Problem 1: (20 points)
Let $\left(B,+, \bullet^{\prime}, 0,1\right)$ be a Boolean algebra. Define the following operation $\oplus: x \oplus y=x y+x^{\prime} y^{\prime}$.
a) Give the truth table of \oplus.
b) Evaluate $x \oplus x, x \oplus x^{\prime}, x \oplus 0$, and $x \oplus 1$. Your answers should be $x, 0,1$, or x^{\prime}.
c) Is \oplus commutative? Associative? Distributive over +? Distributive over •? Prove your answers

Problem 2: (20 points)
a) In a competition judged by a panel of 4 , after each player completes his/her presentation, each judge enters his/her vote of yes or no (yes=1, no=0) into a machine. The machine tallies the votes, and returns 1 (that is, pass) if the $1^{\text {st }}$ judge, $4^{\text {th }}$ judge, and at least one more judge vote yes. Otherwise, the machine returns 0 (for fail). Express the working of the machine as a Boolean function of four variables (the 4 judges' votes).
b) Same as (a) except that this time the machine returns 1 if at least one judge votes yes.
c) Same as (a) except this time we are interested to see if the $1^{\text {st }}$ and $4^{\text {th }}$ judges disagree and the $2^{\text {nd }}$ and $3^{\text {rd }}$ judges disagree. If so, the machine returns 1 ; otherwise, it returns 0 . Express the behavior of the machine as a Boolean function of four variables.

Problem 3: (20 points)
Let $\mathrm{B}=\{0,1\}$ be a Boolean algebra and let $f: \mathrm{B}^{3} \rightarrow \mathrm{~B}$ be a Boolean function such that $f(x, y, z)=1$ if an odd number of variables have the value 1 ; otherwise, $f(x, y, z)=0$.
a) Give the truth table of f and f^{\prime} (the complement of f).
b) Write f in disjunctive normal form and f^{\prime} in conjunctive normal form.
c) Write f in conjunctive normal form and f^{\prime} in disjunctive normal form.

Problem 4: (20 points)
For each of the following Boolean expressions, give the truth table, and put the expression in DNF and CNF.
a) $x y z+x \prime z+x \prime y z '$
b) $y z+x z^{\prime}+x^{\prime} z^{\prime}$
c) $x y z+x y^{\prime} z w+x^{\prime} y^{\prime} z^{\prime} w^{\prime}+x^{\prime} y w^{\prime}+y^{\prime} z w^{\prime}$
d) $x z w^{\prime}+x y z{ }^{\prime}+y^{\prime} z^{\prime} w^{\prime}+x^{\prime} y^{\prime} z^{\prime}+y z^{\prime} w^{\prime}$

Problem 5: (20 points)
Minimize each of the expressions of problem 4 using Karnaugh maps. Show the Karnaugh maps.
Bonus Problem: (5 points)
a) Let x and y be two Boolean variables (i.e., each can be 0 or 1 only). Also, let $f(x, y)=$ 1 if $x=y$, and $f(x, y)=0$ otherwise. Express f as a Boolean expression in terms of x and y.
b) Note that every integer 0 through 7 can be represented with a 3-bit string (0 as 000,1 as 001 , 2 as 010,3 as 011,4 as 100,5 as 101,6 as 110 , and 7 as 111). Let x and y be two integers between 0 and 7 inclusive, expressed in binary as $x_{2} x_{1} x_{0}$ and $y_{2} y_{1} y_{0}$, respectively. Finally,
let f be a function where $f(x, y)=1$ if $x=y$; otherwise, $f(x, y)=0$. Express f as a Boolean expression in terms of the 6 bits $x_{2}, x_{1}, x_{0}, y_{2}, y_{1}$, and y_{0}, where each bit is treated as a Boolean value. Show your reasoning.

