1. In your own words, what does it mean for an encryption scheme to be perfectly secret against an eavesdropper?

2. The shift cipher is a historical cipher used to encrypt English text. It works by representing the letters of the English alphabet by numbers in \(\{0, \ldots, 25\}\).
 Key generation chooses key \(k\) uniformly at random from 0 to 25 (i.e., \(k \leftarrow \{0, \ldots, 25\}\))
 Given an \(l\)-letter message \(m\),
 Encrypt by computing \(\text{Enc}_k(m_1, \ldots, m_l) = c_1, \ldots, c_l\), where \(c_i = [(m_i + k) \mod 26]\)
 Decrypt by computing \(\text{Dec}_k(c_1, \ldots, c_l) = m_1, \ldots, m_l\), where \(m_i = [(c_i - k) \mod 26]\).
 (a) Is the shift cipher perfectly secret when only one letter is encrypted? Why or why not?

 (b) What if two letters are encrypted? Why or why not?

3. What are the two major limitations on one-time pad encryption?