1. In your own words, what does it mean for an encryption scheme to be perfectly secret?

2. The \textit{shift cipher} is a historical cipher used to encrypt English text. It works by representing the letters of the English alphabet by numbers in \{0, \ldots, 25\}. Key generation chooses key k uniformly at random from 0 to 25 (i.e., $k \leftarrow \{0, \ldots, 25\}$). Given an l-letter message m,
 Encrypt by computing $\text{Enc}_k(m_1, \ldots, m_l) = c_1, \ldots, c_l$, where $c_i = [(m_i + k) \mod 26]$
 Decrypt by computing $\text{Dec}_k(c_1, \ldots, c_l) = m_1, \ldots, m_l$, where $m_i = [(c_i - k) \mod 26]$.

 (a) Is the shift cipher perfectly secret when only one letter is encrypted? Why or why not?

 (b) What if two letters are encrypted? Why or why not?

3. Let E be an event that occurs with \textit{negligible} probability when we run an experiment. If we repeat the experiment polynomially many times, the probability that we observe the event E is
 a) undetermined
 b) negligible
 c) non-negligible