## Midterm

TIME: 75 minutes

Problem 1: ( 25 points)
Let $\mathbb{R}$ be the set of real numbers, and $N$ the set of integers.
a) Let $f$ be a function from $\mathbb{R}$ to $\mathbb{R}$ where $f(x)=10 x+35$ for all $x$. Prove that $f$ is one-to-one and onto, and find the inverse function $f^{-1}$.
b) Let $g$ be a function from $\mathbb{N}$ to $\mathbb{R}$ where $g(x)=4 \sqrt{x}-7$ for all $x$. Is $g$ one-to-one? Onto? Prove your answer.

Problem 2: ( 25 points)
a) Let $a$ and $b$ be two positive real numbers. Prove by induction on $n$ that

$$
(\forall n \in \mathbb{N})\left((a+b)^{n} \geq a^{n}+b^{n}\right)
$$

b) Prove by induction on positive integer $n$ that

$$
1 \times 3+2 \times 4+3 \times 5+\cdots+n(n+2)=\frac{n(n+1)(2 n+7)}{6}
$$

c) Prove that for every positive integer $n, n(n+1)(2 n+7)$ is divisible by 6 .

Problem 3: (25 points)
a) Let $x_{0}=0$ and $x_{n}=2 x_{n-1}+n$ for all $n \geq 1$. Solve this recurrence relation to find the value of $x_{n}$ in terms of $n$.
b) Let $x_{0}=0, x_{1}=4$, and $x_{n}=2 x_{n-1}+x_{n-2}$ for all $n \geq 2$. Solve this recurrence relation to find the value of $x_{n}$ in terms of $n$.

Problem 4: (25 points)
a) In how many ways can you arrange 8 people in a waiting line?
b) Same as (a) except this time the 8 people are 5 women and 3 men and all the women are ahead of the men?
c) Same as (a) except this time the 8 people are 5 women and 3 men and no two men are next to each other.
d) How many 7-letter strings are there where 3 of the letters are $a^{\prime}$ s, 2 are $b^{\prime}$ s, and 2 are $c^{\prime}$ s?
e) A coin is tossed 8 times. Each outcome is a sequence of 8 heads and/or tails. What is the number of possible outcomes where the number of heads is higher than the number of tails?

