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Logic and Proofs 
(A brief summary) 

Why Study Logic: 

 To learn to prove claims/statements rigorously 

 To be able to judge better the soundness and consistency of (others’) arguments 

 To gain the foundations of how to program (teach) computers to reason. That is called automated 
reasoning, which is part of Artificial intelligence (AI). 

Propositions: 

 A proposition is a declarative statement (sentence) that is true or false. For example, “Mars is a 
planet” is a proposition that is true, and “Jupiter is a star” is a proposition that is false. Questions, 
commands and exclamations are examples of sentences that are not propositions. 

 Truth values: They are the values “true” (denoted T) and “false” (denoted F). 

 A proposition that conveys a single fact is called a simple proposition. 

 Simple propositions can be combined and/or negated, using so-called logical connectives, to 
form more elaborate propositions called compound propositions. 

 Logical connectives: They are the logical operations “and”, “or”, and “not”. The first two are 
binary operations, that is, they take two operands where each operand is a proposition. The “not” 
is a unary operation in that it takes a single operand. 

 Examples of compound propositions: 
o Mars is a planet and Jupiter is a star 
o Mars is a planet or Jupiter is a star 
o not (Jupiter is a star). In plain English, this statement means “Jupiter is not a star”. 
o Mars is a planet and (Jupiter is a star or not(Pluto is a comet)) 

 Notations: 
o The operation “and” is denoted ∧. (In Boolean algebra, it is denoted by the dot “.” ). 
o The operation “or” is denoted ∨. (In Boolean algebra, it is denoted by + ). 
o The operation “not” is denoted , ~,  	 ̅(overbar),  or ′. 

 Logic is concerned much more about the truth values of propositions than about their meanings. 

 Therefore, and for convenience and efficiency, propositions are often denoted with single-letter 
symbols such as p, q, r, etc. And the focus is on whether a proposition p is true or false, rather 
than on what p means/designates. For example, we can denote “Mars is a planet” by p, “Jupiter is 
a star” by q, and “Pluto is a comet” by r. Then the above examples of compound statements can 
be succinctly represented as: 
o “Mars is a planet and Jupiter is a star”: ∧ . This (i.e., ∧ ) is called a conjunction. 
o “Mars is a planet or Jupiter is a star”: ∨ . This (i.e., ∨ ) is called a disjunction. 
o “not (Jupiter is a star)”: , ~ , ̅, or ′. 
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o “Mars is a planet and (Jupiter is a star or not(Pluto is a comet))”: 	 ∧ 	 	 ∨ 	 . 

Truth Tables: 

 A truth table for a compound proposition gives the truth value of the proposition for each 
possible combination of the truth values of the simple propositions that make up the compound 
proposition. Truth tables have many applications, including determining (1) when a proposition 
is true, (2) whether two propositions are logically equivalent, (3) when a given proposition 
implies another given proposition, (4) constructing and optimizing digital circuits (hardware), 
etc. 

 The most basic truth tables, which form our foundation of logic and reasoning, are the truth 
tables for the three logical connectives: 
p q ∧  
T T T 
T F F 
F T F 
 F F F 

 

p q ∨  
T T T 
T F T 
F T T 
F F F 

 

p 
T F 
F T 

 

 Examples of truth tables: 
o Truth table for ∧ ∨ : The table will list the 8 different combinations of the truth values 

of the propositions p, q and r. Also, because it needs the ∨  values, a separate column 
will be added to the table for ∨ . Finally, to fill the column of ∧ ∨ , we apply the 
∧ operation to the column of p and the column of ∨ : 

p q r ∨  ∧ ∨  
T T T T T 
T T F T T 
T F T T T 
T  F F F F 
F T T T F 
F T F T F 
F F T T F 
F  F F F F 

 
o Truth table for ∧ ∨ ∧ : 

p q r ∧  ∧  ∧ ∨ ∧  
T T T T T T 
T T F T F T 
T F T F T T 
T  F F F F F 
F T T F F F 
F T F F F F 
F F T T F F 
F  F F F F F 
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 Equivalence of two propositions (a first look): Note that the column of ∧ ∨  and the 
column of ∧ ∨ ∧  are identical, thus indicating that those two propositions are 
equivalent, meaning that they have the same truth values for the same combinations of truth-
values of the simple propositions that make them up.  
 
In fact, that’s one basic way to show that two different propositions are equivalent:  

o Build a truth table for each proposition, and then observe if the two columns of the two 
propositions are identical (make sure that the combinations of the truth-values are listed 
in the same order in both tables). 

Note that to save time and space, the two tables can be combined into a single table, as follows: 

p q r ∨  ∧  ∧  ∧ ∨  ∧ ∨ ∧  
T T T T T T T T 
T T F T T F T T 
T F T T F T T T 
T  F F F F F F F 
F T T T F F F F 
F T F T F F F F 
F F T T F F F F 
F F F F F F F F 

 

 Another example: Showing equivalence of  ∧ 	and	 ∨ : 
p q r ∧  ∧  ∨  
T T T T F F F F 
T T F T F F F F 
T F T F F T T T 
T  F F F F T T T 
F T T F T F T T 
F T F F T F T T 
F F T F T T T T 
F F F F T T T T 

Looking at the two rightmost columns, we find them to be identical, thereby  proving that 
∧ 	and	 ∨  are logically equivalent. 

Predicates: 

 Predicates generalize propositions to include “quantification”, that is, the phrases “for every” and “there 
exists”, and thereby increase the expressive and reasoning power of logic. 

 Universal quantifier: It is the phrase “for every” (or “for all”), and it is denoted ∀. 

 Existential quantifier: It is the phrase “there exists” or “there is” (at least), and is denoted ∃. 
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 Example: Consider the English sentence “every rational number is a fraction of two integers”, which is 
equivalent to the more detailed sentence “for every rational number x, there exists an integer m and there 

exists an integer n such that ”. That sentence can be written more formally (and more succinctly) 

as: ∀ ∈ ∃ ∈ ∃ ∈ . An alternative form is: ∀ ∈ , ∃ ∈ , ∃ ∈ , . 

 Predicate: A predicate is a proposition that involves one or more quantifier. 

 Examples of predicates:  
o Some natural numbers are prime numbers: ∃ ∈ 	is	prime . Note: that is true 
o Every natural number is prime: ∀ ∈ 	is	prime .   Note: that is false 
o Between every two distinct real numbers there is at least one rational number:  

∀ ∈ ∀ ∈ ∃ ∈ 		 ∨ 	 		 ∨ 		y . 

Or equivalently: 
∀ ∈ ∀ ∈ 		 ⇒ 	 ∃ ∈ . 

o For every integer n, n(n+1) is even: ∀ ∈ 1 	is	even . Note that sometimes a predicate is 
written semi-formally such as: ∀	integer	 1 	is	even , or: ∀	integer	 , 1 	is	even. 

o All humans are mortal: ∀	human	 	is	mortal , or: ∀	human	 , 	is	mortal. 
 General form of predicates: From the above examples, we can see that each predicate is for the form: 

o ∃x∈	A (P(x))   
Notes: P(x) is a proposition involving the variable x, and A is some defined set called the 
domain of x. Such a predicate is called an existential statement/predicate, and it is True if 
there is at least one element x in the set A that would make the sentence P(x) True. 
 

o ∀x∈	A (P(x)), or simply: ∀x∈	A,	P(x) 
Notes: Such a predicate is called a universal statement/predicate. It is true if P(x) is true for 
every element x in the domain A. 
 

o ∀ x ∈	A ∃ y∈	B (P(x,y))  
 
Note: P(x,y) is a proposition involving variables x and y. It is true if for every element x in A, 
we can find at least element y in B (where y depends on x), such that P(x,y) is true. 
 

o Generally, a predicate is of the form ∈ 	 ∈ 	 … ∈
	 , , … ,  where each  is ∀ or ∃,	and	 , , … , 	is	a	simple/compound	
proposition	involving	the	variables	 , , … , ,	and	can	be	an	implication	or	an	
equivalence. 

 

Logical Rules of Reasoning: 

At the foundation of formal reasoning and proving lie basic rules of logical equivalence and logical 
implications. The following tables summarize those rules. Note that all of those rules can be proved 
using truth tables. 
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Logical Equivalences 

Definition: Two propositions/predicates p and q are said to be equivalent (denoted ⇔ ) if whenever p 
is true, q is true, and vice versa. (Sometimes people use ≡ or iff or even =, when they mean ⇔) 

Let p, q, and r be three arbitrary propositions/predicates. The following logical equivalences hold: 
1. Commutative laws:  ∧ 	 ⇔ ∧  ∨ 	 ⇔ ∨  
2. Associative laws:  ∧ ∧ ⇔ ∧ ∧  ∨ ∨ ⇔ ∨ ∨  
3. Distributive laws: ∧ ∨ ⇔ ∧ ∨ ∧  ∨ ∧ ⇔ ∨ ∧ ∨  
4. Identity laws: ∧ 	 ⇔  ∨ 	 ⇔  
5. Complementation laws: ∨ 	 ⇔  ∧ 	 ⇔  
6. Double negative laws: ⇔  
7. Idempotent laws: ∧ 	 ⇔  ∨ 	 ⇔  
8. Universal bound laws: ∨ 	 ⇔  ∧ 	 ⇔  
9. De Morgan’s laws: ∧ 	⇔ ∨  ∨ 	⇔ ∧  
10. Absorption laws: ∨ ∧ ⇔  ∧ ∨ ⇔  
11. Negations of T and F: ⇔  ⇔  

 
Definitions:  

 A conditional implication, denoted → , is by definition ∨ . That is, → ≝ ∨ . 

 A tautology is a proposition/predicate that is always true. For example, ∨  is a tautology. 

 Logical implication: If →  is a tautology, we say that p logically implies q, or simply p implies q, and 
denote it ⇒ . In other terms,  ⇒  if (whenever p is true, q must be true). 

 
Logical Implications Rules: 

1. Specialization: ∧ 	⇒     ∧ 	⇒  
2. Generalization: ⇒ ∨ 	    ⇒ ∨  
3. Elimination: ∨ ∧ ⇒    ∨ ∧ ⇒  
4. Transitivity: ⇒ 	∧ ⇒ ⇒ ⇒  ⇔ 	∧ ⇔ ⇒ ⇔  
5. Contrapositive: ⇒ 	⇒ ⇒  
6. Modus Ponens: ⇒ 	∧ ⇒  
7. Modus Tollens: ⇒ 	∧ ⇒  
8. Contradiction rule: ⇒ ⇒  [to prove p, assume  and derive something false] 

9. Division into cases: ⇒ 	∧ ⇒ ⇒ ∨ ⇒  

10. ⇒ 	⇒ ∧ ⇒ ∧   ⇒ 	⇒ ∨ ⇒ ∨  

11. ⇒ 	∧ ⇒ ⇒ ⇒ ∧  ⇒ 	∨ ⇒ ⇒ ⇒ ∨   

12. 	 ⇔ 	⇔ ⇒ ∧ ⇒  

How to prove an implication rule: to prove that ⇒  for some proposition P and some proposition Q, build 
the truth table for →  (that is, for ∨ ), and show that the column under →  is all T. Example: show 
that ∨ ∧ ⇒ . 
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How to prove an equivalence rule/law: to prove an equivalence rule ⇔  for some proposition P and some 
proposition Q, build the truth table for 	and	 , and show that the columns of 	and	 	are identical. This was 
illustrated earlier. 

Rules of Predicate Logic: 

1. ∀ 	 ∈ 	A P ⇒ ∃ 	 ∈ 	A P  

2. ∀ 	 ∈ 	A P ⇔ ∃ 	 ∈ 	A P  

3. ∃ 	 ∈ 	A P ⇔ ∀ 	 ∈ 	A P  

4. ∈ 	 ∈ 	 … ∈ 	 , , … , ⇔ 

′ ∈ 	 ′ ∈ 	 … ′ ∈ 	 , , … , ,  

where each  is ∀ or ∃,  and where ∀ ∃ and ∃ ∀. 

Converse, inverse, and contrapositive: 

 The converse of →  is → . The converse of ⇒  is ⇒ . Note that if ⇒ , it does not follow 
that its converse holds. 

 The inverse of →  is → . The inverse of ⇒  is ⇒ . Note that if ⇒ , it does not 
follow that its inverse holds. 

 The contrapositive of →  is → . The contrapositive of ⇒  is ⇒ . Note that if ⇒ , 
then its contrapositive must hold (the contrapositive rule). 

Definition of a proof: A proof is a sequence of steps from given/known propositions (called assumptions or 
premises or hypotheses) to a final proposition (called conclusion), where every step is an implication. 

Types of proofs: Let P and Q be two propositions/predicates, and suppose we wish to prove ⇒ . There are 
several types of proof for ⇒ : 

 Direct proof: It is of the form ⇒ ⇒ ⇒ ⋯ ⇒ ⇒  where each implication is one of the rules 
of implication or a previously proved implication. This works because of transitivity of implication. 

 Indirect proof: 
o Proof by contradiction: Assume  is true, and derive (from P and ) a false statement 

through a sequence of implications. This works because of the contradiction rule. 
o Contrapositive proof: Prove that ⇒ . This works because of the contrapositive rule. 

 Proof by a counterexample: Suppose we wish to prove “ ∀ 	 ∈ 	A P ” is false. It is enough to 

prove that ∀ 	 ∈ 	A P  is true, which is equivalent to proving that ∃ 	 ∈ 	A 	 P  is true. 

The latter means that we need (and it is sufficient) to find just one specific element x in A such that P(x) 

is false. The element x is called a counterexample. Thus, a proof of  “ ∀ 	 ∈ 	A P  is false” by a 

counterexample entails finding just one specific element x in A such that P(x) is false. 
o Exercise: Prove the following is not true: “∀	positive	integer	 , 4 1	is	a	prime	number”. 



7 
 

 Proof of a declarative statement or a predicate: Let Q be a declarative statement or a predicate, and 

suppose we are asked to prove Q to be true. Examples of Q: “11 is prime”, “∀set	 , |2 | 2| |”, etc. 
o Proof ofQ when Qis a declarative statement, not a predicate: use the definitions and properties of 

the terms in Q as your premises, and prove that those premises imply Q. 

o Proof of Q when Q is a universal predicate of the form ∀ 	 ∈ 	A P : Take x as an arbitrary 

element of A (don’t take examples or specific elements of A), and use the definition/properties of 
the domain A as your premises, and prove that those premises imply Q. 

o Proof of Q when Q is an existential predicate of the form ∃ 	 ∈ 	A P : Find a specific 

element x in the domain A for which the proposition/predicate P  is true. 

 Proof by induction: To be explained in a later lesson. 

Proof of equivalence: Let P and Q be two propositions/predicates, and we wish to prove ⇔ . There are two 
broad approaches: 

 Direct approach: It is of the form ⇔ ⇔ ⇔⋯⇔ ⇔  where each equivalence is one of the 
equivalence laws or a previously proved equivalence. 

 By two implications: Prove ⇒  and ⇒ . 

Some fine points and additional notations: 

 If ⇒ , we say: 
o Q is a necessary condition for P 
o P  is a sufficient condition for Q 
o Q is true if P is true (or: if P, then Q). 
o P is true only if Q is true.  

Example:  We know that: “an integer n is divisible by 6” ⇒ “n is divisible by 3”. Clearly, divisibility by 
3 is a necessary condition for divisibility by 6 (i.e., without being divisible by 3, an integer cannot be 
divisible by 6). Similarly, divisibility by 6 is a sufficient condition for divisibility by 3. Also, an integer 
is divisible by 6 only if it is divisible by 3. 

 If and only if (iff) 
o We say “P is true if and only if Q is true” to mean the same thing as “P is equivalent to Q”, i.e., ⇔

. 

 Necessary and sufficient conditions: When ⇔ , we can say that Q is a necessary and sufficient 
condition for P. For example, divisibility by both 3 and 2 is a necessary and sufficient condition for 
divisibility by 6; that is because an integer is divisible by 6 if and only if it is divisible by both 3 and 2. 

 Notation for “therefore”: ∴ 

 Paradox: A paradox is a statement that contradicts itself (e.g., if it is true, then it is false, and if it is 
false, then it is true!). Examples: 

o “This statement is false” 
o  “The next statement is true”. “The previous statement is false”. 


