Homework 4
Due Date: March 28, 2019

Problem 1: (20 points)
a) Let P be the set of (logical) propositions. For each of the following relations, state without proof if the relation is reflexive, symmetric, antisymmetric, transitive, an equivalence relation, and/or a partial order.
i. $\quad \mathrm{pRq}$ if $\mathrm{p} \Rightarrow \mathrm{q}$
ii. $\quad \mathrm{pRq}$ if $\mathrm{p} \Leftrightarrow \mathrm{q}$
iii. $\quad \mathrm{pRq}$ if $\mathrm{p} \Leftrightarrow \bar{q}$
iv. $\quad \mathrm{pRq}$ if $\mathrm{p} \Leftrightarrow \overline{\mathrm{q}}$
b) Let S be the set of students in this class. For each of the following relations, state without proof if the relation is reflexive, symmetric, antisymmetric, transitive, an equivalence relation, and/or a partial order. In the case of equivalence relations, explain what every equivalence class signifies. In the case of partial orders, indicate if the set S has a minimum, a maximum, minimals, and/or maximals, and explain what minimum, maximum, minimal and maximal mean in that context.
i. $\quad x R y$ if x and y have the same hobbies
ii. $\quad x$ R y if $x=y$ or x is younger than y
iii. $\quad \mathrm{x} R \mathrm{y}$ if x and y have declared major and both have the same primary major
iv. $\quad x R y x=y$ or x views himself/herself as a friend of y

Problem 2: (20 points)
Let E be the set of 4-bit binary strings: $\mathrm{E}=\{0000,0001,0010,0011, \ldots, 1111\}$.
a) Let R be the following relation in $\mathrm{E}: \mathrm{x} R \mathrm{y}$ if x and y have the same number of 1 's. Prove that R is an equivalence relation, and give the equivalence classes of R.
b) The Hamming distance between two strings x and y in E , denoted $\mathrm{H}(\mathrm{x}, \mathrm{y})$, is the number of bit-wise differences between x and y, that is, the minimum number of bits that have to be flipped in the first string to become identical to the second string. Compute $\mathrm{H}(0000,0101)$, $\mathrm{H}(1101,0110)$, and $\mathrm{H}(1001,0110)$.
c) Let R be the following relation in $E: x R y$ if $H(x, y)$ is even. Prove that R is an equivalence relation, and give the equivalence classes of R.

Problem 3: (20 points)
Let A be the set of 3-bit binary strings: $A=\{000,001,010,011,100,101,110,111\}$. Treat " 0 " as equivalent to "False" (F), and " 1 " as equivalent to 'True" (T). Let \oplus be the "bit-wise logical or" operation between the elements of A. For example, $100 \oplus 001=101$.
Define the following relation R in A :
$x R y$ if $x \oplus y=y$
a) Prove that R is a partial order.
b) Is R a total order?
c) Draw the graph of R and the Hess diagram of R .
d) Does A have a maximum? If so, what is it?
e) Does A have a minimum? If so, what is it?
f) Let $B=\{001,010,011,100,101\}$. If B has a maximum, give its maximum; otherwise, give the maximals of B . Also, if B has a minimum, give its minimum; otherwise, give the minimals of B.

Problem 4: (16 points)
Let R be a relation in a set A , and derive from R another relation S in A as follows:
x S y if (x R y or y R x).
a) Prove that if R is reflexive, then S is reflexive.
b) Prove that S is symmetric.
c) Prove that if R is transitive, S is not necessarily transitive (by a counterexample).
d) If R is antisymmetric, is S antisymmetric? Prove your answer.
e) If R is an equivalence relation, is S an equivalence relation? Prove your answer.
f) If R is a partial order, is S a partial order? Prove your answer.

Problem 5: (16 points)
Let R be a relation in a set A , and derive from R another relation S in A as follows:
x S y if (x R y and $y R x$).
a) Prove that if R is reflexive, then S is reflexive.
b) Prove that S is symmetric.
c) Prove that if R is transitive, S is transitive.
d) If R is antisymmetric, is S antisymmetric? Prove your answer.
e) If R is an equivalence relation, is S an equivalence relation? Prove your answer.
f) If R is a partial order, is S a partial order? Prove your answer.

Problem 6: (8 points)
Let R be a relation in a set A , and derive from R another relation S in A as follows: $x S$ y if (x R y xor y R x).
Recall that xor, exclusive or, is defined as: p xor q is true if (p is true and q is false, or p is false and q is true).
g) Prove that S is irreflexive.
a) Prove that S is symmetric.
b) Prove that if R is transitive, S is not necessarily transitive (by a counterexample).

Bonus Problem: (5 points)
Let \mathbb{Z} be the set of integers, and \mathbb{Q} the set of rational numbers, that is, $\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\, p\right.$ and q are in \mathbb{Z} and $q \neq 0\}$. Let $\mathbb{Z}^{*}=\mathbb{Z}-\{\boldsymbol{0}\}$. Finally, let R be the following relation in $\mathbb{Z x} \mathbb{Z}^{*}$: $(a, b) \mathrm{R}(c, d)$ if $a d=b c$ (that is, a times $d=b$ times c).
a) Prove that R is an equivalence relation.
b) Denote by $[a, b]$ the equivalence class of element (a, b), and let E be the set of all equivalence classes of R . Let $f: E \rightarrow \mathbb{Q}$ be a function where for all $[a, b], f([a, b])=\frac{a}{b}$. Prove that f is one-to-one and onto.

