Problem 1: (20 points)
Let (B,+, $\bullet, ', 0,1$ ) be a Boolean algebra. Define the following operation $\bar{v}$ (called NOR):

$$
x \bar{v} y=(x+y)^{\prime} .
$$

a) Evaluate $x \bar{v} x, x \bar{v} 1, x \bar{v} 0$, all in terms of $x, 0,1$, and '.
b) Express $x+y$ and $x \cdot y$ and $x^{\prime}$ using the operation $\bar{v}$ but without using + , • or '.

Problem 2: (20 points)
a) Suppose that there is a panel of 4 judges for some game, and that after each player completes his/her presentation, each judge enters his/her vote of yes or no (yes=1, no=0) into a machine. The machine tallies the votes, and returns 1 (that is, pass) if at least two judges vote yes. Otherwise, the machine returns 0 (for fail). Express the working of the machine as a Boolean function of four variables (the 4 judges' votes).
b) Assume there is a contest where each contestant gives a speech, and there are 4 judges that vote "good" or "bad" for each contestant. The interest is in whether the contestant is noncontroversial, that is, if the four votes do not split 50-50. Therefore, a machine tallies the votes, and returns 1 if the contestant is found non-controversial; otherwise, the machine returns 0 . Express the behavior of the machine as a Boolean function of four variables, where a good-vote $=1$ and a bad-vote $=0$.
c) Same problem as in (b) except that here the machine is supposed to tell if the judges are unanimous in their votes, in which case the machine returns 1 ; otherwise, the machine returns 0 . Express the behavior of the machine as a Boolean function of four variables, where a good-vote $=1$ and a bad-vote=0.

Problem 3: (20 points)
Let $B=\{0,1\}$ be a Boolean algebra and let $f: B^{3} \rightarrow B$ be a Boolean function such that $f(1,1,0)=$ $f(1,0,1)=f(0,1,1)=f(1,1,1)=1$ and $f(x, y, z)=0$ for all other $(x, y, z)$ in $B^{3}$.
a) Give the truth table of $f$ and $f$ ' (the complement of $f$ ).
b) Write $f$ in disjunctive normal form and $f^{\prime}$ in conjunctive normal form.
c) Write $f$ in conjunctive normal form and $f^{\prime}$ in disjunctive normal form.

Problem 4: (20 points)
Minimize each of the following Boolean expressions using Karnaugh maps. Show the Karnaugh maps.
a) $x^{\prime} y^{\prime} z^{\prime}+x z^{\prime}+x y^{\prime} z$
b) $x z^{\prime}+y z+y^{\prime} z$
c) $x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime} w^{\prime}+x y z w+x y^{\prime} w+y z^{\prime} w$
d) $x z w+y z^{\prime} w+x y^{\prime} z^{\prime}+y^{\prime} z^{\prime} w^{\prime}+x y z{ }^{\prime}$

Problem 5: (20 points)
Let $\mathrm{f}, \mathrm{g}$, and h be three Boolean functions of four variables each, where $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=1$ if and only if the binary string xyzw has an even number of $0 \mathrm{~s} ; \mathrm{g}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=1$ if and only if exactly
three of the four variables are equal, and $h(x, y, z, w)=1$ if and only if the leftmost bit and rightmost bit of xyzw are different or the two middle bits of xyzw are equal.
a) Give the truth tables of $f, g$, and $h$.
b) Express f, g and h in DNF and CNF.
c) Minimize f, g, and h using Karnaugh maps.

Bonus Problem: (5 points)
Note that every integer 0 through 3 can be represented with a 2-bit string ( 0 as 00,1 as 01,2 as 10 , and 3 as 11). Let $x y$ and zw be a two 2 -bit binary strings. We say that $x y \geq z w$ if the integer represented by $x y$ is $\geq$ the integer represented by $z w$. Let $f(x, y, z, y)$ be a function where $f(x, y, z, w)=1$ if $x y \geq z w$; otherwise, $f(x, y, z, w)=0$. Thus, $f$ can be viewed as a Boolean function, and $\mathrm{x}, \mathrm{y}, \mathrm{z}$, and w can be viewed as Boolean variables. Write the truth table of f , and then minimize f using Karnaugh maps.

