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ABSTRACT

We describe a new method for sound analysis using a spherical mi-

crophone array without the use of quadrature over the sphere. Quadra-

ture based solutions are very sensitive to the placement of micro-

phones on the sphere, needing measurements to be made at exactly

the quadrature positions. We propose to use fitting with band-limited

radial basis functions (RBFs) rather than quadrature. Our approach

results in frequency independent beamformer weights for flexibly

placed microphone locations. Results are demonstrated using both

synthetic and real spherical array data.

1. INTRODUCTION

Spherical arrays of microphones have previously been used for analy-

sis of sound fields [1, 2, 3, 5, 4]. Such arrays allow creation of ar-

bitrary beampatterns and the reconstruction of the sound field, both

to a certain order in the eigenfunctions of the Helmholtz equation.

Previous researchers have performed such analysis by using quadra-

ture over the measurements on the sphere[2]. This requires exact

placement of microphones at the quadrature points and using cor-

responding weights for quadrature. This may not be possible in an

actual array due to the space required for mounting of microphones

and wires and human error in placements. An alternate approach

was proposed in [3] and was based on optimization of the quadra-

ture weights for flexibly located microphones. However, this ap-

proach, while achieving very good and robust performance, lost the

frequency independence of the beamformer weights.

Here we follow an alternate approach that still allows for robust

solution of the flexible layout case but achieves it in a frequency

independent manner. Our approach is based on the use of band-

limited radial basis function (RBF) interpolation on the sphere. The

use of band-limited functions is important for the error bounds and

stability analysis of the spherical microphone array [6]. Results are

demonstrated using both synthetic and real data.

2. RBF FITTING ON SPHERES

On the unit sphere (Su) functions that depend only on the geodesic
distance µ12 = arccos(s1 · s2) between points s1 and s2 can be
expressed as

(s1, s2) = (s1 · s2) = (µ12) . (1)

We term functions which are radial basis functions in the geodesic

distance, as distance functions on the sphere (DFS). If f(s1 · s2) =
f(µ) C0[ 1, 1], then any such function can be written as a linear
combination of Legendre polynomials

f(µ)=
X
n=0

cnPn(µ), cn=
2n+ 1

2

Z 1

1

f(µ)Pn(µ)dµ. (2)

Using the addition theorem for spherical harmonics [7]

f(µ)=
X
n=0

cnPn(s1 · s2)=
X
n=0

4 cn
2n+ 1

nX
m= n

Y m
n (s2)Y

m
n (s1),

f(s1 ·s2)=
X
n=0

nX
m= n

Cmn (s2)Y
m
n (s1) Cmn (s2)=

4 cnY
m

n (s2)

2n+ 1
.

Surface function: An example of a DFS is the surface func-

tion, which has already been considered for use in beamforming

[5, 3]. This function satisfiesZ
Su

f(s1) (s1; s2)dS(s1) = f(s2),

Z
Su

(s1; s2)dS(s1) = 1.

Since f(s1) =
P

n=0

Pn
m= n f

m
n Y

m
n (s1) and because the Y

m
n

are orthonormal on the unit sphere, using the addition theorem

(s1; s2) =
X
n=0

nX
m= n

Y m
n (s1)Y

m
n (s2) =

X
n=0

(2n+ 1)Pn(s1 · s2)

4
.

Band-limited surface function: We can write a band-limited

version of the spherical function, since we will require our approx-

imations to satisfy a bandwidth constraint. This function will have

the properties of the function when applied to band-limited func-

tions on the sphere. A function with a band limit p on the sphere can
be written as

f(s1) =

p 1X
n=0

nX
m= n

fmn Y
m
n . (3)

Clearly, the desired properties of the function are satisfied by

(p)(s1·s2) =

p 1X
n=0

nX
m= n

Y m
n (s1)Y

m
n (s2) =

p 1X
n=0

(2n+ 1)Pn(s1 · s2)

4
.

Using the addition theorem, we can explicitly rewrite this as

(p)(s1 · s2) =
p

4

Pp 1(s1 · s2) Pp(s1 · s2)

1 (s1 · s2)

(p)(s0 · s0) =
p2

4
(4)

2.1. Fitting with Distance Functions on the Sphere

DFS functions can be used as a basis for continuous surface func-

tions on the sphere. If a surface function (s1) is evaluated at N
points, we can fit it by solving the linear system.

(sq) =
NX
j=1

ajfj(sq) fj(s) = f(sj · s) (5)

This is a linear system with N unknowns and N equations and can

be solved to find the aj . In general, since we fit with band-limited
functions to ensure the band limit condition on , we will haveN
p2. We can regularize this fit by standard methods, e.g., Tikhonov
regularization, to account for noise in our data.
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Fig. 1. A plot of the surface (p) function for p = 4 and p = 8.We
develop a theory for interpolation of scattered data on the the sphere

using these band-limited functions of the geodesic distance on the

sphere.

Equivalence of DFS and spherical harmonic expansions: Let

a surface function be written as

(s) =
X
n=0

nX
m= n

Cmn Y
m
n (s) (6)

By the Funk-Hecke Theorem (see e.g., [7]) we can rewrite this sum

as,

(s) =

Z
Su

f(s1 · s) (s1)ds(s1) (7)

where f(µ) = f(s1 ·s) is a DFS with f(µ) C0[ 1, 1], and (s1)
is another surface function. Using the orthonormality of Y m

n we find

Cmn =

Z
Su

(s)Y m
n (s)dS(s)

=

Z
Su

Z
Su

f(s1 · s) (s1)dS(s1)Y
m

n (s)dS(s)

=

Z
Su

(s1)dS(s1)

Z
Su

f(s1 · s)Y
m

n (s)dS(s)

= n

Z
Su

(s1)Y
m

n (s1)dS(s1)

where

n = 2

Z 1

1

f(µ)Pn(µ)dµ. (8)

If we consider the DFS expansion of (s) as

(s) =
X
j=1

ajfj(s),

we can relate the coefficients of the expansion aj to the C
m
n as fol-

lows

Cmn =

Z
Su

(s)Y m
n (s)dS(s) (9)

=
X
j=1

aj

Z
Su

f(sj · s)Y
m

n (s)dS(s) = n

X
j=1

ajY
m

n (sj)

In this way we can relate the Spherical Harmonic and DFS expan-

sions of an arbitrary surface function. This shows that these two

bases can be used interchangeably.

Expansion with basis of functions: Using Eq. (9), we can

write

(s) =
X
n=0

nX
m= n

Cmn Y
m
n (s), C

m
n = n

NX
j=1

ajY
m

n .

If we set f(sj·s) = f(µ) =
(p)(sj, s), the equation for n becomes

n = 2

Z 1

1

1

4

p 1X
n0=0

(2n0+1)Pn0(µ)Pn(µ)dµ =

½
1 n < p
0 n p

Therefore,

Cmn =
NX
j=1

ajY
m

n (sj) N = p2 (10)

This will give the exact values for Cmn for n < p. Therefore, this is
an exact fit for functions of band-limit p.

2.2. Quadrature using truncated function fitting

Since for a band limited function (p)(s) we can write that

(p)(s) =

p2X
j=1

aj
(p)
j (s),

we can calculate the quadrature over the sphere as follows

Z
Su

(p)(s)dS(s) =

p2X
j=1

aj

Z
Su

(p)(s·sj)dS(s) =

p2X
j=1

aj . (11)

This gives exact quadrature for band-limited functions of band less

than p.

3. SOUND FIELD REPRESENTATION

When sound is captured by a sound-hard spherical microphone ar-

ray, the array scatters the incident sound field. Therefore, the sound

measured is a combination of the incident and scattered fields,

(r) = in(r) + scat(r). (12)

Since the incoming sound in satisfies the Helmholtz equation, two

representations for this sound field are

in(r) =
X
n=0

nX
m= n

Amn R
m
n (r) =

1

4

Z
Su

eiks·rµin(s)dS(s),

(13)

where the Rmn are the elementary spherical regular solutions of the
Helmholtz equation and µin is the complex amplitude characterizing
the magnitude and phase of the plane wave in the direction s. These

two expressions are related due to the Gegenbauer expansion of the

plane wave [8]

eiks·r = 4
X
n=0

nX
m= n

inY m
n (s)Rmn (r), (14)

Rmn (r) =
i n

4

Z
Su

eiks·rY m
n (s)dS(s).
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3.1. Sound analysis with a spherical array

In the classical approach to beamforming, the signals recorded at the

microphones in the array are weighted and combined to achieve a

beampattern. In the original spherical beamformer [2], the weight

that must be applied to a microphone at a measurement point on the

array is computed from the scattering solution for a plane-wave off

a sphere. The beamformer shape in a particular look direction is

expressed in terms of the spherical harmonics. Then, using the fact

that the measured sound can be expanded in spherical harmonics,

weights to achieve a beamformer shape are derived for the measured

data [3].

An alternate approach was suggested in [5], where a plane-wave

decomposition was used to represent the incoming sound-field. In

this approach, plane-waves of a given order p (the plane wave form
obtained by restricting the outer sum in Eq. (14) to p terms) from a
set of directions were identified. This set of directions can be chosen

independently from the directions of the microphones. Then, the

strength of the plane wave from a given direction was identified as

the strength of the sound from that direction.

While the beamformer approach can be followed using the fit

function, since out interest is in playback of binaural sound using the

sound recorded at a spherical array following the approach presented

in [6], we will consider the plane-wave expansions.

In [6] an explicit expression for the complex amplitude µin was
derived

µin(s
0) =

p 1X
n=0

nX
m= n

i nAmn Y
m
n (s

0) = i(ka)2
p 1X
n=0

i nh0n (ka)×

×

Z
Su

(s)
nX

m= n

Y m
n (s)Y m

n (s
0)dS(s),

where hn(ka) are the spherical Hankel functions of the first kind and
the prime in h0n denotes a derivative with respect to the argument; s

0

is the direction of the plane-wave for which the intensity is sought,

s is the variable of integration over the surface of the sphere, and a
is the radius of the sphere. This allows the calculation of µin using
numerical quadrature over the sphere. We will provide an alternate

method for its evaluation using a fitting in terms of DFS here.

3.2. Choice of band-limit

As discussed in [6], the band limit p chosen to represent the plane
waves should be adapted according to the frequency, so that the

bandwidth is high enough that plane-waves of a certain frequency

can be represented spatially on the surface of the sphere but not too

high so that high frequency noise is not amplified by the fitting pro-

cedure. The error in truncating the Gegenbauer expansion of a single

plane wave input field at p terms is

²p (s, r) = e
iks·r 4

p 1X
n=0

nX
m= n

inY m
n (s)Rmn (r) (15)

=
X
n=p

(2n+ 1) injn (kr)Pn
³
r · s

r

´

Assume that the domain of interest can be enclosed inside a sphere

of radius R, the following error bound was established in [4]

|²p (s, r)| =

¯̄̄
¯̄X
n=p

(2n+ 1) injn (kr)Pn
³
r · s

r

´¯̄̄¯̄ (16)

6
2

p!

µ
kR

2

¶p+1
exp

µ
kR

2

¶
= p, p > 1.

For relatively low (kR < 1) or moderate (kR 1) frequencies,
Eq. (16) provides relatively low p (e.g. for kR = 2 we have |²p| <
2e/p!). For higher frequencies (kR À 1) asymptotic analysis (e.g.,
[7]) shows that p should be always larger than kR and

|²p (s, r)| . exp
1

3

"
2
p kR

(kR)1/3

#3/2
= p, kRÀ 1. (17)

As ²p (s, r) can be uniformly bounded and the incident field can be
represented as a superposition of plane waves, we can obtain from

the overall error of approximation of the incident field by the band-

limited function
(p)
in (r) inside a sphere of radius R:¯̄̄

in (r)
(p)
in (r)

¯̄̄
6

1

4

Z
Su

|²p(s, r)| |µin (s)| dS (s)

(18)

6 max |²p (s, r)|max |µin (s)| . pmax |µin (s)| = ²s,

where p can be selected according to Eq. (16) or Eq. (17). The

latter formula can be inverted to determine p based on the specified
accuracy ²s. E.g., for ²p = 0.02 we have:

p kR+
1

2

µ
3 ln

max |µin (s)|

²s

¶2/3
(kR)1/3, kRÀ 1. (19)

In multifrequency analysis, we increase p along with the frequency
as guided by Eq. (19) to avoid numerical errors.

4. CALCULATING PLANEWAVE AMPLITUDES

Here, we seek to obtain these strengths µin for particular sets of
look directions s0.We apply the truncated function fitting approach

to quadrature shown in section 2.2 to find a new way of calculating

the µin. This gives an exact expression for µin in terms of the aj
(the fitting coefficients)

µin(s
0)= i(ka)2

p 1X
n=0

i nh0n(ka)

Z
Su

NX
j=1

aj j(s)×

×(
nX

m= n

Y m
n (s)Y m

n (s
0))dS(s)

Simplifying this expression and using the orthonormality of the Spher-

ical Harmonics, we get,

µin(s
0) = i(ka)2

NX
j=1

aj

p 1X
n=0

i nh0n(ka)
nX

m= n

Y m
n (sj)Y

m
n (s

0)

= i(ka)2
NX
j=1

aj

p 1X
n=0

i nh0n(ka)Pn(sj · s
0)(
2n+ 1

4
).(20)

This expression allows us to calculate µin by direct summation with-
out having to rely on traditional spherical quadrature.

5. RESULTS

Simulations: We first tested our analysis approach using simulated

sound generated according to the solution to the problem of sound

scattering off of a sound-hard sphere [7].

S(s; s
0) =

i

(ka)2

p 1X
n=0

in(2n+ 1)Pn(s · s
0)

h0n(ka)
(21)
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This gives a way to calculate the measured sound at each micro-

phone location up to bandwidth p. Using this formula we calcu-
lated the noise free sound that would be measured on the sphere

with vocal and music sound coming from directions ( , ) svoice =
(.86161, 1.8025) and smusic = (.93373, .55698). These values
were chosen to match the directions of the sound used in the real

world experiment described later. Also, to make the simulation real-

istic we used, as the locations of the microphones on the sphere, the

actual locations of the microphones on the physical array. The mi-

crophones were located at approximately the Fliege points [9] with

the bottom 4 points missing and also 2 more points missing to ac-

count for broken microphones.

Using our approach, we compute the complex amplitude of the

waves µin in every direction in a uniform grid of points on the sur-
face of the sphere (we use a grid of 32×32 points in and ).

Fig. 2. The plane-wave coefficients for a synthetic case with (left) a

music source at ( , ) = (0.93373, 0.55698), and (right) a voice
source at ( , ) = (.86161, 1.8025). In each case the source (indi-
cated with a *) is captured perfectly.

Clearly in both cases the peak of the µin value occurs at the
actual location of the sound source.

Fig. 3. A plot of reconstructed plane-wave strengths for two frames

of a scene with a voice and a music source. Real source locations

are shown with marks. The right picture shows a frame where only

one source was active.

Experimental Results: We also used our beamformer on real

data gathered by a spherical microphone [3]. The real world con-

sisted of 2 sound sources, at the same locations as in the simulation.

One was a vocal and one a music source. In the real world measure-

ments we also have to deal with noise and reflections of the sound

off of the walls of the room in which the measurement was made.

Performing our beamforming on the measured sound, we got the

values for µin for the two sounds. Fig. 3 shows the value at a given
frequency for a time-frame in which the source was active. Both of

these plots clearly show a peak in the values of µin at the sources
of the sounds. There are multiple smaller peaks due to the noise

present from other sources, but we are clearly able to identify the

source direction of the primary sound.

6. CONCLUSION

In this paper we have presented a new way to use a spherical mi-

crophone array to perform beamforming on measured sound. We

allowed for flexibility in microphone placement by using quadrature

based on fitting with DFS functions. This approach provides an alter-

nate methodology to previous work in the area. Our simulation and

results clearly show that our beamforming works even when 6 of the

microphones are missing. In standard quadrature based approaches

the lack of 6 quadrature points would have introduced large error in

the quadrature. Thus we are able to allow for flexibility in the place-

ment of the microphones in the spherical array. Our only restriction

is that we have enough measurement points to solve the linear sys-

tem necessary to calculate the fitting. For this we need number of

microphones greater than p2 for the band limit p.
After we completed this work, we came across the recent the-

oretical study [10], where a similar fitting based approach is sug-

gested theoretically, and implemented for 1-D arrays. However, in

that work practical details of how the fitting can be done respecting

bandwidth limits and arbitrary distributions of microphones on the

sphere are not presented.
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