Problem 1: (20 points)
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be the following undirected graph: $\mathrm{V}=\{1,2,3,4,5,6,7,8,9,10\}$, and
$E=\{(1,5),(1,3),(7,1),(5,7),(3,7),(3,8),(8,7),(9,7),(7,2),(4,9),(3,5),(2,6),(6,4)$, $(5,10),(10,1)\}$.
a) Draw G, and give the adjacency matrix A of G.
b) Do a depth-first search (DFS) and a breadth-first search (BFS) on G, starting from node 1, and show the DFS tree and BFS tree. Tie-breaking is by choosing the smallest node.
c) Is G connected? How can you tell?
d) An articulation point (or single point of failure) of a connected graph is a node such that the removal of that nodes makes the graph disconnected. Does G have an articulation point? If so, which one(s)?
e) Does G have an Eulerian cycle? If yes, show such a cycle; if no, prove your answer.
f) Does G have a Hamiltonian cycle? If yes, show such a cycle; if no, prove your answer.

Problem 2: (20 points)
Take the undirected graph G of Problem 1.
a) The distance $d(x, y)$ between two nodes x and y is the length of the shortest path between x and y. Recall that the length of a path is the number of the edges in the path. Find the distance between node 1 and each node in the graph. You can use the BFS tree to help you compute those distances.
b) The diameter of a graph is the largest distance in that graph. Give the diameter of G?
c) The radius of the graph relative to a node u is: maximum \{distance $(u, y) \mid$ for all nodes y in $G\}$. For each node u in G , compute the radius of G with respect to u.
d) The center of a graph is a node u where the radius of G relative to u is the smallest. Note that there can be ties, in which case the graph has multiple centers. Find the center or centers of G.

Problem 3: (20 points)
Let G be the same graph given in Problem 1 except that it is now directed.
a) Draw G and give its adjacency matrix A.
b) Compute the indegree and outdegree of each node.
c) For every node, list all the nodes reachable from it. Is G strongly connected?
d) Can G be isomorphic to a graph G' where the outdegree of one of the nodes (in G') is 5? Why or why not?
e) Can G be isomorphic to a graph G' that is not strongly connected? Why or why not?

Problem 4: (20 points)
Let T be a general tree of n nodes and e edges. Recall that T is a connected acyclic graph (T has no cycles).
a) A perfect binary tree is a binary tree where every non-leaf has two children and all the leaves are at the bottom level. Prove that the number of nodes in a perfect tree of k levels is $2^{k}-1$.
b) A 2-3 tree is a rooted where all the leaves are at the same level, and every internal node has 2 or 3 children. Prove that in a 2-3 tree of n nodes and k levels, we must have

$$
2^{k}-1 \leq n \leq \frac{3^{k}-1}{2}
$$

Problem 5: (20 points)
In each of the following cases, draw a tree with the given specifications or explain why no such tree exists:
a) A perfect binary tree of height 3
b) A perfect binary tree of 10 nodes
c) A 2-3 tree of 7 nodes
d) A 2-3 tree of 3 levels and 15 nodes
e) A tree of 10 nodes and 12 edges
f) A rooted tree of 10 nodes where there are at least 3 internal nodes and every internal node has at least 3 children.
g) A rooted tree of 10 nodes where there are at least 3 internal nodes and every internal node has at least 4 children.

Bonus problem: (5 points)
A full binary tree is a binary tree where every node is either a leaf or has two children. Prove by induction on k that in a full binary tree with k internal nodes, the number of leaves is $k+1$ and the total number of nodes is $2 k+1$.

