Problem 1: (20 points)
Let p, q, and r be 3 propositions. Give the truth tables of the following propositions:
a) $(p \vee q) \wedge(\neg q \vee \neg r)$
b) $(\neg \mathrm{p} \wedge \neg q) \vee \neg(q \wedge r)$
c) $p \wedge(q \vee \neg r)$
d) $(\neg p \vee \neg q) \wedge \neg r$

Problem 2: (21 points)
Let A, B and C be three arbitrary sets. For each of the following statements, indicate if the statement is true or false, and prove your answer.
a) $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C})$
b) $A \cap(B-C)=(A \cap B)-(A \cap C)$
c) $A \cup(B+C)=(A \cup B)+(A \cup C)$
d) $\mathrm{A}+(\mathrm{B}-\mathrm{C})=(\mathrm{A}+\mathrm{B})-\mathrm{C}$
e) $\mathrm{A}-(\mathrm{B}-\mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$
f) $\mathrm{Ax}(\mathrm{B}+\mathrm{C})=(\mathrm{A} \times \mathrm{B})+(\mathrm{A} \times \mathrm{C})$
g) $2^{A-B}=2^{A}-2^{B}$

Problem 3: (16 points)

Find counterexamples to the following statements (where x and y are arbitrary real numbers):
a) $\left\lceil\frac{x}{2}\right\rceil=\frac{\lceil x\rceil}{2}$ for all x, where $\lceil x\rceil$ is the ceiling of x , i.e., the smallest integer $\geq x$.
b) $\lfloor x \times y\rfloor=\lfloor x\rfloor \times\lfloor y\rfloor$ for all x and y, where $\lfloor x\rfloor$ is the floor of x, i.e., the largest integer $\leq x$.
c) $\left\lceil 3^{x}\right\rceil=3^{[x]}$ for all x.
d) $2^{n}+3$ is prime for every integer $n \geq 1$

Problem 4: (20 points)
Let \mathbb{R} be the set of real numbers, \mathbb{R}^{+}the set of non-negative real numbers, and \mathbb{Z} the set of integers. Let also $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}^{+}$, and $h: \mathbb{R} \rightarrow \mathbb{Z}$ be 3 functions defined as follows:

$$
f(x)=5 x+12, g(x)=\sqrt{x^{2}+1}, \text { and } h(x)=\left\lfloor\frac{x+1}{4}\right\rfloor .
$$

a) Prove that f is one-to-one and onto, and find f^{-1}.
b) Is g one-to-one? Onto? Prove your answer.
c) Is h one-to-one? Onto? Prove your answer.
d) Calculate $h \circ g(x)$, $g \circ h(x),(f \circ h) \circ g(x)$, and fo $(h \circ g)(x)$.
e) Given two sets E and F , a function $v: \mathrm{E} \rightarrow \mathrm{F}$, and an element $\mathrm{y} \in \mathrm{F}$, define $v^{\leftarrow}(\mathrm{y})$ to be the following set: $v^{\leftarrow}(\mathrm{y})=\{\mathrm{x} \in \mathrm{E} \mid v(\mathrm{x})=\mathrm{y}\}$. Determine $f^{\leftarrow}(1), g^{\leftarrow}(3), g^{\leftarrow}(0), h^{\leftarrow}(2)$.

Problem 5: (15 points)
Let \mathbb{N} be the set of natural numbers, and \mathbb{R} the set of real numbers. Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function.
a) If $f(0)=3$ and $f(n)=5 f(n-1)+8 \forall n \geq 1$, prove by induction on n that $f(n)=5^{n+1}-2$.
b) Let $f(n)=1+3+5+\cdots+(2 n-1) \forall n \geq 1$, and $f(0)=0$. Prove by induction on n that $f(n)=n^{2} \forall n \geq 0$.
c) Let $f(n)=1^{2}+3^{2}+5^{2}+\cdots+(2 \mathrm{n}-1)^{2} \forall n \geq 1$, and $f(0)=0$. Prove by induction on n that $f(n)=\frac{n(2 n-1)(2 n+1)}{3} \forall n \geq 0$.
d)

Problem 6: (8 points)
Designers of algorithms are often interested to compute the number of computation steps $T(n)$ of their algorithm, where n is an indicator of the input size. T (n) is called the time of the algorithm.
a) Consider an algorithm that computes polynomials, that is an algorithm that takes as input an array of numbers $a[0], a[1], a[2], \ldots, a[n]$ and a number x, and computes the value:

$$
a[0]+a[1] x^{1}+a[2] x^{2}+\cdots+a[n] x^{n}
$$

as output. Let $T(n)$ be the time of the algorithm. One naïve way to compute the output is to first compute "recursively" the value $a[0]+a[1] x^{1}+a[2] x^{2}+\cdots+a[n-1] x^{n-1}$ (in time $T(n-1)$), and then compute $a[n] x^{n}$ (using n steps), and finally add the two values in one step. The total time is then:

$$
T(n)=T(n-1)+n+1 \quad \forall n \geq 1 .
$$

Note that when $n=0$, the value to be returned is simply $a[0]$ which does not need any computation; therefore, $T(0)=0$.
Prove by induction on n that $T(n)=\frac{n(n+3)}{2}$.
b) A more clever algorithm will first compute the sequence $x^{1}, x^{2}, \ldots, x^{n}$ by computing each x^{k} as $x^{k-1} \times x$, making use of the value x^{k-1} computed earlier. Afterwards, it computes the products $a[1] x^{1}, a[2] x^{2}, \ldots, a[n] x^{n}$ in n steps, and finally computes the sum $a[0]+a[1] x^{1}+a[2] x^{2}+\cdots+a[n] x^{n}$ in n steps. What is the time of this algorithm?

Bonus Problem: (5 points)
Let A be a set of n element, and let $P(A)$ be the power set of A. Prove by induction on n that $|P(A)|=2^{n}$. (Do not look up the solution anywhere. It has to be your work.)

