MIDTERM EXAM

TIME: 2.5 Hours
Problem 1: (25 points)
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be the following weighted undirected graph: $\mathrm{V}=\{1,2,3,4,5,6,7\}$ and $\mathrm{E}=\{(1,4),(3,4),(3,6),(2,6),(4,2),(2,5),(1,6),(4,6),(1,5),(4,7),(7,5)\}$, with respective weights $8,11,3,6,9,20,12,3,12,16,10$.
a) Find a minimum spanning tree in G.
b) Designate node 1 as a sourse node. Find the distance between 1 and all the other nodes using the greedy algorithm. Show the value of the DIST array at every step.

Problem 2: (25 points)
Let $x[1: n]$ be a sorted array. Define $y[1: n]$ as follows: for all $i=1,2, \ldots, n, y[i]$ is the number of times the value of $x[i]$ repeats in the input array $x[1: n]$. For example, if $n=4$ and $x[1: 4]$ is $7,7,10$, and 12 , then $y[1]=y[2]=2$ (because 7 occurs twice), $y[3]=1$ (because 10 occurs once), and $y[4]=1$.
a) Suppose the array $x[1: 8]$ is: $1,1,5,5,5,7,13,13$. Give the array $y[1: 8]$.
b) Write a divide-and-conquer algorithm that takes as input an arbitrary sorted array $x[1: n]$, and returns as output the array $y[1: n]$. Analyze the time of your algorithm.

Problem 3: (25 points)
The most frequent value in an array $A[1: n]$ is the value that occurs the most in A. For example, if $A[1: 7]$ is $1,4,2,4,2,5,4$, then the most frequence value in A is 4 .
a) Write an algorithm that takes as input an arbitrary unsorted array $A[1: n]$ and returns the most frequent value in A. (Hint: use sorting and your algorithm of Problem 2 above.)
b) Give the time complexity of your algorithm.

Problem 4: (25 points)
You have n employees and n jobs. It costs $c_{i j}$ dollars for job i to be done by employee j (the $c_{i j}$'s are given input). The job assignment problem is to assign exactly one job to each employee in such a way that the sum of the costs of the n jobs is minimized.
a) Write a greedy algorithm for the job assignment problem.
b) What is the time complexity of this algorithm?
c) Show by a counter example that this greedy method does not always yield an optimal solution (Hint: You can find a counter example where $n=2$).

