Midterm

TIME: 75 minutes
Problem 1: (25 points)
Let \mathbf{R} be the set of real numbers.
a) Let f be a function from \mathbf{R} to \mathbf{R} where $f(x)=10 x-30$ for all x. Prove that f is one-to-one and onto, and find the inverse function f^{-1}.
b) Let g be a function from \mathbf{R} to \mathbf{R} where $g(x)=x^{2}+1$ for all x. Prove that g is neither one-to-one nor onto.

Problem 2: (25 points)

a) Is $3^{n}+2$ a prime for every non-negative integer n ? Prove your answer.
b) Consider the following function $f(n)$ of whole numbers, defined recursively: $f(0)=2$ and $f(n)=3 f(n-1)+2$ for all $n \geq 1$. Prove by induction on n that $f(n)=3^{n+1}-1$ for all non-negative integers n.

Problem 3: (25 points)
a) Let $x_{0}=1$ and $x_{n}=6 x_{n-1}+2 n-3$ for all $n \geq 1$. Solve this recurrence relation to find the value of x_{n} in terms of n.
b) Let $x_{0}=0, x_{1}=1$, and $x_{n}=7 x_{n-1}-10 x_{n-2}+4$ for all $n \geq 2$. Solve this recurrence relation to find the value of x_{n} in terms of n.

Problem 4: (25 points)
a) In how many ways can you select a committee of 5 people from a group of 12 people?
b) In how many ways can 8 runners finish a race if 2 runners will tie for $1^{\text {st }}$ place, 3 will tie for $2^{\text {nd }}$ place, and the remaining three runners will not tie with anybody.
c) How many positive integers ≤ 400 are divisible by 4 ? By 10 ? By 4 and 10 ? By 4 or 10 ? By neither 4 nor 10 ?

