CS 1311 Solution to Homework 3

Spring 2019

- 1. (a) $x_n = (x_0 \frac{b}{1-a})6^n + \frac{b}{1-a}$, where a = 6, b = 10, and $x_0 = 1$. Therefore, $x_0 = 3 \times 6^n 2$
 - (b) The characteristic polynomial is $s^2 6s + 8 = (s 2)(s 4)$. Thus, $s_1 = 2$ and $s_2 = 4$. The solution therefore is $x_n = A \cdot 2^n + B \cdot 4^n$ for some constants A, B. Using the initial conditions, we get the system of linear equations:

$$\begin{cases} A+B = x_0 = 1 \\ 2A+4B = x_1 = 3 \end{cases}.$$

Solving for A and B gives A = B = 1/2. So $x_n = 2^{n-1} + 2^{2n-1}$.

(c) We have a = 7, b = -12, and c = 1. Therefore, $s_1 = \frac{a + \sqrt{a^2 + 4b}}{2} = 4$ and $s_2 = \frac{a - \sqrt{a^2 + 4b}}{2} = 3$.

The solution is $x_n = A4^n + B3^n + \hat{x}_n$.

Since c is a constant, then $\hat{x}_n = C$ for some constant C where: C = 7C - 12C + 18. Solving that equation gives us C = 3. Hence, $x_n = A4^n + B3^n + 3$.

To find A and B, we use the initial conditions to set up a system of two linear equations:

$$\begin{cases} A+B = x_0 - 3 = 1\\ 4A + 3B = x_1 - 3 = 7 \end{cases}$$

Solving the system gives A = 4 and B = -3. So

$$x_n = 4^{n+1} - 3^{n+1} + 3.$$

2. (a) The solution is of the form $x_n = A6^n + \hat{x}_n$ where $\hat{x}_n = dn + e$ for some constants d and e. Then,

$$\hat{x}_n - 6\hat{x}_{n-1} - 10n - 2 = 0$$
 and thus $dn + e - 6(d(n-1) + e) - 10n - 2 = 0$.

Cleaning up, we get (-5d - 10)n - 5e + 6d - 2 = 0. Therefore, -5c - 10 = 0 and -5e + 6d - 2 = 0. Solving those two equations yields: d = -2, $e = -\frac{14}{5}$. We now have,

$$x_n = A6^n - 2n - \frac{14}{5}$$

Using the initial condition, $-3 = x_0 = A6^0 - 2(0) - \frac{14}{5}$, we get $A = -\frac{1}{5}$, and thus, the final solution is:

$$x_n = -\frac{1}{5}6^n - 2n - \frac{15}{4}.$$

(b) This problem is like problem 1(c) except the "c" part is not a constant but is instead 18n + 3. Therefore, the solution is of the form:

$$x_n = A4^n + B3^n + \hat{x}_n$$

where $\hat{x}_n = dn + e$ for some constants d and e. Since \hat{x}_n is a solution to the actual recurrence relation, we have

$$\hat{x}_n = 7\hat{x}_{n-1} - 12\hat{x}_{n-2} + 18n + 3$$

Which yields: dn + e = 7(dn - d + e) - 12(dn - 2d + e) + 18n + 3. Cleaning that, we obtain,

$$dn + e = (18 - 5d)n + 17d - 5e + 3$$

yielding d = 18-5d and e = 17d-5e+3. Solving those two equations, we get d = 3 and e = 9. This results in:

$$x_n = A4^n + B3^n + 3n + 9$$

To get A and B, use the initial conditions:

$$\begin{cases} A+B = x_0 - 9 = 0\\ 4A+3B = x_1 - 3 - 9 = 3 \end{cases}$$

Solving this linear system gives A = 3 and B = -3. That is,

$$x_n = 3 \cdot 4^n - 3^{n+1} + 3n + 9$$

3. (a) 7!. (b) $\binom{10}{7}$. (c) $\binom{30}{5}\binom{25}{4}\binom{21}{3}\binom{18}{2}$ 16!.

.

(d)
$$26^2 \cdot (36^4 - 26^4)$$
.

(e) (n+1)!.

4. (a) i.
$$\binom{10}{5} \cdot 5^5$$
.
ii. $\sum_{n=0}^5 \binom{10}{2n} 5^{10-2n}$.

- iii. 3^{10} . (b) i. $\binom{10}{4}, \sum_{n=0}^{4} \binom{10}{n}, \sum_{n=4}^{10} \binom{10}{n}$. ii. $\sum_{n=0}^{4} \binom{10}{2n+1}$. iii. $\binom{10}{5}$.
- (c) Assume that an outcome is defined as a *set* of 10 balls. Then the count is $\binom{8}{5}\binom{5}{2}\binom{12}{3}$.
- 5. (a) $10 \cdot 6 \cdot 8$.
 - (b) The number of positive integers less than 300 and divisible by 8 is [299/8] = 37. The number of positive integers less than 300 and divisible by 12 is [299/12] = 24. An integer x is divisible by 8 and 12 if and only if x is divisible by the least common multiple lcm(8, 12) of 8 and 12, which is 24. So the number of positive integers less than 300 and divisible by 8 and 12 is [299/24] = 12. Using the fact that if A and B are finite sets, |A ∪ B| = |A| + |B| |A ∩ B|, the number of positive integers less than 300 that are divisible by 8 or 12 is 37 + 24 12 = 49. The number of positive integers less than 300 that are divisible by neither 8 nor 12 is 299 49 = 250.
- 6. (a) i. For each i from 1 to n, exactly one mod operation is done to compute m. So the number of mod operations is n.
 - ii. For each *i* from 1 to *n*, exactly $\lfloor n/3 \rfloor$ subtractions are done if and only if *i* mod 3 = 1. So the number of subtractions is $\lfloor n/3 \rfloor$ times the number of integers from 1 to *n* that are congruent to 1 modulo 3. Let *B* be the set of such integers and let $x \in$ *B*. That is, $1 \leq x \leq n$ and x = 3q + 1 for some integer *q*. It follows that $1 \leq 3q + 1 \leq n$, i.e. $0 \leq q \leq \lfloor (n-1)/3 \rfloor$. Conversely, if $0 \leq q \leq \lfloor (n-1)/3 \rfloor$, then $3q + 1 \in B$. Therefore, the size of *B* is $\lfloor (n-1)/3 \rfloor + 1$. So the number of subtractions is $\lfloor n/3 \rfloor (\lfloor (n-1)/3 \rfloor + 1)$. If we assume that *n* is a positive multiple of 3, the expression simplifies to $(n/3)^2$.
 - iii. For the number of additions, first, let's ignore the computation of loop controls. For each *i* from 1 to *n*, if *i* mod 3 = 0, $\lfloor n/3 \rfloor$ additions are done, and if *i* mod 3 = 2, $(n - 2\lfloor n/3 \rfloor)$ additions are done. Let $A = \{i \in \mathbb{N} \mid 1 \leq i \leq n, i \mod 3 = 0\}$ and C = $\{i \in \mathbb{N} \mid 1 \leq i \leq n, i \mod 3 = 2\}$. Then the number of additions is $\lfloor n/3 \rfloor |A| + (n - 2\lfloor n/3 \rfloor) |C|$. Using similar reasoning as that for |B|, we get $|A| = \lfloor n/3 \rfloor$ and $|C| = \max(0, \lfloor (n - 2)/3 \rfloor + 1)$. If we count the number of additions involved for loop counters, we get additional

n + |n/3||A| + (|n/3|+1)|B| + (n-2|n/3|+1)|C|

additions. If we assume n is a positive multiple of 3, the number of additions simplifies to, without considering the loop control,

$$(n/3)(n/3) + (n - 2n/3)(n/3) = 2(n/3)^2,$$

and to, with loop control,

$$2(n/3)^2 + n + (n/3)^2 + (n/3+1)(n/3) + (n/3+1)(n/3)$$

= 5(n/3)^2 + 5n/3

(b) T(0) = 0 because no operation is done for input 0. Else, for each iteration of the for-loop, 4 operations are performed inside the loop, and there are n^2 such iterations. So the number of operations inside the for-loop is $4n^2$. If we take into account the number of increments for the loop counter *i*, which is n^2 , and the computation of n-1 and *m*, then $T(n) = T(n-1) + 5n^2 + 2$. Therefore,

$$T(n) = \sum_{i=1}^{n} (5i^{2} + 2)$$

= $5 \sum_{i=1}^{n} i^{2} + \sum_{i=1}^{n} 2$
= $5(\sum_{i=1}^{n} i^{2}) + 2n.$

It remains to find a closed-form expression for $\sum_{i=1}^{n} i^2$. Using the identity $(i-1)^3 = i^3 - 3i^2 + 3i - 1$, we have

$$\sum_{i=0}^{n-1} i^3 = \sum_{i=1}^n (i-1)^3 = \sum_{i=1}^n i^3 - 3i^2 + 3i - 1$$
$$= \sum_{i=1}^n i^3 - 3\sum_{i=1}^n i^2 + 3\sum_{i=1}^n i - \sum_{i=1}^n 1$$

Solving for $3\sum_{i=1}^{n} i^2$, we get

$$3\sum_{i=1}^{n} i^{2} = \left(\sum_{i=1}^{n} i^{3} - \sum_{i=0}^{n-1} i^{3}\right) + 3\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1$$
$$= n^{3} + 3n(n+1)/2 - n$$
$$= (2n^{3} + 3n^{2} + n)/2$$

That is, $\sum_{i=1}^{n} i^2 = (2n^3 + 3n^2 + n)/6$. Therefore,

$$T(n) = \frac{5(2n^3 + 3n^2 + n)}{6} + 2n.$$

Bonus. (a) Exactly one head: $\sum_{k=1}^{6} {k \choose 1}$.

- (b) Exactly two heads: $\sum_{k=2}^{6} {k \choose 2}$.
- (c) As many heads as tails: $\binom{2}{1} + \binom{4}{2} + \binom{6}{3}$.