January 28, 2016

CS 1311 Youssef

Homework 2 Due Date: February 16, 2016

Problem 1: (20 points)

Let p, q, and r be 3 propositions. Give the truth tables of the following propositions:

a)	$p \land (\neg q \lor \neg r)$	c)	$p \vee \neg (q \land \neg r)$
b)	$p \lor \neg(q \land r)$	d)	$(p \land \neg q) \land r$

Problem 2: (25 points)

Let A, B and C be three arbitrary sets. For each of the following statements, indicate if the statement is true or false, and prove your answer.

a) $A - (B \cup C) = (A - B) \cap (A - C)$ b) $(A \cap B) - C = A \cap (B - C)$ c) A - (B+C) = (A - B) - C d) A - (B - C) = (A - B) + Ce) $A - (B - C) = A \cap (C - B)$ f) $2^{A \cap B} = 2^A \cap 2^B$

Problem 3: (15 points)

Find counterexamples to the following statements:

- a) $3^n + 1$ is prime for every integer $n \ge 0$
- b) For every two sets A and B, $2^{A} + B = 2^{A} + 2^{B}$
- c) For every three sets A, B and C, A+(B-C)=(A+B)-C

Problem 4: (20 points)

Let **R** be the set of real numbers, \mathbf{R}^+ the set of non-negative real numbers, and **Z** the set of integers. Let also $f : \mathbf{R} \to \mathbf{R}$, $g : \mathbf{R} \to \mathbf{R}^+$ and $h : \mathbf{R}^+ \to \mathbf{R}$ be 3 functions defined as follows: f(x) = 5x+9, $g(x) = (x-1)^2$, h(x) = 2x-5.

- a) Prove that f one-to-one and onto, and find f^{-1} .
- b) Is g one-to-one? Onto? Prove your answer.
- c) Is *h* one-to-one? Onto? Prove your answer.
- d) Calculate $h \circ g(x)$, $g \circ h(x)$, $(f \circ h) \circ g(x)$, and $f \circ (h \circ g)(x)$.
- e) Given two sets E and F, a function $u : E \to F$, and an element $y \in F$, define $u^{\leftarrow}(y)$ to be the following set: $u^{\leftarrow}(y) = \{x \in E \mid u(x) = y\}$. Determine $f^{\leftarrow}(1), g^{\leftarrow}(0), g^{\leftarrow}(0), h^{\leftarrow}(9)$.

Problem 5: (20 points)

Let **N** be the set of natural numbers, and **R** the set of real numbers. Let $f: \mathbf{N} \to \mathbf{R}$ be a function. a) If f(0) = 1 and f(n) = 2f(n-1) + 5 for all $n \ge 1$, prove by induction on *n* that

$$f(n) = 6 \times 2^n - 5$$

b) If
$$f(0) = 0$$
 and $f(n) = 1 + 2 + 3 \dots + n$ for all $n \ge 1$, prove by induction on n that $f(n) = \frac{n(n+1)}{n}$ for all $n \ge 0$.

- $f(n) = \frac{1}{2} \text{ for all } n \ge 0.$ c) If f(0) = 0 and $f(n) = 1^2 + 2^2 + 3^2 \dots + n^2$ for all $n \ge 1$, prove by induction on n that $f(n) = \frac{n(n+1)(2n+1)}{6}$ for all $n \ge 0$. d) If f(0) = 0 and $f(n) = 1^3 + 2^3 + 3^3 \dots + n^3$ for all $n \ge 1$, prove by induction on n that
- d) If f(0) = 0 and $f(n) = 1^3 + 2^3 + 3^3 \dots + n^3$ for all $n \ge 1$, prove by induction on *n* that $f(n) = \left[\frac{n(n+1)}{2}\right]^2$ for all $n \ge 0$.

e) Let *a* be a real number $\neq 1$, and let $f(n) = 1 + a + a^2 + a^3 + \dots + a^n$ for all $n \ge 0$. Prove by induction on *n* that

$$f(n) = \frac{a^{n+1}-1}{a-1} \text{ for all } n \ge 0.$$

f) If f(0) = 0 and $f(n) = 1 \times 2 + 2 \times 3 + 3 \times 4 \dots + n \times (n+1)$ for all $n \ge 1$, prove by induction on *n* that

$$f(n) = \frac{n(n+1)(n+2)}{3} \text{ for all } n \ge 0.$$

g) If $f(0) = 0, f(1) = 2$ and $f(n) = \frac{f(n-1)+f(n-2)}{2} + 3n - 1$ for all $n \ge 2$, prove by induction on n that
$$f(n) = n(n+1) \text{ for all } n \ge 0.$$

. . .

Bonus Problem: (5 points)

Let *A* be a finite set. Prove by induction on the cardinality of *A* that $|2^A| = 2^{|A|}$.