## Solution to Homework 4

1. (a)

|  | reflexive | symmetric | antisymmetric | transitive | equivalence | partial order |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $p \Longleftrightarrow q$ | $\checkmark$ |  |  | $\checkmark$ |  |  |
| $p \Longleftrightarrow q$ | $\checkmark$ | $\checkmark$ |  | $\checkmark$ | $\checkmark$ |  |
| $p \Longleftrightarrow \neg q$ |  | $\checkmark$ |  |  |  |  |
| $p \Longleftrightarrow \neg q$ | $\checkmark$ | $\checkmark$ |  |  |  |  |

(b) i. Equivalence relation, not antisymmetric. An equivalence class is a set of people who have the same hobbies.
ii. Partial order, not symmetric. The minimum is the unique youngest person if exists. The maximum is the unique oldest person if exists. The minimals are the youngest people. The maximals are the oldest people.
iii. Not reflexive, symmetric, not antisymmetric, transitive, and therefore not an equivalence relation and not a partial order.
iv. Reflexive, not symmetric, not antisymmetric, not transitive, not an equivalence relation, not a partial order.
2. (a) For every $x, x$ and $x$ have the same number of 1 's; $R$ is reflexive. If $x$ and $y$ have the same number of 1's, then $y$ and $x$ have the same number of 1 's; $R$ is symmetric. If $x$ and $y$ have the same number of 's and $y$ and $z$ have the same number of 1's, then $x$ and $z$ have the same number of ones; $R$ is transitive. Therefore, $R$ is an equivalence relation. The equivalences classes are:
$\{\{0000\}$,
$\{0001,0010,0100,1000\}$,
$\{0011,0101,0110,1001,1010,1100\}$, $\{0111,1011,1101,1110\}$,
(b) $H(0000,0101)=2, H(1101,0110)=3, H(1001,0110)=4$.
(c) For every $x, H(x, x)=0$ is even; $R$ is reflexive. If $H(x, y)$ is even, then $H(y, x)=H(x, y)$ is even; $R$ is symmetric. For transitivity, suppose $H(x, y)$ is even and $H(y, z)$ is even. Define $A=\left\{i \mid x_{i} \neq y_{i}\right\}$, $B=\left\{i \mid y_{i} \neq z_{i}\right\}$, and $C=\left\{i \mid x_{i} \neq z_{i}\right\}$. Then,

$$
C=(A-A \cap B) \cup(B-A \cap B) .
$$

And since $A-A \cap B$ and $B-A \cap B$ are disjoint, $A \cap B$ is a subset of $A$, and $A \cap B$ is a subset of $B$, it follows that

$$
\begin{aligned}
|C| & =|A-A \cap B|+|B-A \cap B| \\
& =|A|-|A \cap B|+|B|-|A \cap B| \\
& =|A|+|B|-2|A \cap B| \\
& =H(x, y)+H(y, z)-2|A \cap B|,
\end{aligned}
$$

which is even. Therefore, $H(x, z)=|C|$ is even; $R$ is transitive. The equivalence classes are:

$$
\begin{aligned}
& \{0000,0011,0101,1001,0110,1010,1100,1111\} \\
& \{0001,0010,0100,1000,0111,1011,1101,1110\}
\end{aligned}
$$

3. (a) For every $x, x_{i} \vee x_{i}=x_{i}$, and hence $x \oplus x=x ; R$ is reflexive. If $x \oplus y=y$ and $y \oplus x=x$, then $x=y \oplus x=x \oplus y=y ; R$ is antisymmetric. For transitivity, Assume $x R y$ and $y R z$. Need to prove that $x R z$, that is we need to prove that $x \oplus z=z$.

$$
\begin{array}{rlrl}
x \oplus z & =x \oplus(y \oplus z) & \text { because } y R z \text { and thus } y \oplus z=z \\
& =(x \oplus y) \oplus z & & \text { because "or" is associative } \\
& =y \oplus z & & \text { because } x R y \text { and thus } x \oplus y=y \\
& =z & & \text { because } y \oplus z=z \text { as we saw above } .
\end{array}
$$

(b) $R$ is not total. Let $x=100$ and $y=001$. Then, $x \oplus y \neq y$ and $y \oplus x \neq x$.
(c) Graph:


Hess diagram:

(d) The maximum is 111 .
(e) The minimum is 000 .
(f) Hess diagram:


The maximum and minimum don't exist. The maximals are 011 and 101. The minimals are 001, 010, and 100.
4. (a) If $R$ is reflexive, then for every $x$, since $x R x$, we have $x S x$.
(b) $x S y \Longrightarrow x R y$ or $y R x \Longrightarrow y R x$ or $x R y \Longrightarrow y S x$.
(c) Let $R$ be the subset relation, i.e. $x R y$ if and only if $x \subseteq y$. Then, $\{1\} S\{1,2\}$ and $\{1,2\} S\{2\}$, but $\{1\} S\{2\}$ is false.
(d) Using the same relation $R,\{1\} S\{1,2\}$ and $\{1,2\} S\{1\}$, but $\{1\} \neq$ $\{1,2\} ; S$ is not antisymmetric.
(e) Suppose $R$ is an equivalence relation. Then R is symmetric, i.e., $x R y \Leftrightarrow y R x$, and that implies that $S=R$ because
$x S y \Leftrightarrow(x R y$ or $y R x) \Leftrightarrow(x R y$ or $x R y)$ due to symmetry $\Leftrightarrow x R y$
Since $S=R$ and $R$ is an equivalence relation, then $S$ is an equivalence relation.
(f) By parts a, c, and d, not necessarily.
5. (a) If $R$ is reflexive, then for every $x$, since $x R x$, we have $x S x$.
(b) $x S y \Longrightarrow x R y \wedge y R x \Longrightarrow y R x \wedge x R y \Longrightarrow y S x$.
(c) Suppose $R$ is transitive. Then,

$$
\begin{aligned}
x S y \wedge y S z & \Longrightarrow(x R y \wedge y R x) \wedge(y R z \wedge z R y) \\
& \Longrightarrow(x R y \wedge y R z) \wedge(z R y \wedge y R z) \\
& \Longrightarrow x R z \wedge z R x \\
& \Longrightarrow x S z .
\end{aligned}
$$

(d) If $R$ is antisymmetric, then $x S y \wedge y S x \Longrightarrow x R y \wedge y R x \Longrightarrow x=y$, i.e. $S$ is antisymmetric.
(e) By parts a, b, and c, yes.
(f) By parts a, c, and d, yes.
6. (a) For any $x, x R x$ xor $x R x$ is false, and therefore, $x S x$ is false.
(b) $x S y \Longrightarrow x R y$ xor $y R x \Longrightarrow y R x$ xor $x R y \Longrightarrow y S x$.
(c) Let $R$ be the subset relation as before. Then, $\{1\} S\{1,2\}$ and $\{1,2\} S\{2\}$, but $\{1\} S\{2\}$ is false.

Bonus. (a) For every $(a, b) \in \mathbb{Z} \times \mathbb{Z}^{*}, a b=b a$ because number multiplication is commutative, and therefore $(a, b) R(a, b) ; R$ is reflexive. For symmetry,
$(a, b) R(c, d) \Longrightarrow a d=b c \Longrightarrow c b=b c=a d=d a \Longrightarrow c b=d a \Longrightarrow(c, d) R(a, b)$.
For transitivity, let $(a, b) R(c, d)$ and $(c, d) R(x, y)$, that is, $a d=b c$ and $c y=d x$. Then,
$d(a y-b x)=a d y-b d x=(a d) y-b(d x)=(b c) y-b(c y)=b c y-b c y=0 ;$ now since $d(a y-b x)=0$ and $d \neq 0$, we must have $a y-b x=0$. Therefore, $a y=b x$ and thus $(a, b) R(x, y)$.
(b) First, $f$ is a well-defined function because if $[a, b]=[c, d]$, that is $a d-b c=0$, then $a / b=c / d$. The function $f$ is one-to-one because $f([a, b])=f([c, d]) \Longrightarrow a / b=c / d \quad \Longrightarrow \quad a d=b c \quad \Longrightarrow$ $(a, b) R(c, d) \quad \Longrightarrow \quad[a, b]=[c, d]$. And $f$ is onto because for any $a / b \in \mathbb{Q}$, there exists $[a, b] \in E$ where $f([a, b])=a / b$.

