# CS 1311 <br> Solution to Homework 3 

Spring 2019

1. (a) $x_{n}=\left(x_{0}-\frac{b}{1-a}\right) 6^{n}+\frac{b}{1-a}$, where $a=6, b=10$, and $x_{0}=1$. Therefore, $x_{0}=3 \times 6^{n-2}$
(b) The characteristic polynomial is $s^{2}-6 s+8=(s-2)(s-4)$. Thus, $s_{1}=2$ and $s_{2}=4$. The solution therefore is $x_{n}=A \cdot 2^{n}+B \cdot 4^{n}$ for some constants $A, B$. Using the initial conditions, we get the system of linear equations:

$$
\left\{\begin{array}{ll}
A+B & =x_{0}=1 \\
2 A+4 B & =x_{1}=3
\end{array} .\right.
$$

Solving for $A$ and $B$ gives $A=B=1 / 2$. So $x_{n}=2^{n-1}+2^{2 n-1}$.
(c) We have $a=7, b=-12$, and $c=1$. Therefore, $s_{1}=\frac{a+\sqrt{a^{2}+4 b}}{2}=4$ and $s_{2}=\frac{a-\sqrt{a^{2}+4 b}}{2}=3$.
The solution is $x_{n}=A 4^{n}+B 3^{n}+\hat{x}_{n}$.
Since $c$ is a constant, then $\hat{x}_{n}=C$ for some constant $C$ where: $C=7 C-12 C+18$. Solving that equation gives us $C=3$. Hence, $x_{n}=A 4^{n}+B 3^{n}+3$.
To find $A$ and $B$, we use the initial conditions to set up a system of two linear equations:

$$
\left\{\begin{array}{ll}
A+B & =x_{0}-3=1 \\
4 A+3 B & =x_{1}-3=7
\end{array} .\right.
$$

Solving the system gives $A=4$ and $B=-3$. So

$$
x_{n}=4^{n+1}-3^{n+1}+3 .
$$

2. (a) The solution is of the form $x_{n}=A 6^{n}+\hat{x}_{n}$ where $\hat{x}_{n}=d n+e$ for some constants $d$ and $e$. Then,
$\hat{x}_{n}-6 \hat{x}_{n-1}-10 n-2=0$ and thus $d n+e-6(d(n-1)+e)-10 n-2=0$.
Cleaning up, we get $(-5 d-10) n-5 e+6 d-2=0$. Therefore, $-5 c-10=0$ and $-5 e+6 d-2=0$. Solving those two equations yields: $d=-2, e=-\frac{14}{5}$. We now have,

$$
x_{n}=A 6^{n}-2 n-\frac{14}{5}
$$

Using the initial condition, $-3=x_{0}=A 6^{0}-2(0)-\frac{14}{5}$, we get $A=-\frac{1}{5}$, and thus, the final solution is:

$$
x_{n}=-\frac{1}{5} 6^{n}-2 n-\frac{15}{4}
$$

(b) This problem is like problem 1(c) except the "c" part is not a constant but is instead $18 n+3$. Therefore, the solution is of the form:

$$
x_{n}=A 4^{n}+B 3^{n}+\hat{x}_{n}
$$

where $\hat{x}_{n}=d n+e$ for some constants $d$ and $e$.
Since $\hat{x}_{n}$ is a solution to the actual recurrence relation, we have

$$
\hat{x}_{n}=7 \hat{x}_{n-1}-12 \hat{x}_{n-2}+18 n+3
$$

Which yields: $d n+e=7(d n-d+e)-12(d n-2 d+e)+18 n+3$. Cleaning that, we obtain,

$$
d n+e=(18-5 d) n+17 d-5 e+3
$$

yielding $d=18-5 d$ and $e=17 d-5 e+3$. Solving those two equations, we get $d=3$ and $e=9$. This results in:

$$
x_{n}=A 4^{n}+B 3^{n}+3 n+9
$$

To get $A$ and $B$, use the initial conditions:

$$
\left\{\begin{array}{lll}
A+B & =x_{0}-9 & =0 \\
4 A+3 B & =x_{1}-3-9 & =3
\end{array}\right.
$$

Solving this linear system gives $A=3$ and $B=-3$. That is,

$$
x_{n}=3 \cdot 4^{n}-3^{n+1}+3 n+9
$$

3. (a) 7!.
(b) $\binom{10}{7}$.
(c) $\binom{30}{5}\binom{25}{4}\binom{21}{3}\binom{18}{2} 16$ !.
(d) $26^{2} \cdot\left(36^{4}-26^{4}\right)$.
(e) $(n+1)$ !.
4. (a) i. $\binom{10}{5} \cdot 5^{5}$.
ii. $\sum_{n=0}^{5}\binom{10}{2 n} 5^{10-2 n}$.
iii. $3^{10}$.
(b) i. $\binom{10}{4}, \sum_{n=0}^{4}\binom{10}{n}, \sum_{n=4}^{10}\binom{10}{n}$.
ii. $\sum_{n=0}^{4}\binom{10}{2 n+1}$.
iii. $\binom{10}{5}$.
(c) Assume that an outcome is defined as a set of 10 balls. Then the count is $\binom{8}{5}\binom{5}{2}\binom{12}{3}$.
5. (a) $10 \cdot 6 \cdot 8$.
(b) The number of positive integers less than 300 and divisible by 8 is $\lfloor 299 / 8\rfloor=37$. The number of positive integers less than 300 and divisible by 12 is $\lfloor 299 / 12\rfloor=24$. An integer $x$ is divisible by 8 and 12 if and only if $x$ is divisible by the least common multiple $\operatorname{lcm}(8,12)$ of 8 and 12 , which is 24 . So the number of positive integers less than 300 and divisible by 8 and 12 is $\lfloor 299 / 24\rfloor=12$. Using the fact that if $A$ and $B$ are finite sets, $|A \cup B|=|A|+|B|-|A \cap B|$, the number of positive integers less than 300 that are divisible by 8 or 12 is $37+24-12=49$. The number of positive integers less than 300 that are divisible by neither 8 nor 12 is $299-49=250$.
6. (a) i. For each $i$ from 1 to $n$, exactly one $\bmod$ operation is done to compute $m$. So the number of $\bmod$ operations is $n$.
ii. For each $i$ from 1 to $n$, exactly $\lfloor n / 3\rfloor$ subtractions are done if and only if $i \bmod 3=1$. So the number of subtractions is $\lfloor n / 3\rfloor$ times the number of integers from 1 to $n$ that are congruent to 1 modulo 3 . Let $B$ be the set of such integers and let $x \in$ $B$. That is, $1 \leq x \leq n$ and $x=3 q+1$ for some integer $q$. It follows that $1 \leq 3 q+1 \leq n$, i.e. $0 \leq q \leq\lfloor(n-1) / 3\rfloor$. Conversely, if $0 \leq q \leq\lfloor(n-1) / 3\rfloor$, then $3 q+1 \in B$. Therefore, the size of $B$ is $\lfloor(n-1) / 3\rfloor+1$. So the number of subtractions is $\lfloor n / 3\rfloor(\lfloor(n-1) / 3\rfloor+1)$. If we assume that $n$ is a positive multiple of 3 , the expression simplifies to $(n / 3)^{2}$.
iii. For the number of additions, first, let's ignore the computation of loop controls. For each $i$ from 1 to $n$, if $i \bmod 3=0,\lfloor n / 3\rfloor$ additions are done, and if $i \bmod 3=2,(n-2\lfloor n / 3\rfloor)$ additions are done. Let $A=\{i \in \mathbb{N} \mid 1 \leq i \leq n, i \bmod 3=0\}$ and $C=$ $\{i \in \mathbb{N} \mid 1 \leq i \leq n, i \bmod 3=2\}$. Then the number of additions is $\lfloor n / 3\rfloor|A|+(n-2\lfloor n / 3\rfloor)|C|$. Using similar reasoning as that for $|B|$, we get $|A|=\lfloor n / 3\rfloor$ and $|C|=\max (0,\lfloor(n-2) / 3\rfloor+1)$. If we count the number of additions involved for loop counters, we get additional

$$
n+\lfloor n / 3\rfloor|A|+(\lfloor n / 3\rfloor+1)|B|+(n-2\lfloor n / 3\rfloor+1)|C|
$$

additions. If we assume $n$ is a positive multiple of 3 , the number of additions simplifies to, without considering the loop control,

$$
(n / 3)(n / 3)+(n-2 n / 3)(n / 3)=2(n / 3)^{2}
$$

and to, with loop control,

$$
\begin{aligned}
2(n / 3)^{2}+n+(n / 3)^{2}+(n / 3+1)(n / 3) & +(n / 3+1)(n / 3) \\
& =5(n / 3)^{2}+5 n / 3
\end{aligned}
$$

(b) $T(0)=0$ because no operation is done for input 0 . Else, for each iteration of the for-loop, 4 operations are performed inside the loop, and there are $n^{2}$ such iterations. So the number of operations inside the for-loop is $4 n^{2}$. If we take into account the number of increments for the loop counter $i$, which is $n^{2}$, and the computation of $n-1$ and $m$, then $T(n)=T(n-1)+5 n^{2}+2$. Therefore,

$$
\begin{aligned}
T(n) & =\sum_{i=1}^{n}\left(5 i^{2}+2\right) \\
& =5 \sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} 2 \\
& =5\left(\sum_{i=1}^{n} i^{2}\right)+2 n
\end{aligned}
$$

It remains to find a closed-form expression for $\sum_{i=1}^{n} i^{2}$. Using the identity $(i-1)^{3}=i^{3}-3 i^{2}+3 i-1$, we have

$$
\begin{aligned}
\sum_{i=0}^{n-1} i^{3}=\sum_{i=1}^{n}(i-1)^{3} & =\sum_{i=1}^{n} i^{3}-3 i^{2}+3 i-1 \\
& =\sum_{i=1}^{n} i^{3}-3 \sum_{i=1}^{n} i^{2}+3 \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1
\end{aligned}
$$

Solving for $3 \sum_{i=1}^{n} i^{2}$, we get

$$
\begin{aligned}
3 \sum_{i=1}^{n} i^{2} & =\left(\sum_{i=1}^{n} i^{3}-\sum_{i=0}^{n-1} i^{3}\right)+3 \sum_{i=1}^{n} i-\sum_{i=1}^{n} 1 \\
& =n^{3}+3 n(n+1) / 2-n \\
& =\left(2 n^{3}+3 n^{2}+n\right) / 2
\end{aligned}
$$

That is, $\sum_{i=1}^{n} i^{2}=\left(2 n^{3}+3 n^{2}+n\right) / 6$. Therefore,

$$
T(n)=\frac{5\left(2 n^{3}+3 n^{2}+n\right)}{6}+2 n
$$

Bonus. (a) Exactly one head: $\sum_{k=1}^{6}\binom{k}{1}$.
(b) Exactly two heads: $\sum_{k=2}^{6}\binom{k}{2}$.
(c) As many heads as tails: $\binom{2}{1}+\binom{4}{2}+\binom{6}{3}$.

