Problem 1: (20 points)
Let p, q, and r be 3 propositions. Give the truth tables of the following propositions:
a) $p \wedge(\neg q \vee \neg r)$
b) $\mathrm{p} \vee \neg(\mathrm{q} \wedge \mathrm{r})$
c) $\mathrm{p} \vee \neg(\mathrm{q} \wedge \neg \mathrm{r})$
d) $(p \wedge \neg q) \wedge r$

Problem 2: (25 points)
Let A, B and C be three arbitrary sets. For each of the following statements, indicate if the statement is true or false, and prove your answer.
a) $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cap(\mathrm{A}-\mathrm{C})$
b) $(A \cap B)-C=A \cap(B-C)$
c) $\mathrm{A}-(\mathrm{B}+\mathrm{C})=(\mathrm{A}-\mathrm{B})-\mathrm{C}$
d) $\mathrm{A}-(\mathrm{B}-\mathrm{C})=(\mathrm{A}-\mathrm{B})+\mathrm{C}$
e) $A-(B-C)=A \cap(C-B)$
f) $2^{\mathrm{A} \cap \mathrm{B}}=2^{\mathrm{A}} \cap 2^{\mathrm{B}}$

Problem 3: (15 points)
Find counterexamples to the following statements:
a) $3^{n}+1$ is prime for every integer $n \geq 0$
b) For every two sets A and $B, 2^{A}+{ }^{B}=2^{A}+2^{B}$
c) For every three sets A, B and $C, A+(B-C)=(A+B)-C$

Problem 4: (20 points)
Let \mathbf{R} be the set of real numbers, \mathbf{R}^{+}the set of non-negative real numbers, and \mathbf{Z} the set of integers. Let also $f: \mathbf{R} \rightarrow \mathbf{R}, g: \mathbf{R} \rightarrow \mathbf{R}^{+}$and $h: \mathbf{R}^{+} \rightarrow \mathbf{R}$ be 3 functions defined as follows:

$$
f(x)=5 x+9, g(x)=(x-1)^{2}, h(x)=2 x-5 .
$$

a) Prove that f one-to-one and onto, and find f^{-1}.
b) Is g one-to-one? Onto? Prove your answer.
c) Is h one-to-one? Onto? Prove your answer.
d) Calculate $h \circ g(x), g \circ h(x)$, ($\circ \circ h$) $\circ g(x)$, and $f \circ(h \circ g)(x)$.
e) Given two sets E and F , a function $u: \mathrm{E} \rightarrow \mathrm{F}$, and an element $\mathrm{y} \in \mathrm{F}$, define u^{\leftarrow} (y) to be the following set: $u \leftarrow(\mathrm{y})=\{\mathrm{x} \in \mathrm{E} \mid u(\mathrm{x})=\mathrm{y}\}$. Determine $f^{\leftarrow}(1), g \leftarrow(9), g^{\leftarrow}(0), h^{\leftarrow}$ (9).

Problem 5: (20 points)
Let \mathbf{N} be the set of natural numbers, and \mathbf{R} the set of real numbers. Let $f: \mathbf{N} \rightarrow \mathbf{R}$ be a function.
a) If $f(0)=1$ and $f(n)=2 f(n-1)+5$ for all $n \geq 1$, prove by induction on n that

$$
f(n)=6 \times 2^{n}-5
$$

b) If $f(0)=0$ and $f(n)=1+2+3 \ldots+n$ for all $n \geq 1$, prove by induction on n that

$$
f(n)=\frac{n(n+1)}{2} \text { for all } n \geq 0
$$

c) If $f(0)=0$ and $f(n)=1^{2}+2^{2}+3^{2} \ldots+n^{2}$ for all $n \geq 1$, prove by induction on n that

$$
f(n)=\frac{n(n+1)(2 n+1)}{6} \text { for all } n \geq 0
$$

d) If $f(0)=0$ and $f(n)=1^{3}+2^{3}+3^{3} \ldots+n^{3}$ for all $n \geq 1$, prove by induction on n that $f(n)=\left[\frac{n(n+1)}{2}\right]^{2}$ for all $n \geq 0$.
e) Let a be a real number $\neq 1$, and let $f(n)=1+a+a^{2}+a^{3}+\cdots+a^{n}$ for all $n \geq 0$. Prove by induction on n that

$$
f(n)=\frac{a^{n+1}-1}{a-1} \text { for all } n \geq 0
$$

f) If $f(0)=0$ and $f(n)=1 \times 2+2 \times 3+3 \times 4 \ldots+n \times(n+1)$ for all $n \geq 1$, prove by induction on n that

$$
f(n)=\frac{n(n+1)(n+2)}{3} \text { for all } n \geq 0
$$

g) If $f(0)=0, f(1)=2$ and $f(n)=\frac{f(n-1)+f(n-2)}{2}+3 n-1$ for all $n \geq 2$, prove by induction on n that

$$
f(n)=n(n+1) \text { for all } n \geq 0
$$

Bonus Problem: (5 points)
Let A be a finite set. Prove by induction on the cardinality of A that $\left|2^{A}\right|=2^{|A|}$.

