
1

INTRODUCTION

A. Preliminaries:
 Purpose: Learn the design and analysis of algorithms

 Definition of Algorithm:

o A precise statement to solve a problem on a computer
o A sequence of definite instructions to do a certain job

 Characteristics of Algorithms and Operations:

o Definiteness of each operation (i.e., clarity, unambiguity, single meaning)
o Effectiveness (i.e., doability on a computer)
o Termination in a finite amount of time
o An algorithm has zero or more input, one or more output

 Functions and Procedures:

o Functions: Algorithms that can be called by other algorithms and that
return one output to the calling algorithm.

o Procedures: Algorithms that can be called by other algorithms, and
compute one or more outputs as side effect and/or as output parameters.

 Design of Algorithms:
o Devising a method, using standard new techniques or standard existing

techniques such as the ones covered in this course:
 Divide and conquer
 The greedy method
 Dynamic programming
 Graph traversal
 Backtracking
 Branch and bound

o Expressing the algorithm (in a pseudo language, flowchart, high-level
programming language, etc.)

o Validating the algorithm (proof of correctness)

 Analysis: Determination of time and space requirements of the algorithm

 Implementation and Program Testing: outside the scope of this course.

2

B. Expression of Algorithms (Pseudo Language)

Notes: Words in bold are reserved words.
 Variable declaration:

integer x, y; or int x, y;
real x, y; or float x, y; or double x,y;
boolean a , b; or bool a, b;
character z; or char z;
string s; generic x;
Arrays: int A[1:n], B[4:10]; char C[1:n]; and the like.

 Assignments:
X = Expression; or X := Expression; or X Expression;
Examples: X = 1+3*4; Y=2*x-5; Z= Z+1;

 Control structures:

if condition then
 a sequence of statements;
[else
 a sequence of statements;]
endif

Note: Things between brackets […]
are optional

if condition1 then
 a sequence of statements;
elseif condition2 then
 a sequence of statements;
…
elseif conditionk then
 a sequence of statements;
[else
 a sequence of statements;]
endif

case x:
Value1: statements; [break;]
Value2: statements; [break;]
…
Valuek: statements; [break;]

endcase

case:
Cond1: statements; [break;]
Cond2: statements; [break;]
…
Condk: statements; [break;]

endcase
while condition do
 a sequence of statements;
endwhile

loop
 a sequence of statements;
until condition;

for i= m to n
 a sequence of statements;
endfor

for i= m to n step d
 a sequence of statements;
endfor

3

 Input-Output:
read(X); // X is a variable or array or even an elaborate structure
print(data); write(data, file); // data can numeric or strings

 Functions and Procedures:
function name(parameters)
begin

variable declarations;
sequence of statements;
return (value);

end name

procedure name(input params; output params;
 in-out params)
begin

variable declarations;
sequence of statements;

end name

 Examples:
function max(A[1:n])
begin

generic x=A[1]; // max so far
int i;
for i=2 to n do

if (x<A[i]) then
x=A[i];

endif
endfor
return (x);

end max

Procedure max(input A[1:n]; output M)
Begin

int i;
M=A[1];
for i=2 to n do

if (M<A[i]) then
M=A[i];

endif
endfor

end max

Procedure swap(in-out x,y)
Begin

generic temp;
temp=x;
x=y;
y=temp;

end swap

4

C. Recursion

 A recursive algorithm is an algorithm that calls itself on “smaller” input
(smaller in size or value(s) or both).

 Structure of recursive algorithms:
Algorithm name(input)
begin

basis step; // for when the input is the smallest (in size/value).
name (smaller input); // this is a recursive call.
// there can be more statements and more recursive calls here
Combine subsolutions;

End

 Example:
function max(input A[i:j]) // finds the max of A[i], A[i+1], A[i+2], … , A[j]
begin

generic x, y;
if (i=j) then //input size is 1, which is the smallest
 return A[i];
endif
int m=(i+j)/2;
x=max(A[i,m]); // recursive calling returning max of 1st half of the array
y=max(A[m+1,j]); // recursive calling returning max of 2nd half of the array
//next, merge the two sub-solutions into a global solution
if (x<y) then

return y;
else

return x;
endif

end max

D. Validation of Algorithms

 Often through proof by induction on the input size, such as in:

5

o Recursive algorithms
o Divide and conquer algorithms
o Greedy algorithms
o Dynamic programming algorithms
o Sometimes when proving optimality of solutions

 Also, deductive methods of proofs.

E. Analysis of Algorithms

 What it is: estimation of time and space (memory) requirements of the
algorithm

 Why needed:
o A priori estimation of performance to see if the conceived algorithm

meets prior speed requirements (before any further investment of effort).
If the algorithm is not fast enough, then the designer must come up with
alternative (and faster) algorithms

o A way for comparing algorithms. Sometimes one (or several competing
designers) can design alternative algorithms for the same problem, and
you need to determine which to choose. Typically the fastest algorithm
(and/or least demanding in memory) is chosen.

 Machine Model:
o Random access memory (RAM)
o Arithmetic operations, Boolean operations, load/store read/write

operations (of basic data types), and comparisons, take constant time
each

 Time complexity 𝑇ሺ𝑛ሻ: number of operations in the algorithm, as a function of
the input size.

 Space complexity 𝑆ሺ𝑛ሻ: number of memory words needed by the algorithm

6

 Example: the non-recursive max function takes time = n-1 comparisons, and

space = 1.

 Since memory has become very cheap and abundant, we rarely care about space
complexity. Time, however, is always a premium even if computers are always
increasing in speed.

 For the purposes stated above, the time analysis need not be very accurate

(down to the exact number of operations).
o Rather, an approximation of time is sufficient, and is often more

convenient to derive.
o Also, since speed slows down for very large input sizes, the time estimate

can focus more on large input sizes 𝑛, and we thus should be more
concerned about the “order of growth” of the time function 𝑇ሺ𝑛ሻ, or as
typically called, the asymptotic behavior of the 𝑇ሺ𝑛ሻ.

o Finally, since computers vary in speed from model to model and from
generation to generation, and the variation is by a constant factor (with
respect to input size), we can (and should) ignore constant factors in time
estimations, and focus again on the order of growth rather than the
precise time in micro/nano-seconds.

 Therefore, a notation for approximation, for being “carefully careless”, is

needed and will be provided next.

F. Asymptotics and Big-O Notation

 Big-O
o Definition: let 𝑓ሺ𝑛ሻ and 𝑔ሺ𝑛ሻ be two functions of n (n is usually the

input size in algorithm analysis). We say that
𝑓ሺ𝑛ሻ ൌ 𝑂ሺ𝑔ሺ𝑛ሻሻ

if ∃ an integer 𝑛 and a positive constant 𝑘 such that
|𝑓ሺ𝑛ሻ| 𝑘|𝑔ሺ𝑛ሻ| ∀𝑛 𝑛.

o Example: 3𝑛 1 ൌ 𝑂ሺ𝑛ଶሻ since 3𝑛 1 3𝑛ଶ ∀𝑛 2. 𝑛 ൌ 2, 𝑘 ൌ 3.
o Example: 3𝑛 6 ൌ 𝑂ሺ𝑛ሻ because 3𝑛 6 4𝑛 ∀𝑛 6. 𝑛 ൌ 6, 𝑘 ൌ 4.

7

 Big Omega (Ω)
o Definition: let 𝑓ሺ𝑛ሻ and 𝑔ሺ𝑛ሻ as above. We say that

𝑓ሺ𝑛ሻ ൌ Ωሺ𝑔ሺ𝑛ሻሻ
if ∃ an integer 𝑛 and a positive constant 𝑘 such that

 |𝑓ሺ𝑛ሻ| 𝑘|𝑔ሺ𝑛ሻ| ∀𝑛 𝑛.

o Example:
ଵ

ଷ
𝑛ଶ ൌ Ωሺ𝑛ሻ because

ଵ

ଷ
𝑛ଶ 𝑛 ∀𝑛 3. 𝑛 ൌ 3, 𝑘 ൌ 1.

o Example: 3𝑛 6 ൌ Ωሺ𝑛ሻ because 3𝑛 6 3𝑛 ∀𝑛 1. 𝑛 ൌ 1, 𝑘 ൌ 3.

 Big Theta (Θ)
o Definition: let 𝑓ሺ𝑛ሻ and 𝑔ሺ𝑛ሻ as above. We say that

𝑓ሺ𝑛ሻ ൌ Θሺ𝑔ሺ𝑛ሻሻ
if 𝑓ሺ𝑛ሻ ൌ 𝑂ሺ𝑔ሺ𝑛ሻሻ and 𝑓ሺ𝑛ሻ ൌ Ωሺ𝑔ሺ𝑛ሻሻ. That is, if
∃ an integer 𝑛 and two positive constant 𝑘ଵ and 𝑘ଶ such that

𝑘ଵ|𝑔ሺ𝑛ሻ| |𝑓ሺ𝑛ሻ| 𝑘ଶ|𝑔ሺ𝑛ሻ| ∀𝑛 𝑛.
o Example: 3𝑛 6 ൌ Θሺ𝑛ሻ because 3𝑛 6 ൌ 𝑂ሺ𝑛ሻ and 3𝑛 6 ൌ Ωሺ𝑛ሻ.

 Theorem: Let 𝑓ሺ𝑛ሻ ൌ 𝑎𝑛 𝑎ିଵ𝑛ିଵ ⋯ 𝑎ଵ𝑛ଵ 𝑎 be a polynomial

(in n) of degree m, where m is a positive constant integer, and 𝑎, 𝑎ିଵ, … , 𝑎
are constants. Then 𝑓ሺ𝑛ሻ ൌ 𝑂ሺ𝑛ሻ.

Proof: |𝑓ሺ𝑛ሻ| |𝑎|𝑛 |𝑎ିଵ|𝑛ିଵ ⋯ |𝑎ଵ|𝑛ଵ |𝑎|
 |𝑎|𝑛 |𝑎ିଵ|𝑛 ⋯ |𝑎ଵ|𝑛 |𝑎|𝑛

 ሺ|𝑎| |𝑎ିଵ| ⋯ |𝑎ଵ||𝑎|ሻ𝑛 𝑘𝑛,

where 𝑘 ൌ |𝑎| |𝑎ିଵ| ⋯ |𝑎ଵ||𝑎| and 𝑛 1. Therefore, by
definition, 𝑓ሺ𝑛ሻ ൌ 𝑂ሺ𝑛ሻ. Q.E.D.

 In general, if the time 𝑇ሺ𝑛ሻ is a sum of a constant number of terms, you can
keep the largest-order term and drop all the other terms, and drop the constant
factor of the largest order term, to get a simple Big-O form for 𝑇ሺ𝑛ሻ.

o Example: If 𝑇ሺ𝑛ሻ ൌ 3𝑛ଶ. 𝑛√𝑛 7𝑛 log 𝑛, then 𝑇ሺ𝑛ሻ ൌ 𝑂ሺ𝑛ଶ.ሻ.
 The time complexity of a recursive algorithm is often easier to calculate by first

deriving a recurrence relation (i.e., express 𝑇ሺ𝑛ሻ in terms of 𝑇ሺ𝑛 െ 1ሻ or
𝑇ሺ𝑛/2ሻ 𝑜𝑟 𝑇ሺ𝑚ሻ for some 𝑚 ൏ 𝑛ሻ, and then solve the recurrence relation.

 You will learn how to solve recurrence relations in this course. Still, there is a
theorem, the Master Theorem, which is very helpful for solving recurrence

8

relations that emerge in time complexity analysis of many recursive (e.g.,
divide and conquer) algorithms.

 The Master theorem: Let 𝑎 1 and 𝑏 1 be two constants, 𝑓ሺ𝑛ሻ a function,

and 𝑇ሺ𝑛ሻ a function of non-negative n defined by the following recurrence

relation: 𝑇ሺ𝑛ሻ ൌ 𝑎𝑇 ቀ

ቁ 𝑓ሺ𝑛ሻ for 𝑛 𝑛. (𝑛 is some constant, and the value

of 𝑇ሺ𝑛ሻ for 𝑛 𝑛 is some constant 𝑐. The precise values of those 𝑛 and c

won’t matter.) Note that

 is taken to mean ⌊

⌋ or ⌈

⌉. Then 𝑇ሺ𝑛ሻ has the

following asymptotic bounds:
o If 𝑓ሺ𝑛ሻ ൌ 𝑂ሺ𝑛୪୭್ ି ఌሻ for some constant 𝜀 0, then 𝑇ሺ𝑛ሻ ൌ Θሺ𝑛୪୭್ሻ.
o If 𝑓ሺ𝑛ሻ ൌ Θሺ𝑛୪୭್ሻ, then 𝑇ሺ𝑛ሻ ൌ Θሺ𝑛୪୭್ log 𝑛ሻ.

o If 𝑓ሺ𝑛ሻ ൌ Ωሺ𝑛୪୭್ ା ఌሻ for some constant 𝜀 0, and if 𝑎𝑓 ቀ

ቁ 𝑐𝑓ሺ𝑛ሻ

for some constant c<1 for all sufficiently large n, then 𝑇ሺ𝑛ሻ ൌ Θ൫𝑓ሺ𝑛ሻ൯.

 Exercise: Apply the Master Theorem on the following problems to determine
the order of 𝑇ሺ𝑛ሻ:

a. 𝑇ሺ𝑛ሻ ൌ 6𝑇 ቀ

ଷ
ቁ 𝑛

b. 𝑇ሺ𝑛ሻ ൌ 6𝑇 ቀ

ଷ
ቁ 𝑛ଶ

c. 𝑇ሺ𝑛ሻ ൌ 6𝑇 ቀ

ଷ
ቁ 𝑛√𝑛

d. 𝑇ሺ𝑛ሻ ൌ 9𝑇 ቀ

ଷ
ቁ 𝑛ଶ

 Stirling’s Approximation: 𝑛! ≅ √2𝜋𝑛 ቀ

ቁ

, where e=2.718…

 Some formulas useful in time complexity analyses (prove them by induction):

o 1 2 3 ⋯ 𝑛 ൌ
ሺାଵሻ

ଶ

o 1ଶ 2ଶ ⋯ 𝑛ଶ ൌ
ሺାଵሻሺଶାଵሻ

o 1ଷ 2ଷ ⋯ 𝑛ଷ ൌ ቀ
ሺାଵሻ

ଶ
ቁ

ଶ

o 1 2 ⋯ 𝑛 ൌ 𝑂ሺ𝑛ାଵሻ, where k is a positive constant integer

o 1 𝑥 𝑥ଶ 𝑥ଷ … 𝑥 ൌ
௫శభିଵ

௫ିଵ
, for all 𝑥 ് 1.

o 1 2𝑥 3𝑥ଶ … 𝑛𝑥ିଵ ൌ
௫శభିሺାଵሻ௫ାଵ

ሺ௫ିଵሻమ , for all 𝑥 ് 1.

o ሺ𝑎 𝑏ሻ ൌ ቀ
𝑛
𝑛ቁ 𝑎𝑏 ቀ

𝑛
𝑛 െ 1ቁ 𝑎ିଵ𝑏ଵ ቀ

𝑛
𝑛 െ 2ቁ 𝑎ିଶ𝑏ଶ ⋯

ቀ
𝑛
𝑘ቁ 𝑎ି𝑏 ⋯ ቀ

𝑛
0ቁ 𝑎𝑏

