical expression is grouped if it
appears between left and right parentheses.
For example, in the expression (d+c) +f^-
a/3 (This example will be used throughout
this section), the first + operators has given
the highest priority of execution because of
the parentheses (Grouping).
It is obvious that the above expression can
be transformed to the following expression
tree using MEP:

According to our software, the expression
tree is drawn from the postfix notation of
the above expression. Because the postfix
notation has been used to draw the
expression tree, there is no need for
parentheses to represent the operations
precedence (i.e. which one should be
executed first). The postfix notation
implicitly implies the operations
precedence. Also because the () node has
only one child, therefore, the () node can
be removed. So the tree representation will
look like the following tree:

Even this rule is simple but it helps the
normalization process and it achieves a
little performance gain since it decreases
the tree height as you can notice from the
left sub tree of the root.

4.2 To the Negative Power Rule
Throughout this paper we assume the
power sign is represented by ^ character.
The previous example has "to the negative
power" sub expression as part of it (i.e. f^-
a). This part can be transformed to an
equivalent expression by using the
following mathematical rule:

• x^-y is equivalent to 1/x^y
Therefore, according to this rule, the
previous expression, after applying the first
and the second rules, should be
transformed to d+c+1/f^a/3 (notice the
grouping has been removed based on the
first rule), which is transformed to the
following expression tree:

This rule is important in terms of
normalization and equivalence as we will
explore later in this research, even thought
it adds a little burden by increasing the tree
height.

4.3 Tree Height Compression
The time for some of the tree operations
(e.g. find a depth of a tree, delete a node),
is measured by the height of the tree.
Therefore, shrinking the height of a tree

and widening it somehow is good for such
operations because of performance gain
issues. In this section we will follow the
same procedure of decreasing the height of
the tree by applying the rule of Height
Compression. This rule works as follows:
All the similar parent nodes that are
descending from the same node are
combined with lowest level parent node.
Therefore, the leaves will be children of
that common node given that the parent of
each of those leaves will not change but
their level will be changed after applying
this rule. For example, figure 4.2 contains
two division operators and two addition
operators. Those operators are minimized
to be only one addition and one division
operators. To do so we should be able to
maintain the parent of each node after
deleting the extra operators. Such as, the
parent for the node that has 1 as its data
should be maintained as it is before and
after the compression. Achieving this can
be done by adding one more child for the
division operation in first level, thus we
have division with 3 children instead of
only two children.
Also we shall allow for each node to have
as many children as needed, because as
levels are compressed more children are
needed. All of the above can be illustrated
more by applying this rule on our example
in figure 4.2. Therefore, the tree now
would look like the following tree:

Notice that the height if the tree decreased
from four to three. This has caused some
performance gain in terms of any
operations that come after this height
compression.

4.4 Tree Reorder Rule
Taking advantage of the performance gain
that we have achieved by applying the first

3 rules can be utilized better if the fourth
rule is applied after them. For example, the
third rule may decrease the height of the
tree which improves the time for
implementing this rule. Since accessing the
leaves, in this rule, is required to reorder
them (i.e. sort).
Sorting or reordering the leaves is done by
following a user defined rule of reordering.
For example, we proposed our defined
rule, which is:

Numbers < Alphabetic (string, character)
<Operations (*, +) < Grouped
Parenthesis

Since we proposed the above rule, this
does not mean that other users can not
propose their own rule. But we have to
apply the same proposed rule consistently
on both the user query and the searchable
database.
After applying this rule, the expression tree
looks like the following:

The above tree shows, in spite of a<f their
order did not change because the operation
between them is the power; this operation
is neither commutative nor associative. On
the other hand, the addition or
multiplication operations are associative
and commutative. You can notice the
reordering of the characters c and d
because c<d alphabetically. Note also the
node that has the value 1 as its data comes
first. The reason behind that is because the
division operator is neither associative nor
commutative.
The above four rules of normalization and
equivalence can be summarized by the
following diagram:

Our goal now is to explain how this
normalization causes some performance
gain in terms of helping in document
retrieval and accuracy that we have talked
about earlier. Information retrieval systems
are evaluated by two main measures,
which are Precision and Recall. Therefore,
we will evaluate our system using these
two measures. We should not forget that at
the same time the normalization causes
overhead because of the normalization
computations.
This research paper focuses on the
commutative and associative operations,
such as addition and multiplication.
Therefore, all of the above rules apply to
those operations. But in the process of
developing GER we will add as many rules
of normalization as possible, trying to
enhance the ability of our system and to
generalize it to be a system that is capable
of normalizing different kinds of
mathematical constructs.

5. Measuring Performance and
Overhead
.
5.1 Precision
Precision is defined as the ratio of the
number of relevant hits to the total number
of hits.

Precision= Number of relevant hits/ Total

number of hits
The goal of our research is to increase
precision, which is the ability to retrieve
the most relevant items from the database,
by increasing the number of the retrieved
relevant items and/or of course decreasing
the number of the total retrieved items.
Thus far, our work focused on the
equivalence detection and normalization as
the main tools in order to achieve a high
degree of accuracy (i.e. high precision). By
applying the above four normalization

rules we mapped many user inputs into one
normalized form. That form is used then in
the search process.
Using one normalized form for different
inputs decreases the number of total
retrieved items because the search process
is focused on one normalized user input
other than different ones.
Also this normalization process increases
the number of the relevant hits because the
searchable database contains the
normalized forms of expressions, which
results in increasing the number of true hits
instead of false hits. For example,
searching for the expression y+x+z may
retrieve any expression that contains
y+x+z or any equivalent form such as
x+y+z

5.2 Recall
Recall is defined as the ratio of the number
of relevant hits to the number of all
relevant items in the searchable database.

Recal=Number of relevant hits/ Total

number of relevant items in DB
Recall is used to measure the ability of the
search in retrieving all the relevant items
from the searchable database. But with the
recall, measuring the number of all
relevant items is not possible, except in
controlled situations (where the "ground
truth" is known). In this research we are
concern with retrieving as many relevant
items as possible and minimizing the
number of irrelevant retrieved items.

5.3 Overhead Issues
If the search achieves 80% precision then
the 20% of the user effort is overhead since
the user spends time in reviewing
irrelevant items (20% of the search result).
If the user search results in 10 items and
only 8 of them are related, then the user
already has spent time to review the 2
unrelated items.
The overhead in the software that we have
written is the time that the computer
processor spends in performing any of the
software different operations. The software
aims to enhance the accuracy of the search
process for a mathematical expression has

some overhead issues to be discussed.
Those overhead issues appeared in the
different tree operations that we have
implemented in our software. Generating
the tree from a mathematical expression
takes time and other tree operations after
that take time as well. The four rules of
normalization were applied in a tree form
of the mathematical expression, therefore,
whenever of applying a rule, visiting each
node of the tree is required, which is taking
some time. Also, comparing the two trees
(i.e. the one in the database and the one for
a user query) in order to search for an
equivalent tree for any mathematical
expression takes some time, which is an
overhead by itself.

6. Comprehensive Performance
Evaluation
Measuring the performance of any new-
developed system is required to evaluate
its reliability and to compare it with other
existing systems. Therefore, we will carry
out performance evaluation; measuring the
improvements in precision and recall due
to normalization.
The major problem in measuring the
performance of math search systems is the
lack of any math query benchmark because
this area is relatively new. Therefore, in
this context, NIST's Digital Library of
Mathematical Functions (DLMF) will be
used to evaluate our system's performance.
I will use about 200 math queries that were
developed by Prof. Youssef as a
benchmark for evaluation [4]. The results
of this preliminary research together with
the results of our general normalization
system (GER) will be available in later
publications.

7. Conclusion
This research shows that we have achieved
some progress in searching for a
mathematical expression (e.g. y+x). Thus
far, there is no such research that
specialized with a mathematical expression
only. In our research we focus more on

mathematical expression search process in
terms of search engines and the Web
search issues.
After applying the normalization and
equivalence rules, the precision of our
search will be increased. Ending the search
process with a high precision is required in
order to end up with an accurate result.
Since we are transforming different
equivalent mathematical expression into
only a common form, this common form
will be compared against the searchable
database, which contains the normalized
form of that expression as well. According
to that, the comparison process will end up
finding most of the items that has the
common mathematical expression.
According to the above, our research is
good in terms of enhancing the
mathematical expression web search
process. This way of enhancing is done by
using fixed rules, but this research is part
of an ongoing–research. The ultimate goal
of this research is to create a general
system that transform a user input, which
is a mathematical expression, to a
normalized unique form. The later is
equivalent to the original user input. In
order to transform the input expression into
its normalized form the system applies a
set of rules on the input expression.

8. Future Research.
In the preliminary research, the
mathematical expression is transformed
into a normalized expression based on
some fixed rules (the above four
mentioned rules). That normalized
expression is compared against the
searchable database trying to retrieve as
many items that contain an equivalent
expression to the normalized form as
possible.
The new research will be focused on
developing a general way in order to
achieve the primary research goal. Instead
of using fixed rules to normalize the input
expression into a unique form, the new
research will be using a Grammar of
Equivalence Rules (GER) as pictured in
the following figure:

Figure 7.1

The above pictured system shows its main
part, which is the Grammar of Equivalence
Rules. Most of the work in the future
research is related to this part. We will
explain every single step of building that
system. In the user’s point of view the
GER is hidden and the user will not notice
its existence. What is matter for a user is
just transform its input into an equivalent
unique normalized form. Equivalent,
unique, normalized and some other terms
will be discussed and explained. Different
issues associated with the GER will be
discussed further in the future research.
When a user type a mathematical
expression to search for on the web, the
"normalizer" will communicate with the
GER trying to find out applicable rules in
the form of grammar that the "normalizer"
can use to generate the normalized form
for user input. The details of this new
system together with its related issues will
be published later on.

References

[1] Bruce Miller and A. Youssef,

"Technical Aspects of the Digital
Library of Mathematical
Functions", Annals of Mathematics
and Artificial Intelligence, Volume
38, pp. 121--136, 2003.

[2] Kowalski, Gerald J., Maybury,

Mark T. "Information Storage and
Retrieval Systems".

[3] K. F. Chan and D. Y. Yeung,
"Mathematical Expression
Recognition: A survey," Int'l
Journal on Document Analysis and
Recognition, Vol. 3, No. 1, 2000,
pp. 3-15

[4] Abdou Youssef "Search of

Mathematical Contents: Issues and
Methods"

[5] http://www.hsl.creighton.edu/hsl/Se

arching/Recall-Precision.html

[6] http://www.cs.utexas.edu/users/mo

oney/ir-
course/slides/Evaluation.ppt

