
CS 1311

Solution to Homework 3

Spring 2019

1. (a) xn = (x0− b
1−a )6n+ b

1−a , where a = 6, b = 10, and x0 = 1. Therefore,
x0 = 3× 6n − 2

(b) The characteristic polynomial is s2 − 6s + 8 = (s− 2)(s− 4). Thus,
s1 = 2 and s2 = 4. The solution therefore is xn = A · 2n + B · 4n for
some constants A,B. Using the initial conditions, we get the system
of linear equations: {

A + B = x0 = 1
2A + 4B = x1 = 3

.

Solving for A and B gives A = B = 1/2. So xn = 2n−1 + 22n−1.

(c) We have a = 7, b = −12, and c = 1. Therefore, s1 = a+
√
a2+4b
2 = 4

and s2 = a−
√
a2+4b
2 = 3.

The solution is xn = A4n + B3n + x̂n.

Since c is a constant, then x̂n = C for some constant C where:
C = 7C − 12C + 18. Solving that equation gives us C = 3. Hence,
xn = A4n + B3n + 3.

To find A and B, we use the initial conditions to set up a system of
two linear equations:{

A + B = x0 − 3 = 1
4A + 3B = x1 − 3 = 7

.

Solving the system gives A = 4 and B = −3. So

xn = 4n+1 − 3n+1 + 3.

2. (a) The solution is of the form xn = A6n + x̂n where x̂n = dn + e for
some constants d and e. Then,

x̂n−6x̂n−1−10n−2 = 0 and thus dn+e−6(d(n−1)+e)−10n−2 = 0.

Cleaning up, we get (−5d − 10)n − 5e + 6d − 2 = 0. Therefore,
−5c − 10 = 0 and −5e + 6d − 2 = 0. Solving those two equations
yields: d = −2, e = − 14

5 . We now have,
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xn = A6n − 2n− 14

5
.

Using the initial condition, −3 = x0 = A60 − 2(0) − 14
5 , we get

A = − 1
5 , and thus, the final solution is:

xn = −1

5
6n − 2n− 15

4
.

(b) This problem is like problem 1(c) except the “c” part is not a constant
but is instead 18n + 3. Therefore, the solution is of the form:

xn = A4n + B3n + x̂n

where x̂n = dn + e for some constants d and e.

Since x̂n is a solution to the actual recurrence relation, we have

x̂n = 7x̂n−1 − 12x̂n−2 + 18n + 3

Which yields: dn + e = 7(dn − d + e) − 12(dn − 2d + e) + 18n + 3.
Cleaning that, we obtain,

dn + e = (18− 5d)n + 17d− 5e + 3

yielding d = 18−5d and e = 17d−5e+3. Solving those two equations,
we get d = 3 and e = 9. This results in:

xn = A4n + B3n + 3n + 9

To get A and B, use the initial conditions:{
A + B = x0 − 9 = 0
4A + 3B = x1 − 3− 9 = 3

.

Solving this linear system gives A = 3 and B = −3. That is,

xn = 3 · 4n − 3n+1 + 3n + 9

.

3. (a) 7!.

(b)
(
10
7

)
.

(c)
(
30
5

)(
25
4

)(
21
3

)(
18
2

)
16!.

(d) 262 · (364 − 264).

(e) (n + 1)!.

4. (a) i.
(
10
5

)
· 55.

ii.
∑5

n=0

(
10
2n

)
510−2n.
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iii. 310.

(b) i.
(
10
4

)
,
∑4

n=0

(
10
n

)
,
∑10

n=4

(
10
n

)
.

ii.
∑4

n=0

(
10

2n+1

)
.

iii.
(
10
5

)
.

(c) Assume that an outcome is defined as a set of 10 balls. Then the
count is

(
8
5

)(
5
2

)(
12
3

)
.

5. (a) 10 · 6 · 8.

(b) The number of positive integers less than 300 and divisible by 8
is b299/8c = 37. The number of positive integers less than 300 and
divisible by 12 is b299/12c = 24. An integer x is divisible by 8 and 12
if and only if x is divisible by the least common multiple lcm(8, 12)
of 8 and 12, which is 24. So the number of positive integers less
than 300 and divisible by 8 and 12 is b299/24c = 12. Using the fact
that if A and B are finite sets, |A ∪ B| = |A| + |B| − |A ∩ B|, the
number of positive integers less than 300 that are divisible by 8 or 12
is 37 + 24 − 12 = 49. The number of positive integers less than 300
that are divisible by neither 8 nor 12 is 299− 49 = 250.

6. (a) i. For each i from 1 to n, exactly one mod operation is done to
compute m. So the number of mod operations is n.

ii. For each i from 1 to n, exactly bn/3c subtractions are done if
and only if i mod 3 = 1. So the number of subtractions is bn/3c
times the number of integers from 1 to n that are congruent
to 1 modulo 3. Let B be the set of such integers and let x ∈
B. That is, 1 ≤ x ≤ n and x = 3q + 1 for some integer q.
It follows that 1 ≤ 3q + 1 ≤ n, i.e. 0 ≤ q ≤ b(n − 1)/3c.
Conversely, if 0 ≤ q ≤ b(n− 1)/3c, then 3q + 1 ∈ B. Therefore,
the size of B is b(n− 1)/3c+ 1. So the number of subtractions is
bn/3c(b(n−1)/3c+1). If we assume that n is a positive multiple
of 3, the expression simplifies to (n/3)2.

iii. For the number of additions, first, let’s ignore the computation
of loop controls. For each i from 1 to n, if i mod 3 = 0, bn/3c
additions are done, and if i mod 3 = 2, (n − 2bn/3c) additions
are done. Let A = {i ∈ N | 1 ≤ i ≤ n, i mod 3 = 0} and C =
{i ∈ N | 1 ≤ i ≤ n, i mod 3 = 2}. Then the number of additions
is bn/3c|A| + (n − 2bn/3c)|C|. Using similar reasoning as that
for |B|, we get |A| = bn/3c and |C| = max(0, b(n − 2)/3c + 1).
If we count the number of additions involved for loop counters,
we get additional

n + bn/3c|A|+ (bn/3c+ 1)|B|+ (n− 2bn/3c+ 1)|C|

additions. If we assume n is a positive multiple of 3, the number
of additions simplifies to, without considering the loop control,

(n/3)(n/3) + (n− 2n/3)(n/3) = 2(n/3)2,
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and to, with loop control,

2(n/3)2 + n + (n/3)2 + (n/3 + 1)(n/3) + (n/3 + 1)(n/3)

= 5(n/3)2 + 5n/3

(b) T (0) = 0 because no operation is done for input 0. Else, for each
iteration of the for-loop, 4 operations are performed inside the loop,
and there are n2 such iterations. So the number of operations inside
the for-loop is 4n2. If we take into account the number of increments
for the loop counter i, which is n2, and the computation of n−1 and
m, then T (n) = T (n− 1) + 5n2 + 2. Therefore,

T (n) =

n∑
i=1

(5i2 + 2)

= 5

n∑
i=1

i2 +

n∑
i=1

2

= 5(

n∑
i=1

i2) + 2n.

It remains to find a closed-form expression for
∑n

i=1 i
2. Using the

identity (i− 1)3 = i3 − 3i2 + 3i− 1, we have

n−1∑
i=0

i3 =

n∑
i=1

(i− 1)3 =

n∑
i=1

i3 − 3i2 + 3i− 1

=

n∑
i=1

i3 − 3

n∑
i=1

i2 + 3

n∑
i=1

i−
n∑

i=1

1.

Solving for 3
∑n

i=1 i
2, we get

3

n∑
i=1

i2 =
( n∑

i=1

i3 −
n−1∑
i=0

i3
)

+ 3
n∑

i=1

i−
n∑

i=1

1

= n3 + 3n(n + 1)/2− n

= (2n3 + 3n2 + n)/2

That is,
∑n

i=1 i
2 = (2n3 + 3n2 + n)/6. Therefore,

T (n) =
5(2n3 + 3n2 + n)

6
+ 2n.

Bonus. (a) Exactly one head:
∑6

k=1

(
k
1

)
.

(b) Exactly two heads:
∑6

k=2

(
k
2

)
.

(c) As many heads as tails:
(
2
1

)
+
(
4
2

)
+
(
6
3

)
.
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