Final
TIME: 2 Hours

Problem 1: (25 Points)

a. Prove by induction on n that $1 \times 3+2 \times 5+3 \times 7+\cdots+n \times(2 n+1)=\frac{n(n+1)(4 n+5)}{6}$ for all positive integers n. Conclude that \forall integers $n \geq 1, n(n+1)(4 n+5)$ is divisible by 6 .
b. Let $x_{0}=0, x_{n}=2 x_{n-1}+n \forall n \geq 1$. Prove by induction that $x_{n}=2^{n+1}-n-2 \forall n \geq 0$.
c. Solve the following recurrence relation: $x_{0}=1$, and $x_{n}=4 x_{n-1}+3 n-1 \forall n \geq 1$.
d. Solve the following recurrence relation: $x_{0}=0$, and $x_{n}=3 x_{n-1}+3^{n} \forall n \geq 1$. (Hint: look for x_{n} of the form $(a n+b) 3^{n}$.)

Problem 2: (25 points)
a. Let F be the set of Facebook accounts at this moment, and define in F the following relation R : x $R y$ if x has fewer "friends" than y. Is R reflexive? Symmetric? Antisymmetric? Transitive? An equivalence relation? A partial order? Prove your answers.
b. Let S be the set of all lower-case English alphabetic strings, and define the following relation R in S : $\alpha R \beta$ if the two strings α and β have the same length and each letter in α appears in β and each letter in β appears in α. Prove that R is an equivalence relation, and compute the equivalence class of each of the following strings $a a, a b, a b c$, and $a a b$. Also, find the cardinality of the equivalence class of a string α of length n where all the n letters are distinct.

Problem 3: (25 points)
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be the following undirected graph: $\mathrm{V}=\{1,2,3,4,5,6,7,8,9,10,11,12\}$ and E $=\{(1,2),(2,5),(1,4),(4,5),(1,3),(3,9),(1,9),(3,8),(3,7),(8,7),(3,6),(3,10),(6,10),(6$, 11), $(6,12),(11,12),(8,10\}$.
a. Perform depth-first search on G starting from node 1 . Show the depth-first search tree, and provide its depth (which is the distance between the root and a bottommost leaf). Is G connected? Why?
b. Perform breadth-first search on G starting from node 1 . Show the breadth-first search tree, and provide its depth.
c. Does G have articulation points? If so, list them.
d. Does G have a Hamiltonian cycle? If yes, show one, and if no, why not?
e. Does G have an Eulerian cycle? If yes, show one, and if no, why not?

Problem 4: (25 points)
a. Let $f(x, y, z)=x^{\prime} y+y^{\prime} z^{\prime}+y z+x z$ be a Boolean function. Give the truth table of f, and put f in DNF and CNF.
b. Minimize each of the following Boolean expressions using Karnaugh maps.
i. $x^{\prime} y^{\prime}+y z+y^{\prime} z^{\prime}+x z$
ii. $y z+x^{\prime} z^{\prime}+x y^{\prime} z+x^{\prime} z$
iii. $x^{\prime} y w^{\prime}+x y^{\prime} w+x^{\prime} z^{\prime} w^{\prime}+x^{\prime} y^{\prime} z w^{\prime}$
iv. $x^{\prime} y z+x^{\prime} y^{\prime} w^{\prime}+y z{ }^{\prime} w^{\prime}+x y^{\prime} z^{\prime} w^{\prime}+y^{\prime} z w+x y z w$

