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CS 1311
Solution to Homework 3

Spring 2019

T = (To— 1fa)6”+ 1fa, where a = 6,0 = 10, and g = 1. Therefore,
o =3 X 6" —2

The characteristic polynomial is s? — 6s + 8 = (s — 2)(s — 4). Thus,
s1 = 2 and sy = 4. The solution therefore is z,, = A - 2™ + B - 4™ for
some constants A, B. Using the initial conditions, we get the system

of linear equations:

A+B :l‘():l

Solving for A and B gives A = B =1/2. So x,, = 2"~ ! 4+ 22n~1,
We have a = 7,b = —12, and ¢ = 1. Therefore, 5; = tva-+4b ng“‘b =4

and §p = &=V4 T V‘;2+4b =3.
The solution is x, = A4™ + B3™ + Z,,.
Since ¢ is a constant, then %, = C for some constant C' where:

C =7C — 12C + 18. Solving that equation gives us C' = 3. Hence,
T, = A4"™ + B3™ + 3.
To find A and B, we use the initial conditions to set up a system of
two linear equations:

A+B 156073:1
4A+3B =x21-3=T7

Solving the system gives A =4 and B = —3. So
Ty = 4n+1 _ 3n+1 + 3.
The solution is of the form x, = A6™ + Z,, where Z,, = dn + e for
some constants d and e. Then,
&y —6&y_1—10n—2 = 0 and thus dn+e—6(d(n—1)4+¢e)—10n—2 = 0.

Cleaning up, we get (—=5d — 10)n — 5e + 6d — 2 = 0. Therefore,
—5¢ — 10 = 0 and —5e + 6d — 2 = 0. Solving those two equations
yields: d = -2, e = —1—54. We now have,
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= A6" —2n — —
T
Using the initial condition, —3 = 27 = A6 — 2(0) — !, we get
A= —%, and thus, the final solution is:
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This problem is like problem 1(c) except the “c” part is not a constant
but is instead 18n + 3. Therefore, the solution is of the form:

Tn = A4" + B3" + &,

where Z,, = dn + e for some constants d and e.

Since &, is a solution to the actual recurrence relation, we have
Ty =TTp_1 — 122, o+ 18n+3

Which yields: dn+e = T7(dn —d+e) — 12(dn — 2d + e) + 18n + 3.
Cleaning that, we obtain,

dn+e = (18 —5d)n + 17d — 5e + 3

yielding d = 18 —5d and e = 17d—5e+3. Solving those two equations,
we get d = 3 and e = 9. This results in:

Tp =A4"+B3" +3n+9

To get A and B, use the initial conditions:

A+ B =x0—9 =0
4A+3B =121-3-9 =3

Solving this linear system gives A = 3 and B = —3. That is,

Tp=3-4"—3"T 4+ 3n+9
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iii. (7).
Assume that an outcome is defined as a set of 10 balls. Then the

L (8) (5 (12

count is (5) (5) (5)-
10-6 - 8.
The number of positive integers less than 300 and divisible by 8
is |299/8] = 37. The number of positive integers less than 300 and
divisible by 12 is |299/12| = 24. An integer « is divisible by 8 and 12
if and only if x is divisible by the least common multiple lem(8,12)
of 8 and 12, which is 24. So the number of positive integers less
than 300 and divisible by 8 and 12 is [299/24| = 12. Using the fact
that if A and B are finite sets, |A U B| = |A| 4+ |B| — |A N B|, the
number of positive integers less than 300 that are divisible by 8 or 12
is 37 + 24 — 12 = 49. The number of positive integers less than 300
that are divisible by neither 8 nor 12 is 299 — 49 = 250.

i. For each i from 1 to n, exactly one mod operation is done to
compute m. So the number of mod operations is n.

ii. For each ¢ from 1 to n, exactly |n/3] subtractions are done if
and only if i mod 3 = 1. So the number of subtractions is |n/3]
times the number of integers from 1 to m that are congruent
to 1 modulo 3. Let B be the set of such integers and let = €
B. That is, 1 < z < n and z = 3¢ + 1 for some integer gq.
It follows that 1 < 3¢+ 1 < n, ie. 0 < ¢ < [(n—1)/3].
Conversely, if 0 < ¢ < [(n —1)/3], then 3¢+ 1 € B. Therefore,
the size of B is [(n —1)/3| + 1. So the number of subtractions is
[n/3](|(n—1)/3] 4+1). If we assume that n is a positive multiple
of 3, the expression simplifies to (n/3)?.

iii. For the number of additions, first, let’s ignore the computation
of loop controls. For each ¢ from 1 to n, if i mod 3 = 0, |n/3]
additions are done, and if ¢ mod 3 = 2, (n — 2|n/3]) additions
are done. Let A ={i e N|1<i<n,imod3 =0} and C =
{ieN|1<i<n,imod3=2}. Then the number of additions
is |n/3]|A| + (n — 2[n/3])|C|. Using similar reasoning as that
for |B|, we get |A| = [n/3] and |C] = max(0, [(n — 2)/3] + 1).
If we count the number of additions involved for loop counters,
we get additional

n+ [n/3]JAl+ (In/3] + DIB| + (n = 2[n/3] + 1)[C|

additions. If we assume n is a positive multiple of 3, the number
of additions simplifies to, without considering the loop control,

(n/3)(n/3) + (n = 2n/3)(n/3) = 2(n/3)*,



and to, with loop control,

2(n/3)* +n+ (n/3)% + (n/3+1)(n/3) + (n/3 +1)(n/3)
=5(n/3)? +5n/3

(b) T(0) = 0 because no operation is done for input 0. Else, for each
iteration of the for-loop, 4 operations are performed inside the loop,
and there are n? such iterations. So the number of operations inside
the for-loop is 4n?. If we take into account the number of increments
for the loop counter i, which is n2, and the computation of n — 1 and
m, then T'(n) = T'(n — 1) + 5n? + 2. Therefore,

n

T(n) = (5i*+2)

=1

=5 i+ > 2
i=1 i=1
n
=5()_i%) +2n.
i=1
It remains to find a closed-form expression for Y . i?. Using the

identity (i — 1)® = i® — 3i® + 3i — 1, we have

n—1 n

=32 +3i—1

—32@ +3Zz—21
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Solving for 331" | i%, we get

n n n—1 n n
DILING SIS SES T ST of
i=1 i=1 i=0 i=1 =1
=n*+3n(n+1)/2—-n
= (2n® +3n% +n)/2
That is, >, i* = (2n3 + 3n? + n)/6. Therefore,

5(2n® + 3n% +n)
6

T(n) = + 2n.

Bonus. (a) Exactly one head: 3°0_, ™).
(b) Exactly two heads: Zz o (
(¢) As many heads as tails: ( )

)-
+ () + (3):



