Homework 2 Solution

Problem 1

p	q	r	$(p \vee q) \wedge(\neg q \vee \neg r)$	$(\neg p \wedge \neg q) \vee \neg(q \wedge r)$	$p \wedge(q \vee \neg r)$	$(\neg p \vee \neg q) \wedge \neg r$
T	T	T	F	F	T	F
T	T	F	T	T	T	F
T	F	T	T	T	F	F
T	F	F	T	T	T	T
F	T	T	F	F	F	F
F	T	F	T	T	F	T
F	F	T	F	T	F	F
F	F	F	F	T	F	T

Problem 2

a) True.

$$
A-(B \cap C)=A \cap \overline{B \cap C}=A \cap(\bar{B} \cup \bar{C})=(A \cap \bar{B}) \cup(A \cap \bar{C})=(A-B) \cup(A-C)
$$

b) True.

$$
\begin{aligned}
& (A \cap B)-(A \cap C)=(A \cap B) \cap \overline{A \cap C}=(A \cap B) \cap(\bar{A} \cup \bar{C})=((A \cap B) \cap \bar{A}) \cup((A \cap B) \cap \bar{C}) \\
& =\emptyset \cup((A \cap B) \cap \bar{C})=A \cap(B \cap \bar{C})=A \cap(B-C)
\end{aligned}
$$

c) False.

Prove by counter-example. Let $A=\{1\}, B=\{2\}, C=\{3\}$, then $A \cup(B+C)=\{1,2,3\}, \quad(A \cup$ $B)+(A \cup C)=\{1,2\}+\{1,3\}=\{2,3\}$. Therefore $A \cup(B+C) \neq(A \cup B)+(A \cup C)$, the statement is false.
d) False.

Prove by counter-example. Let $A=\{1,3\}, B=\{2\}, C=\{3\}$, then $A+(B-C)=\{1,2,3\}, \quad(A+$ $B)-C=\{1,2\}$. Therefore $A+(B-C) \neq(A+B)-C$, the statement is false.
e) True. $A-(B-C)=A-(B \cap \bar{C})=A \cap \overline{(B \cap \bar{C})}=A \cap(\bar{B} \cup C)=(A \cap \bar{B}) \cup(A \cap C)=$ $(A-B) \cup(A \cap C)$
f) True.
$\forall(x, y) \in A \times(B+C) \Leftrightarrow x \in A \wedge y \in(B+C) \Leftrightarrow x \in A \wedge((y \in B \wedge y \notin C) \vee(y \in C \wedge y \notin B)) \Leftrightarrow$
$(\mathrm{x} \in A \wedge y \in B \wedge y \notin C) \vee(x \in A \wedge y \in C \wedge y \notin B) \Leftrightarrow(x \in A \wedge y \in B \wedge x \in A \wedge y \notin C) \vee(x \in$ $A \wedge y \in C \wedge x \in A \wedge y \notin B) \Leftrightarrow((x, y) \in A \times B \wedge(x, y) \notin A \times C) \vee((x, y) \in A \times C \wedge(x, y) \notin$ $A \times B) \Leftrightarrow(x, y) \in(A \times B+A \times C)$
g) False.

Prove by counter-example. Let $A=\{1,2\}, B=\{2\}$, then $2^{A-B}=\{\emptyset,\{1\}\}, 2^{A}-2^{B}=$ $\{\emptyset,\{1\},\{2\},\{1,2\}\}-\{\emptyset,\{2\}\}=\{\{1\},\{1,2\}\}$. Therefore $2^{A-B} \neq 2^{A}-2^{B}$ the statement is false.

Problem 3

a) Let $x=3$, then $\left\lceil\frac{x}{2}\right\rceil=2, \frac{\lceil x\rceil}{2}=1.5$, therefore $\left\lceil\frac{x}{2}\right\rceil \neq \frac{\lceil x\rceil}{2}$.
b) Let $x=2, y=2.6$, then $\lfloor x \times y\rfloor=\lfloor 2 \times 2.6\rfloor=\lfloor 5.2\rfloor=5, \quad\lfloor x\rfloor \times\lfloor y\rfloor=\lfloor 2\rfloor \times\lfloor 2.6\rfloor=2 \times 2=4$, therefore $\lfloor x \times y\rfloor \neq\lfloor x\rfloor \times\lfloor y\rfloor$.
c) Let $x=2.5$, then $\left\lceil 3^{2.5}\right\rceil=\lceil 15.59\rceil=16, \quad 3^{\lceil 2.5\rceil}=3^{3}=27$, therefore $\left\lceil 3^{x}\right\rceil \neq 3^{\lceil x\rceil}$.
d) Let $n=5, \quad 2^{n}+3=2^{5}+3=32+3=35,35$ is not a prime number $(35=5 \times 7)$, therefore the statement is false.

Problem 4

a) Prove that f is one-to-one and onto, and find f^{-1}.
(1) Prove f is one-to-one. $f(x)=f\left(x^{\prime}\right) \Rightarrow 5 x+12=5 x^{\prime}+12 \Rightarrow x=x^{\prime}$. Therefore, f is one-to-one.
(2) Prove f is onto.

Take an arbitrary element $y \in \mathbb{R}$, find $x \in \mathbb{R}$ such that $y=f(x)=5 x+12$. $y=5 x+12 \Leftrightarrow y-12=5 x \Leftrightarrow x=\frac{y-12}{5} \in \mathbb{R}$. Therefore, f is onto, and $f^{-1}(y)=\frac{y-12}{5}$
b) (1) g is not one-to-one. Let $x_{1}=2, x_{2}=-2, \quad g\left(x_{1}\right)=g\left(x_{2}\right)=\sqrt{5}$ while $x_{1} \neq x_{2}$; therefore g is not one-to-one.
(2) g is not onto. To prove it, take $y=0.5 . \forall x \in \mathbb{R}, g(x)=\sqrt{x^{2}+1} \geq 1>0.5$. Therefore, $\forall x \in \mathbb{R}, g(x) \neq y$. Hence, g is not onto.
c) (1) h is not one-to-one. Let $x_{1}=1, \quad x_{2}=2, \quad h\left(x_{1}\right)=\left\lfloor\frac{1+1}{4}\right\rfloor=0, \quad h\left(x_{2}\right)=\left\lfloor\frac{2+1}{4}\right\rfloor=0$; thus, $\quad h\left(x_{1}\right)=h\left(x_{2}\right)=0$ but $x_{1} \neq x_{2}$; therefore, h is not one-to-one.
(2) h is onto. Let y be an arbitrary element in \mathbb{Z}, find an element $x \in \mathbb{R}$ such that $h(x)=y$. Take $x=4 y-1 \in \mathbb{R} ; h(x)=\left\lfloor\frac{x+1}{4}\right\rfloor=\left\lfloor\frac{4 y-1+1}{4}\right\rfloor=\left\lfloor\frac{4 y}{4}\right\rfloor=\lfloor y\rfloor=y$ because $y \in \mathbb{Z}$. Therefore, h is onto.
d) (1) $h o g(x)=h(g(x))=\left\lfloor\frac{g(x)+1}{4}\right\rfloor=\left\lfloor\frac{\sqrt{x^{2}+1}+1}{4}\right\rfloor$
(2) $g \circ h(x)=g(h(x))=\sqrt{h(x)^{2}+1}=\sqrt{\left\lfloor\frac{x+1}{4}\right\rfloor^{2}+1}$
(3) $(f \circ h) \circ g(x)=f \circ(h \circ g)(x)=f(h(g(x)))=5 h(g(x))+12=5\left\lfloor\frac{g(x)+1}{4}\right\rfloor+12$ $=5\left\lfloor\frac{\sqrt{x^{2}+1}+1}{4}\right\rfloor+12$
e) (1) $f^{\leftarrow}(1)=\{x \in E \mid f(x)=1\}, \quad f(x)=5 x+12=1 \Rightarrow x=\frac{-11}{5} \Rightarrow f^{\leftarrow}(1) \equiv\left\{\frac{-11}{5}\right\}$
(2) $g^{\leftarrow}(3)=\{x \in E \mid g(x)=3\}, \quad g(x)=\sqrt{x^{2}+1}=3 \Rightarrow x= \pm \sqrt{8} \Rightarrow g^{\leftarrow}(3) \equiv\{-\sqrt{8}, \sqrt{8}\}$
(3) $g^{\leftarrow}(0)=\{x \in E \mid g(x)=0\}, \quad g(x)=\sqrt{x^{2}+1}=0 \Rightarrow x^{2}=-1$, there does not exist any $x \in \mathbb{R}$ such that $x^{2}=-1$, therefore $g^{\leftarrow}(0) \equiv \emptyset$
(4) $h^{\leftarrow}(2)=\{x \in E \mid h(x)=2\}, \quad h(x)=\left\lfloor\frac{x+1}{4}\right\rfloor=2 \Rightarrow 2 \leq \frac{x+1}{4}<3 \Rightarrow 7 \leq x<11 \Rightarrow$ $h^{\leftarrow}(2) \equiv[7,11)$

Problem 5

a) Basic step: $n=0, \quad f(0)=3$ by definition, and $5^{0+1}-2=5-2=3$. Therefore, $f(0)=$ $5^{0+1}-2$.
Induction step: Assume it is true for $n-1, f(n-1)=5^{n-1+1}-2=5^{n}-2$, then for n, with recurrence function $f(n)=5 f(n-1)+8=5\left(5^{n}-2\right)+8=5^{n+1}--10+8=5^{n+1}-2$.
Therefore $f(n)=5^{n+1}-2, \quad \forall n \geq 0$.
b) Basic step: $n=0, \quad f(1)=0$ by definition, $0^{2}=0=f(0)$, i.e., the result is true for $n=0$.

Induction step: Assume it is true for $n-1, f(n-1)=(n-1)^{2}$, then for n, with recurrence function $f(n)=f(n-1)+(2 n-1)=(n-1)^{2}+(2 n-1)=n^{2}-2 n+1+(2 n-1)=n^{2}$. Therefore $f(n)=n^{2}, \quad \forall n \geq 0$.
c) Basic step: $n=0, \quad f(0)=0$ by definition, $\quad \frac{0 \cdot(2 \cdot 0-1) \cdot(2 \cdot 0+1)}{3}=0=f(0)$, i.e., the result is true for $n=0$.
Induction step: Assume it is true for $n-1, f(n-1)=\frac{(n-1)(2(n-1)-1)(2(n-1)+1)}{3}=\frac{(n-1)(2 n-3)(2 n-1)}{3}$, then for n, with recurrence function $f(n)=f(n-1)+(2 n-1)^{2}=\frac{(n-1)(2 n-3)(2 n-1)+3(2 n-1)^{2}}{3}=$ $\frac{(2 n-1)((n-1)(2 n-3)+3(2 n-1))}{3}=\frac{(2 n-1)\left(2 n^{2}-5 n+3+6 n-3\right)}{3}=\frac{(2 n-1)\left(2 n^{2}+n\right)}{3}=\frac{n(2 n-1)(2 n+1)}{3}$.
Therefore $f(n)=\frac{n(2 n-1)(2 n+1)}{3}, \quad \forall n \geq 0$.

Problem 6

a) Basic step: $n=0, \quad T(0)=0$ by definition, $\quad \frac{0 \cdot(0+3)}{2}=0=T(0)$, i.e., the result is true for $n=0$.
Induction step: Assume it is true for $n-1, T(n-1)=\frac{(n-1)(n+2)}{2}$, then for n, with recurrence function $T(n)=T(n-1)+n+1=\frac{(n-1)(n+2)}{2}+n+1=\frac{\left(n^{2}+n-2\right)+(2 n+2)}{2}=\frac{n^{2}+3 n}{2}=\frac{n(n+3)}{2}$. Therefore $T(n)=\frac{n(n+3)}{2}, \quad \forall n \geq 0$.
b) Let $f(x)=a[0]+a[1] x+a[2] x^{2}+\cdots+a[n] x^{n}, T(n)$ is the time to calculate $f(x) . x^{1}$ takes 0 steps, $x^{2}=x \times x$ takes one (multiplication) step, $x^{3}=x^{2} \times x$ takes one additional (multiplication) step, $x^{4}=x^{3} \times x$ takes one additional step, and so on, until $x^{x}=x^{n-1} \times x$ takes one additional step. Therefore, those powers of x take a total of $n-1$ steps.
Next, each $a[i] x^{i}$ takes one multiplication step, implying that the products $a[1] x, a[2] x^{2}, a[3] x^{3}, \cdots, a[n] x^{n}$ take n multiplication steps.
Finally, the sum of those products, namely, $a[0]+a[1] x+a[2] x^{2}+a[3] x^{3}+\cdots+a[n] x^{n}$ takes n (addition) steps.
Therefore, the total number of steps is $(n-1)+n+n=3 n-1$.

Bonus Problem

Let A_{n} represents A with n elements: $A_{n} \equiv\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$.
Basic step:
$n=0, \quad A_{0} \equiv \emptyset, \quad P\left(A_{0}\right)=\{\emptyset\}, \quad\left|P\left(A_{0}\right)\right|=1, \quad 2^{0}=1=\left|P\left(A_{0}\right)\right|$, i.e., the result is true for $n=0$.
To make sure $n=0$ is not a special case, we can also verify it is true for $n=1, \quad A_{1} \equiv$ $\left\{a_{1}\right\}, \quad P\left(A_{1}\right)=\left\{\emptyset,\left\{a_{1}\right\}\right\}, \quad\left|P\left(A_{1}\right)\right|=2, \quad 2^{1}=2=\left|P\left(A_{0}\right)\right|$, i.e., the result is true for $n=1$.

Induction step:
Assume it is true for $n-1,\left|P\left(A_{n-1}\right)\right|=2^{n-1}$.
Let $P\left(A_{n-1}\right)=\left\{Q_{1}, Q_{2}, \cdots, Q_{2^{n-1}}\right\}$, where $Q_{i}, i=1,2, \cdots, 2^{n-1}$, is a subset of $A_{n-1} \equiv\left\{a_{1}, a_{2}, \cdots, a_{n-1}\right\}$, then $P\left(A_{n}\right)$ can be formed by the union of two non-overlapping sets, $P\left(A_{n-1}\right)$, and another new set by adding a_{n} into each element set in $P\left(A_{n-1}\right)$; let us call this set $P\left(A_{n-1}, a_{n}\right)$.
$P\left(A_{n-1}, a_{n}\right)=\left\{\left\{a_{n}\right\} \cup Q_{1},\left\{a_{n}\right\} \cup Q_{2}, \cdots,\left\{a_{n}\right\} \cup Q_{2^{n-1}}\right\}$, which obviously has the same number of elements as $P\left(A_{n-1}\right)$, and $P\left(A_{n-1}\right) \cap P\left(A_{n-1}, a_{n}\right) \equiv \emptyset$.
$P\left(A_{n}\right) \equiv\left(P\left(A_{n-1}\right) \cup P\left(A_{n-1}, a_{n}\right)\right) \Rightarrow$
$\left|P\left(A_{n}\right)\right|=\left|\left(P\left(A_{n-1}\right)|+| P\left(A_{n-1}, a_{n}\right)\right)\right|-\left|P\left(A_{n-1}\right) \cap P\left(A_{n-1}, a_{n}\right)\right|=2^{n-1}+2^{n-1}-0=2^{n}$.
Therefore $\left|P\left(A_{n}\right)\right|=2^{n}, \forall n \geq 0$.

