Homework 5 Due Date: April 11, 2019

Problem 1: (20 points)

- a) Show the multiplication table (mod 7), and also the multiplication table (mod 10).
- b) What is the inverse (mod 7) of every integer between 1 and 6?
- c) Give all the numbers between 1 and 9 that have no inverse mod 10.
- d) Calculate 5⁶¹² (mod 7), giving an answer between 0 and 6, and using a small number of steps. Show your steps.

Problem 2: (20 points)

Let G = (V,E) be the following <u>undirected</u> graph: $V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, and

- $E = \{(1,2), (3,1), (2,3), (1,4), (5,1), (4,5), (6,1), (1,7), (7,6), (7,8), (9,7), (8,9)\}.$
- a) Draw G, and give the adjacency matrix A of G.
- b) Do a depth-first search (DFS) and a breadth-first search (BFS) on G, starting from node 1, and show the DFS tree and BFS tree. Tie-breaking is by choosing the smallest node.
- c) Is G connected? How can you tell?
- d) An *articulation point* (or *single point of failure*) of a connected graph is a node whose removal disconnects the graph. List the articulation points of G, if any.
- e) Does G have an Eulerian cycle? If yes, show such a cycle; if no, prove your answer.
- f) Does G have a Hamiltonian cycle? If yes, show such a cycle; if no, prove your answer.

Problem 3: (20 points)

Take the undirected graph G of Problem 2.

- a) The *distance* d(x,y) between two nodes x and y is the length of the shortest path between x and y. Recall that the length of a path is the number of the edges in the path. Compute the *distance matrix* D of G where D[i,j]=d(i,j), for all i=1,2,...,9 and all j=1,2,...,9. (Hint: you can use BFSs to compute the distances)
- b) The *diameter* of a graph is the largest distance in that graph. Give the diameter of G?
- c) The *radius* of the graph from a node x is the distance from x to the farthest node. For each node x in G, compute the radius of G from x.
- d) The *center* of a graph is a node *u* where the radius of G from *u* is the smallest. Note that there can be ties, in which case the graph has multiple centers. Find the center or centers of G.
- e) The *average radius* of the graph from a node x is the average distance from x to all the nodes of the graph, that is, $\frac{d(x,1)+d(x,2)+\dots+d(x,9)}{9}$. For each node x in G, compute the average radius of G from x. Which node(s) has/have the smallest average radius?

Problem 4: (10 points)

Let G be the same graph given in Problem 2 except that it is now <u>directed</u>.

- a) Draw G and give its adjacency matrix A.
- b) Compute the indegree and outdegree of each node.
- c) For every node, list all the nodes reachable from it. Is G strongly connected?

Problem 5: (20 points)

Let T be a binary tree. Denote by L_T the number of leaves in T, and by N_T the number of nodes in T. Let P be a <u>perfect</u> binary tree, and let L_P and N_P be defined similarly. Assume that T and P have the same height h.

- a) Prove that N_T ≤ N_P and L_T ≤ L_P.
 b) Prove that L_T ≤ 2^h and N_T ≤ 2^{h+1} − 1. (Hint: Use part (a) and what you know about perfect trees)
- c) Prove $h \ge \log_2 L_T$ and $h \ge \log_2 \frac{N_T + 1}{2}$. (Hint: Use part (b) and the fact that $\log_2 2^k = k$, and that $\log_2 x$ is an increasing function of x)

Problem 6: (10 points)

A binary search tree (BST) is a binary tree where (1) every node holds a numerical value (called key), and (2) for every node X in the tree, the keys of the nodes of the left subtree of X are all \leq the key of X, and the keys of the nodes of the right subtree of X are all > the key of X. Prove by induction on the number of nodes in a BST that the minimum key of every BST is the "leftmost" node, i.e., the farthest node reachable from the root of that tree by always going to the left child.

Bonus problem: (5 points)

Prove that if you remove a single edge (without removing its end nodes) from an arbitrary tree, the tree becomes disconnected.