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Homework 2 Solution

Problem 1
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Problem 2

a) True.

A− (B ∩ C) = A ∩B ∩ C = A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) = (A−B) ∪ (A− C)

b) True.

(A ∩B)− (A ∩ C) = (A ∩B) ∩A ∩ C = (A ∩B) ∩ (A ∪ C) = ((A ∩B) ∩A) ∪ ((A ∩B) ∩ C)

= ∅ ∪ ((A ∩B) ∩ C) = A ∩ (B ∩ C) = A ∩ (B − C)

c) False.

Prove by counter-example. Let A = {1}, B = {2}, C = {3}, then A∪(B+C) = {1, 2, 3}, (A∪
B) + (A ∪ C) = {1, 2} + {1, 3} = {2, 3}. Therefore A ∪ (B + C) 6= (A ∪ B) + (A ∪ C), the

statement is false.

d) False.

Prove by counter-example. Let A = {1, 3}, B = {2}, C = {3}, then A+(B−C) = {1, 2, 3}, (A+

B)− C = {1, 2}. Therefore A + (B − C) 6= (A + B)− C , the statement is false.

e) True. A − (B − C) = A − (B ∩ C) = A ∩ (B ∩ C) = A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) =

(A−B) ∪ (A ∩ C)

f) True.

∀(x, y) ∈ A×(B+C)⇔ x ∈ A∧y ∈ (B+C)⇔ x ∈ A∧((y ∈ B∧y /∈ C)∨(y ∈ C∧y /∈ B))⇔

(x ∈ A ∧ y ∈ B ∧ y /∈ C) ∨ (x ∈ A ∧ y ∈ C ∧ y /∈ B)⇔ (x ∈ A ∧ y ∈ B ∧ x ∈ A ∧ y /∈ C) ∨ (x ∈
A ∧ y ∈ C ∧ x ∈ A ∧ y /∈ B) ⇔ ((x, y) ∈ A× B ∧ (x, y) /∈ A× C) ∨ ((x, y) ∈ A× C ∧ (x, y) /∈
A×B)⇔ (x, y) ∈ (A×B + A× C)
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g) False.

Prove by counter-example. Let A = {1, 2}, B = {2}, then 2A−B = {∅, {1}}, 2A − 2B =

{∅, {1}, {2}, {1, 2}} − {∅, {2}} = {{1}, {1, 2}}. Therefore 2A−B 6= 2A − 2B the statement is

false.

Problem 3

a) Let x = 3, then dx2 e = 2, dxe2 = 1.5, therefore dx2 e 6=
dxe
2 .

b) Let x = 2, y = 2.6, then bx×yc = b2×2.6c = b5.2c = 5, bxc×byc = b2c×b2.6c = 2×2 = 4,

therefore bx× yc 6= bxc × byc.

c) Let x = 2.5, then d32.5e = d15.59e = 16, 3d2.5e = 33 = 27, therefore d3xe 6= 3dxe.

d) Let n = 5, 2n + 3 = 25 + 3 = 32 + 3 = 35, 35 is not a prime number (35 = 5× 7), therefore

the statement is false.

Problem 4

a) Prove that f is one-to-one and onto, and find f−1.

1© Prove f is one-to-one.

f(x) = f(x
′
)⇒ 5x + 12 = 5x

′
+ 12⇒ x = x

′
. Therefore, f is one-to-one.

2© Prove f is onto.

Take an arbitrary element y ∈ R, find x ∈ R such that y = f(x) = 5x + 12.

y = 5x + 12⇔ y − 12 = 5x⇔ x = y−12
5 ∈ R. Therefore, f is onto, and f−1(y) = y−12

5

b) 1© g is not one-to-one. Let x1 = 2, x2 = −2, g(x1) = g(x2) =
√

5 while x1 6= x2; therefore

g is not one-to-one.

2© g is not onto. To prove it, take y = 0.5. ∀x ∈ R, g(x) =
√
x2 + 1 ≥ 1 > 0.5. Therefore,

∀x ∈ R, g(x) 6= y. Hence, g is not onto.

c) 1© h is not one-to-one. Let x1 = 1, x2 = 2, h(x1) = b 1+1
4 c = 0, h(x2) = b 2+1

4 c = 0;

thus, h(x1) = h(x2) = 0 but x1 6= x2; therefore, h is not one-to-one.

2© h is onto. Let y be an arbitrary element in Z, find an element x ∈ R such that h(x) = y.

Take x = 4y − 1 ∈ R; h(x) = bx+1
4 c = b 4y−1+1

4 c = b 4y4 c = byc = y because y ∈ Z.

Therefore, h is onto.

d) 1© h o g(x) = h(g(x)) = b g(x)+1
4 c = b

√
x2+1+1

4 c

2© g o h(x) = g(h(x)) =
√
h(x)2 + 1 =

√
bx+1

4 c2 + 1

3© (f o h) o g(x) = f o (h o g)(x) = f(h(g(x))) = 5h(g(x)) + 12 = 5b g(x)+1
4 c+ 12

= 5b
√
x2+1+1

4 c+ 12

e) 1© f←(1) = {x ∈ E | f(x) = 1}, f(x) = 5x + 12 = 1⇒ x = −11
5 ⇒ f←(1) ≡ {−115 }
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2© g←(3) = {x ∈ E | g(x) = 3}, g(x) =
√
x2 + 1 = 3⇒ x = ±

√
8⇒ g←(3) ≡ {−

√
8,
√

8}
3© g←(0) = {x ∈ E | g(x) = 0}, g(x) =

√
x2 + 1 = 0⇒ x2 = −1, there does not exist any

x ∈ R such that x2 = −1, therefore g←(0) ≡ ∅
4© h←(2) = {x ∈ E | h(x) = 2}, h(x) = bx+1

4 c = 2 ⇒ 2 ≤ x+1
4 < 3 ⇒ 7 ≤ x < 11 ⇒

h←(2) ≡ [7, 11)

Problem 5

a) Basic step: n = 0, f(0) = 3 by definition, and 50+1 − 2 = 5 − 2 = 3. Therefore, f(0) =

50+1 − 2.

Induction step: Assume it is true for n− 1, f(n− 1) = 5n−1+1 − 2 = 5n − 2, then for n, with

recurrence function f(n) = 5f(n− 1) + 8 = 5(5n − 2) + 8 = 5n+1 −−10 + 8 = 5n+1 − 2.

Therefore f(n) = 5n+1 − 2, ∀n ≥ 0.

b) Basic step: n = 0, f(1) = 0 by definition, 02 = 0 = f(0), i.e., the result is true for n = 0.

Induction step: Assume it is true for n − 1, f(n − 1) = (n − 1)2, then for n, with recurrence

function f(n) = f(n− 1) + (2n− 1) = (n− 1)2 + (2n− 1) = n2 − 2n + 1 + (2n− 1) = n2.

Therefore f(n) = n2, ∀n ≥ 0.

c) Basic step: n = 0, f(0) = 0 by definition, 0·(2·0−1)·(2·0+1)
3 = 0 = f(0), i.e., the result is

true for n = 0.

Induction step: Assume it is true for n−1, f(n−1) = (n−1)(2(n−1)−1)(2(n−1)+1)
3 = (n−1)(2n−3)(2n−1)

3 ,

then for n, with recurrence function f(n) = f(n−1)+(2n−1)2 = (n−1)(2n−3)(2n−1)+3(2n−1)2
3 =

(2n−1)((n−1)(2n−3)+3(2n−1))
3 = (2n−1)(2n2−5n+3+6n−3)

3 = (2n−1)(2n2+n)
3 = n(2n−1)(2n+1)

3 .

Therefore f(n) = n(2n−1)(2n+1)
3 , ∀n ≥ 0.

Problem 6

a) Basic step: n = 0, T (0) = 0 by definition, 0·(0+3)
2 = 0 = T (0), i.e., the result is true for

n = 0.

Induction step: Assume it is true for n− 1, T (n− 1) = (n−1)(n+2)
2 , then for n, with recurrence

function T (n) = T (n− 1) + n + 1 = (n−1)(n+2)
2 + n + 1 = (n2+n−2)+(2n+2)

2 = n2+3n
2 = n(n+3)

2 .

Therefore T (n) = n(n+3)
2 , ∀n ≥ 0.

b) Let f(x) = a[0] + a[1]x + a[2]x2 + · · ·+ a[n]xn, T (n) is the time to calculate f(x). x1 takes 0

steps, x2 = x× x takes one (multiplication) step, x3 = x2 × x takes one additional (multipli-

cation) step, x4 = x3 × x takes one additional step, and so on, until xx = xn−1 × x takes one

additional step. Therefore, those powers of x take a total of n− 1 steps.

Next, each a[i]xi takes one multiplication step, implying that the products a[1]x, a[2]x2, a[3]x3, · · · , a[n]xn

take n multiplication steps.

Finally, the sum of those products, namely, a[0] + a[1]x + a[2]x2 + a[3]x3 + · · ·+ a[n]xn takes

n (addition) steps.

Therefore, the total number of steps is (n− 1) + n + n = 3n− 1.
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Bonus Problem

Let An represents A with n elements: An ≡ {a1, a2, · · · , an}.
Basic step:

n = 0, A0 ≡ ∅, P (A0) = {∅}, |P (A0)| = 1, 20 = 1 = |P (A0)|, i.e., the result is true for n = 0.

To make sure n = 0 is not a special case, we can also verify it is true for n = 1, A1 ≡
{a1}, P (A1) = {∅, {a1}}, |P (A1)| = 2, 21 = 2 = |P (A0)|, i.e., the result is true for n = 1.

Induction step:

Assume it is true for n− 1, |P (An−1)| = 2n−1.

Let P (An−1) = {Q1, Q2, · · · , Q2n−1}, where Qi, i = 1, 2, · · · , 2n−1, is a subset of An−1 ≡ {a1, a2, · · · , an−1},
then P (An) can be formed by the union of two non-overlapping sets, P (An−1), and another new set

by adding an into each element set in P (An−1); let us call this set P (An−1, an).

P (An−1, an) = {{an}∪Q1, {an}∪Q2, · · · , {an}∪Q2n−1}, which obviously has the same number

of elements as P (An−1), and P (An−1) ∩ P (An−1, an) ≡ ∅.
P (An) ≡ (P (An−1) ∪ P (An−1, an))⇒

|P (An)| = |(P (An−1)|+ |P (An−1, an))| − |P (An−1) ∩ P (An−1, an)| = 2n−1 + 2n−1 − 0 = 2n.

Therefore |P (An)| = 2n,∀n ≥ 0.

4


