January 31, 2019

CS 1311 Youssef

Homework 2 Due Date: February 14, 2019

Problem 1: (20 points)

Let p, q, and r be 3 propositions. Give the truth tables of the following propositions:

a) $(p \lor q) \land (\neg q \lor \neg r)$ b) $(\neg p \land \neg q) \lor \neg (q \land r)$ c) $p \land (q \lor \neg r)$ d) $(\neg p \lor \neg q) \land \neg r$

Problem 2: (21 points)

Let A, B and C be three arbitrary sets. For each of the following statements, indicate if the statement is true or false, and prove your answer.

a)	$A - (B \cap C) = (A - B) \cup (A - C)$	e)	$A - (B - C) = (A - B) \cup (A \cap C)$
b)	$A \cap (B - C) = (A \cap B) - (A \cap C)$	f)	$A \times (B+C) = (A \times B) + (A \times C)$
c)	$A \cup (B+C) = (A \cup B) + (A \cup C)$	g)	$2^{A-B} = 2^A - 2^B$
d)	A + (B - C) = (A + B) - C	-	

Problem 3: (16 points)

Find counterexamples to the following statements (where *x* and *y* are arbitrary <u>real</u> numbers):

- a) $\left[\frac{x}{2}\right] = \frac{|x|}{2}$ for all x, where [x] is the *ceiling* of x, i.e., the smallest integer $\ge x$.
- b) $[x \times y] = [x] \times [y]$ for all x and y, where [x] is the *floor* of x, i.e., the largest integer $\leq x$.
- c) $[3^x] = 3^{[x]}$ for all *x*.
- d) $2^n + 3$ is prime for every integer $n \ge 1$

Problem 4: (20 points)

Let \mathbb{R} be the set of real numbers, \mathbb{R}^+ the set of non-negative real numbers, and \mathbb{Z} the set of integers. Let also *f*: $\mathbb{R} \to \mathbb{R}$, *g*: $\mathbb{R} \to \mathbb{R}^+$, and *h*: $\mathbb{R} \to \mathbb{Z}$ be 3 functions defined as follows:

$$f(x) = 5x+12$$
, $g(x) = \sqrt{x^2 + 1}$, and $h(x) = \left\lfloor \frac{x+1}{4} \right\rfloor$.

- a) Prove that f is one-to-one and onto, and find f^{-1} .
- b) Is g one-to-one? Onto? Prove your answer.
- c) Is *h* one-to-one? Onto? Prove your answer.
- d) Calculate $h \circ g(x)$, $g \circ h(x)$, $(f \circ h) \circ g(x)$, and $f \circ (h \circ g)(x)$.
- e) Given two sets E and F, a function $v: E \to F$, and an element $y \in F$, define $v^{\leftarrow}(y)$ to be the following set: $v^{\leftarrow}(y) = \{x \in E \mid v(x) = y\}$. Determine $f^{\leftarrow}(1), g^{\leftarrow}(3), g^{\leftarrow}(0), h^{\leftarrow}(2)$.

Problem 5: (15 points)

Let \mathbb{N} be the set of natural numbers, and \mathbb{R} the set of real numbers. Let $f: \mathbb{N} \to \mathbb{R}$ be a function.

- a) If f(0) = 3 and $f(n) = 5f(n-1) + 8 \forall n \ge 1$, prove by induction on n that $f(n) = 5^{n+1} 2$.
- b) Let $f(n) = 1 + 3 + 5 + \dots + (2n 1) \forall n \ge 1$, and f(0) = 0. Prove by induction on n that $f(n) = n^2 \forall n \ge 0$.
- c) Let $f(n) = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 \forall n \ge 1$, and f(0) = 0. Prove by induction on n that $f(n) = \frac{n(2n-1)(2n+1)}{3} \forall n \ge 0$.

Problem 6: (8 points)

Designers of algorithms are often interested to compute the number of computation steps T(n) of their algorithm, where *n* is an indicator of the input size. T(n) is called the time of the algorithm.

a) Consider an algorithm that computes *polynomials*, that is an algorithm that takes as input an array of numbers a[0], a[1], a[2], ..., a[n] and a number x, and computes the value:

 $a[0] + a[1]x^{1} + a[2]x^{2} + \dots + a[n]x^{n}$

as output. Let T(n) be the time of the algorithm. One naïve way to compute the output is to first compute "recursively" the value $a[0] + a[1]x^1 + a[2]x^2 + \dots + a[n-1]x^{n-1}$ (in time T(n-1)), and then compute $a[n]x^n$ (using *n* steps), and finally add the two values in one step. The total time is then:

$$T(n) = T(n-1) + n + 1 \quad \forall n \ge 1.$$

Note that when n = 0, the value to be returned is simply a[0] which does not need any computation; therefore, T(0) = 0.

Prove by induction on *n* that $T(n) = \frac{n(n+3)}{2}$.

b) A more clever algorithm will first compute the sequence x¹, x², ..., xⁿ by computing each x^k as x^{k-1} × x, making use of the value x^{k-1} computed earlier. Afterwards, it computes the products a[1]x¹, a[2]x², ..., a[n]xⁿ in n steps, and finally computes the sum a[0] + a[1]x¹ + a[2]x² + ... + a[n]xⁿ in n steps. What is the time of this algorithm?

Bonus Problem: (5 points)

Let *A* be a set of *n* element, and let P(A) be the power set of *A*. Prove by induction on *n* that $|P(A)| = 2^n$. (Do not look up the solution anywhere. It has to be your work.)