
Joint VM Placement and Routing for Data Center
Traffic Engineering

Joe Wenjie Jiang∗, Tian Lan†, Sangtae Ha∗, Minghua Chen?, Mung Chiang∗
∗Princeton University, †George Washington University, ?The Chinese University of Hong Kong
{wenjiej, sangtaeh, chiangm}@princeton.edu, tlan@gwu.edu, minghua@ie.cuhk.edu.hk

Abstract—Current data centers usually operate under poor
utilization due to resource fragmentation. The hierarchical nature
of data centers places a limit on the achievable aggregate
bandwidth in the backbone. Suboptimal virtual machine place-
ment also introduces unnecessary cross network traffic. In this
paper, we solve a joint tenant (i.e., server or virtual machine)
placement and route selection problem by exploiting multipath
routing capability and dynamic virtual machine migration. These
two complementary degrees of freedom: placement and routing,
are mutually-dependent, and their joint optimization turns out
to substantially improve data center efficiency. We propose
(i) an offline algorithm that solves a static problem given a
network snapshot, and (ii) an online solution for a dynamic
environment with changing traffic. Leveraging and expanding
the technique of Markov approximation, we propose an efficient
online algorithm that requires a very small number of virtual
machine migrations. Performance evaluation that employs the
synthesized data center traffic traces, on various topologies and
under a spectrum of elephant and mice workloads, demonstrates
a consistent and significant improvement over the benchmark
achieved by common heuristics used in today’s data centers.

I. INTRODUCTION

As demand for data center services continues to rise,
efficient traffic engineering within each data center network
becomes important, especially under dynamic arrivals of jobs.
Optimized placement of jobs on virtual machines helps in-
crease efficiency in node utilization, while optimized routing
over multiple paths helps increase efficiency in link utilization.
These two optimizations are traditionally carried out sepa-
rately, yet these two degrees of freedom’s effects are clearly
coupled, as illustrated in Figure 1. We tackle this combinatorial
problem of joint optimization, and develop an approximation
algorithm that leverages the specific structures of the joint
design problem.

A. Traffic Engineering Inside a Data Center

Cloud services need efficient traffic engineering in their
data centers for performance, resource pooling and reliability.
There are two common ways to achieve this goal:

Route selection by exploiting multipath capability. Recent
data center designs rely on the path multiplicity to achieve
scaling of host connectivity. Data center topologies often take
the form of multi-rooted spanning trees with one or multiple
paths between hosts. However, traditional route selection is
neither congestion-aware, nor shortest-path guaranteed, which
results in poor bandwidth availability between different parts
of the network. Recent developments in data centers allow
more sophisticated route selection based on network load on

Fig. 1. Illustrating the need for joint design of VM placement and routing.
Left: good placement bad routing; middle: good routing bad placement; right:
joint optimal placement and routing.

a per-flow basis, e.g., by exploit routing VLANs or Open-
Flow [1] protocol. A number of recent work [2], [3] proposed
the forwarding protocols to make use of path diversity for data
center flows.

Localizing traffic by flexible VM placement. Modern
virtualization based data centers are becoming the mainstream
hosting platform for a wide spectrum of application mix-
tures [4]. An application job usually subscribes a handful
of virtual machines (VMs) placed at different hosts that
communicate with each other, with different amount of re-
source requirement for CPU and memory, etc. A number of
proposals[5] have been made to improve the agility inside
a data center, i.e., any server can be dynamically assigned
to any host anywhere in the data center, while maintaining
proper security and performance isolation between services.
Maximizing the network bisection bandwidth could be viewed
as a global optimization problem [6] — servers from all
applications must be placed with great care to ensure the sum
of their traffic does not saturate any link. However, achieving
this level of coordination between changing applications and
traffic is difficult in practice [7].

B. Overview of the Paper

Previous work has investigated how to optimally place
VMs [6], or select routes for elephant flows in the network [2],
[8], but not both. Optimizing on any one dimension alone
is too restrictive. Suboptimal VM placement introduces un-
necessary cross traffic, while oblivious routing even in well-
designed fabrics can under-utilize the network resource by
several factors [3], [9]. Intuitively, having joint control over
both “knobs” provides an opportunity to fully utilize the
data center resources. Yet it remains unclear (1) exactly how
much improvement can be achieved by jointly leveraging the
two mutually-dependent degrees of freedom, and (2) how to
computationally efficiently carry out the joint optimization
under dynamic job arrivals. These two questions drive this
paper.

We focus on the management of network resources by
exploiting joint route selection and VM placement. A tenant
usually subscribes for each of her VM a certain amount
of resource, e.g., CPU and disk, and the uplink/downlink
bandwidth SLAs from the data center operators. Fortunately,
the operators have control over both where to place to the
VMs that meet the resource demand, and how to route the
traffic between VMs, at the time when a tenant is admitted.
We formalize it as an optimization problem, in which given
a sequence of job arrivals, the network operator needs make
the routing and placement decisions in order to minimize the
network congestion in the long run.

While exploiting both degrees of freedom is undoubtedly
appealing to data center operators, it also presents great
technical challenge. Solving a static version of the problem,
i.e., given all job VM sizes and traffic intensity and optimizing
the system performance, is already a challenging problem.
The need to make an online decision further complicates the
problem, i.e., instead of solving the static problem multiple
times and re-optimizing from a scratch which is not only
computationally intensive but also cost prohibitive due to a
lot of VM migration involved.

In this work, we provide a solution for data center operators,
which adapts to changing traffic and applications with cost-
efficient VM migration schemes. Our contributions are:
• In Section II, we formalize the joint route selection and

VM placement problem as a static optimization problem
with invariant workloads. In Section III we investigate the
combinatorial structure of this problem, and propose an
approximation algorithm based on a Markov chain model.
We prove that our algorithm can achieve the performance
arbitrarily close the global optimum.

• In Section IV, we solve a dynamic version of the joint
optimization problem, in which our goal is to optimize
the long-term-averaged system performance with time-
varying workloads. Building on our solution to the static
problem, we develop an incremental online solution
which converges to an approximation of the optimum.

• In Section V, we utilize both synthesized and real traffic
trace reported from an operational data center to evaluate
our algorithms. We show that our solution significantly
improves the system performance over some common
heuristics used by today’s data centers. The benefits are
surprisingly stable over different date center topologies,
a spectrum of changing workloads and tenant’s resource
requirements.

Section VI presents related work and Section VII concludes.

II. JOINT VM PLACEMENT AND ROUTING OPTIMIZATION

We start with the modeling of a data center network and
application jobs, as a static problem. We formulate an opti-
mization problem of joint VM placement and routing (VMPR)
that aims at minimizing the network congestion.

A. Data Center and VM Model

Consider K jobs from tenants need to be assigned to a data
center consisting of M host machines and L links (between

Jobs and VM
K Number of tenant jobs, indexed by k = 1, . . . ,K.

wk Number of VMs required by job k.
Rk Traffic matrix for communicating VMs of job k.

Sk,i A physical resource requirement vector for VM i of job k.
λ Job arrival rate.

1/µ Mean service time of a job.
πn Stationary distribution of having n jobs in the system.

Networks
M Number of host machines, indexed by m = 1, . . . ,M.

Hm Physical resource vector of machine m.
L Number of links in a data center network, indexed by l = 1, . . . ,L.
G A graph representation of data center network

VG Set of vertices vi ∈VG on graph G, i.e., , host machines and switches.
EG Set of edges el ∈ EG on graph G, i.e., , links.
Si A subgraph with low marginal link costs.

Optimization
Ap

k,i, j A binary decision for routing job k’s i→ j traffic on path p.
Ym A binary decision for turning on machine m.

Zm
k,i A binary decision for placing VM i of job k on machine m.
rl Total traffic load on link l.
f A feasible configuration, i.e., VM placement and routing.

Fn A set of all feasible configurations for n VMs.
xn

f System objective under configuration f .
xn

min Optimal system objective under n jobs.
βn A positive constant for log-sum-exp approximation.

q fn→ fn+1 Transition rate from state (n, fn) to state (n+1, fn+1).

TABLE I
SUMMARY OF KEY NOTATION

machines and switches). Each job k = 1, . . . ,K requires wk
virtual machines. Job k is characterized by (Rk,{Sk,i}i=1,...,wk),
where Rk is an wk × wk matrix with its (i, j) component
Rk

i, j representing the traffic load between VMs i and j. The
vector Sk,i denotes all physical resource requirements of VM
i. For instance, Sk,i has three components when three types of
physical resources are considered, e.g., CPU cycles, memory
size, and I/O operations respectively. Similarly, the amount
of available physical resources provided by host machine
m = 1, . . . ,M is given by a vector Hm, e.g., Hm

i is the amount
of type-i resource on machine m.

Recently proposed data center architectures allow multi-
path routing with commodity layer-2 switches. The topology
of a modern data center usually provides rich path diversity
between communicating hosts such as VL2, fat-tree and B-
cube architectures. We represent a data center by an undirected
graph G = (VG,EG), where VG is the set of vertices (i.e., host
machines and switches) and EG is the set of edges (i.e., links).
For each job k, we need to find mk feasible host machines to
support its physical resource requirements, as well as a set of
path in G to route its traffic among VMs. Each path consists
of a set of links that inter-connect switches and host machines.

B. VM Placement and Route Selection

We define Zm
k,i to be a binary variable for placing VM i of

job k on host machine m, such that

Zm
k,i =

{
1 if VM i of job k is placed on host m,
0 otherwise. (1)

With this definition, we denote the entire decision space of
possible VM placement by the following set

Z =

{
{Zm

k,i} | Zm
k,i ∈ {0,1},

M

∑
m=1

Zm
k,i = 1 ∀(k, i)

}
(2)

where the last equation guarantees that each VM is assigned
to exactly one host. Let Ym ∈ {0,1} be a binary indicator of
whether machine m is turned on. For a VM placement to be
feasible, the total resource consumption on each host machine
cannot exceed its capacity, given that the machine is active.

Traffic load of job k is represented by a matrix Rk, whose
(i, j)-th component represents an inelastic traffic load between
VMs i and j. To configure routing between VMs i and j, we
need to discover a path in G joining the nodes where VMs
reside. We define a set of binary routing variables {Ap

k,i, j} by

Ap
k,i, j =

{
1 job k’s i→ j traffic is routed on path p,
0 otherwise. (3)

C. Minimizing Network Congestion

Data center operators perform traffic engineering to improve
resource utilization, which often can be captured by two terms:
(i) network cost that measures the total network congestion,
and (ii) node cost which measures the host machine utilization.
The former is usually quantified by the average link cost, e.g.,
convex function of link utilization [10]. The latter is the cost
per machine, e.g., energy or capacity cost. We allow operators
to freely tune the tradeoff by introducing a weighting factor
α . We then formulate the traffic engineering problem as the
following constrained optimization:

VMPR

minimize
1
L ∑

l
g(rl/Cl)+α

1
M ∑

m
Ym (4a)

subject to ∑
k

wk

∑
i=1

Zm
k,i ·Sk,i � Ym ·Hm, ∀m (4b)

rl = ∑
k

∑
(i, j)

∑
p∈P(i, j):l∈p

Ap
k,i, jR

k
i, j, ∀l (4c)

∑
p∈P(i, j)

Ap
k,i, j = 1,∀k, i, j (4d)

{Zm
k,i} ∈Z (4e)

{Ap
k,i, j} ∈A{Zm

k,i} (4f)

variables Ap
k,i, j, Ym, Zm

k,i (4g)

Constraint (4b) models a physical resource constraint. Con-
straint (4c) captures the total traffic rate on a link, as the
sum of traffic intensity over all VM pairs, for all jobs.
Constraints (4e) and (4f) ensure feasibility of VM placement
and routing. VMPR solves an integer optimization problem,
and its decision spaces on VM placement and routing are
coupled. Using traffic patterns obtained in measurement study
[6], [11], [12], [7], we will take this problem formulation (5) to
study joint VM placement and routing for symmetric network
architectures in [13], [14], [15], [16], [17].

III. APPROXIMATION AND DESIGN APPROACH

The problem VMPR is a combinatorial optimization and
there is no computationally-efficient solution even in a cen-
tralized manner. We leverage the idea of Markov chain ap-
proximation in [18] to obtain an approximated solution. The
study [18] offers a general framework. We further exploit the
unique problem structure of VM placement and routing in
data centers to develop a solution that is specially tailored to
our needs. In particular, we extend the static problem setting
in [18] to a dynamic environment which presents significant
implementation challenges. We first study a static problem,
and the approach later serves as one of the modules in
an efficient solution to the dynamic version of the problem
in Section IV. Among the many choices of approximation
methods, the one we develop below has the advantage of
incorporating specific structures of the data center problem
at hand to enhance performance-complexity tradeoff.

A. Approximation Method

Let f = {A,Y,Z} be a configuration for the joint VM
placement and routing, and F be the set of feasible con-
figurations defined by constraints (4b)-(4f). For the ease of
presentation, we denote x f as the system objective (4a) given
a configuration f . Let each configuration f ∈ F be associ-
ated with a probability p f . VMPR can be approximated by
the following optimization problem, using the approximation
technique in [18]:

VMPR(β) :min
p≥0

∑
f∈F

p f x f +
1
β

∑
f∈F

p f log p f (5a)

s.t. ∑
f∈F

p f = 1. (5b)

where β is a large positive constant. As discussed in the
next section, this approximation with entropy-term turns out to
unique suit our need for accommodating dynamic job arrivals.
The optimal solution to VMPR(β) is given by

p∗f (x) =
exp
(
−βx f

)
∑

f ′∈F
exp
(
−βx f ′

) , ∀ f ∈F , (6)

and the optimal objective value is

− 1
β

log

[
∑

f∈F
exp
(
−βx f

)]
≈ min

f∈F
x f

With the above approximation method, we obtain an optimal
solution to VMPR, off by an entropy term. If we can time-
share among different configurations according to the optimal
solution p∗f (x) in (6), then we solve the problem VMPR
approximately. We thus move on to examine time-sharing
strategies that are practical in data centers:

Consider a Markov chain, where each state f ∈ F is a
feasible configuration of joint placement and routing decision,
i.e., f = {A,Y,Z}. F is the set of all possible solutions to
problem (5), i.e., F = Z ×A . Transitions between two states
can mean shuffling of existing VM placement, or routing
changes to communicating VMs.

We want the MC to have a desired stationary distribution
p∗f (x) in (6). As the system is operated under different
configurations, the Markov chain traverses among states and
converges to the desired distribution, thus achieving close-to-
optimal performance. The particular form of (5b) allows us
to restrict our design to time-reversible Markov chains [18],
which needs to satisfy the following balance equations:

p∗f (x)q f , f ′ = p∗f ′(x)q f ′ , f , ∀ f , f ′ ∈F . (7)
where q f , f ′ is the transition rate from state f to f

′
.

The key design freedom is to build links connecting differ-
ent states, such that the incurred system cost of state transitions
is minimized. In particular, we only allow links connecting
two states that can be reached by performing only one VM
migration. We next show how to implement the strategies in
our problem.

B. Offline Algorithm for Snapshot Problem

We next present an offline algorithm that finds the optimal
system configuration given a snapshot of the network topology
and a fixed number of jobs, leveraging the MC approximation
method presented above. The key idea is we allow the system
to transit from one state to another by migrating one VM only,
with proper transition rate derived from (7). In particular, let

q f→ f ′ ∝ exp−1(−βx f ′) (8)
so the transition rate only depends on the target state. The
target state may be the consequence of any one VM migration
from the origin configuration. We keep track of the best
configuration observed so far and use it as the final solution.
The algorithm is illustrated in Figure 2.

In a large data center network, there are an exponential
number of neighbor states that can be reached from one state,
even if we only allow one VM migration. To reduce the
search space, we propose a greedy algorithm that rules out bad
possibilities and discovers ∆ feasible “good” configurations
that can be reached by one VM migration. We present the
algorithm in Figure 3. The intuition is that we construct a
subgraph from an empty link set and expand it by adding
links in an increasing order of marginal cost, i.e., g′(rl/Cl). A
configuration is considered a candidate target state if there
exists a machine that can host the VM, and is connected
to other VMs from the same job. We run the shortest path
algorithm in the subgraph to find a possible route between
communicating VMs.

To find a close-to-optimal solution in the snapshot problem,
the VMPR-offline algorithm may require a significant number
of VM migrations, which is operationally expensive as moving
VMs incurs additional traffic and latency to the service.
Repeatedly solving the offline snapshot problem introduces
prohibitive computational and operational costs. This moti-
vates us to design a cost-efficient solution that adapts to
changing jobs and traffic with a novel MC design.

IV. ONLINE ALGORITHM FOR DYNAMIC PROBLEM

Our goal now is to design a system with cost-efficient
VM migrations while achieving close-to-optimal performance.
Instead of re-optimizing the problem upon every system

VMPR-offline
Initialize a feasible system configuration f0.
fbest ← f0, xbest ← x f0
t← 0
for t = 0 to T

Randomly pick a VM i
// Migrate VM i to a new configuration
gi← VM i’s configuration
Remove VM i from the system, ft ← ft\gi
Gi←GreedyAdd(G, ft , i)
Ft ←{ ft}×Gi
Probabilistically choose a configuration f ∈Ft acc. to (8)
Migrate VM i according to f
if x f < xbest

fbest ← f ,xbest ← x f
ft+1← f

end for

Fig. 2. Offline algorithm for VM placement and routing given a fixed number
of VMs.

GreedyAdd(G, fnow,u)
// Find ∆ feasible configuration by migrating VM i given fnow

Initialize S = {S1, . . .SM}, where V (Si) = {vi} and E(Si) = /0
G ← set of feasible configurations for VM i
EG← E(G)
while |G |< ∆

(vi,v j)← argminl∈EG
g′(rl/Cl)

EG← EG\{(vi,v j)}
Let vi ∈V (St1),v j ∈V (St2)
if t1 6= t2 // Merge two subgraphs St1 , St2

V (St1)←V (St1)+V (St2),E(St1)← E(St1)+E(St2)+(vi,v j)
else // t1 = t2

E(St1)← E(St1)+(vi,v j)
G ← G + set of new feasible configurations for VM u in S

end while
return G

Fig. 3. GreedyAdd algorithm finds a set of locally optimal configurations
for VM i. A data center network is represented as a graph G = (VG,EG),
where each vertex vi ∈ VG denotes a switch or a host machine and each
edge {vi,v j} ∈ EG denotes a link. The algorithm iteratively adds links and
constructs a set of disjoint low-congestion subgraphs S = {S1,S2, . . . ,Ss}.

change, we utilize such dynamics and design a MC with state
transitions that are aligned with VM arrival and departure
events.

A. Dynamic Markov Chain Approximation

Consider jobs arrive at the system independently at a rate
λ , and stay for exponentially long time with mean 1

µ
. Under

this setting, the number of jobs in the system, denoted by
n, follows an M/M/∞ queue. Let πn (n = 0,1, . . .) be the
stationary distribution of having n jobs in the system. We have

πn =
1
n! ρn

∑
∞
i=0

1
i! ρ i

=
1
n!

ρ
ne−ρ ,

where ρ = λ

µ
. Let us assume jobs are homogeneous for now.

Denote Fn as the set of all feasible configurations for n jobs.
The optimal performance when there are n jobs in the system
is defined as

xn
min , min

f∈Fn
xn

f ,

where xn
f is system objective under configuration f ∈F . In

this dynamic problem, the optimal long-term averaged system

performance is given by

P∗ ,
∞

∑
n=0

πnxn
min. (9)

Applying the log-sum-exp approximation to xn
min, we have

xn
min ≈−

1
βn

log

(
∑

f∈Fn

exp
(
−βnxn

f
))

, (10)

where βn are positive constants controlling the accuracy of the
approximation. The long-term average performance then can
be rewritten as

P ,−
∞

∑
n=0

πn
1
βn

log

(
∑

f∈Fn

exp
(
−βnxn

f
))

. (11)

The following lemma characterizes the gap between P and P∗.

Lemma 1. For any βn and Fn, we have

0≤ P−P∗ ≤
∞

∑
n=0

πn
1
βn

log |Fn|. (12)

For constants α > 0, θ ≥ 0, γ , and let nM be the maximum
number of VMs that can be accommodated by the system, we
have
• For βn = αnγ and |Fn|= exp(θn),

0≤ P−P∗ ≤ θ

α
E[n2−γ

M],

where E[n2−γ

M] is the 2− γ order statistics of nM .

• For βn = αnγ and |Fn|= nθn,

0≤ P−P∗ ≤ θ

α
E[n2−γ

M lognM]≤ θ

α
E[n3−γ

M].

Due to space limitation here, all proofs can be found in the
online technical report [19].

Implications: 1) As βn → ∞, the approximation in (10)
becomes exact. Thus by tuning βn, one can get as close
to the optimal performance as possible. 2) For a practically
convenient setting of βn =constant and |Fn| = exp(θn), the
gap to the optimal performance is bounded and can be made
to be arbitrarily small, i.e., 0≤ P−P∗ ≤ θ

α
E[n2

M].
With the approximation of long-term averaged system ob-

jective, we next design an optimal MC that achieves the
desired performance in its steady state. Let (n, fn) be a state in
which the system accepts n jobs with configuration fn ∈Fn,
and pn, fn be the fraction of time staying in this state. The
following lemma characterizes the optimal stationary distribu-
tion.

Lemma 2. P defined in (11) is the optimal value of the
following optimization problem

minp

∞

∑
n=0

∑
fn∈Fn

pn, fnxn
fn +

∞

∑
n=0

∑
fn∈Fn

1
βn

pn, fn log pn, fn

s. t. ∑
fn∈Fn

pn, fn = πn, n = 1,2, . . .

Further the optimal solution of the above problem is

pn,n f =
exp
(
−βnxn

fn

)
∑ f∈Fn exp

(
−βnxn

f

)πn, ∀ fn ∈Fn, n = 1,2, . . . (13)

We next present one construction of such Markov chain
and a practical implementation that achieves close-to-optimal
stationary distribution.

B. Cost-Efficient VM Migration

We want a scheme that incurs as few VM migrations as
possible, while achieving close-to-optimal performance in the
long run. The key idea is to only allow state transitions
when there are job dynamics, e.g., arrivals and departures,
and these transitions involve one VM migration only. In
particular, when a new job arrives, the job will be assigned
a new configuration, and when there is a job departure, an
existing job will be selected to perform the VM migration.
We do not change the system configuration when there are
no job arrival/departure events. This way we only perform
necessary local re-optimization to the system, without the need
to constantly migrating VMs for every snapshot problem and
can significantly reduce the VM migration costs. With the pro-
posed Markov chain structure, we design the transition rates
to make sure the resulting Markov chain is time-reversible,
and its stationary distribution is optimal as in (13).

1) The Optimal Markov Chain Design: Suppose there are
n existing jobs when a new job joins the system. Let C be the
set of local configurations that are available for the new job.
We assign the job to the configuration c ∈ C such that

q fn→ fn+1 = λ

exp
(
−βn+1xn+1

fn+1

)
∑c′∈C ,gn+1= fn∪{c′} exp

(
−βn+1xn+1

gn+1

) . (14)

where the system moves from state (n, fn) to (n + 1, fn+1),
and fn+1 = fn ∪ {c}. That is, the new job is assigned to
c with a probability proportional to the exponential of the
system performance under the new configuration fn+1. This
probability can be computed incrementally without affecting
the running VMs.

Upon a job departure, we need to figure out which VMs to
migrate. Let q(n+1, fn+1)→(n, fn) be the transition rate for from
state (n+1, fn+1) to (n, fn). We wish to design the transition
rates so that the following detailed equations hold: for all
(n, fn) states,

p∗n, fnq(n, fn)→(n+1, fn+1) = p∗n+1, fn+1
q(n+1, fn+1)→(n, fn) (15)

Combining results from (13) and (14), we have

q(n+1, fn+1)→(n, fn) = (n+1)µ

∑ f∈Fn+1
exp
(
−βxn+1

f

)
∑ f∈Fn exp

(
−βxn

f

) ×

exp
(
−βxn

fn

)
∑c′∈C ,gn+1= fn∪{c′} exp

(
−βxn+1

gn+1

) (16)

Lemma 3. The necessary condition for the designed time-
reversible Markov chain with transition rates (14) and (16) to
be implementable is as follows:

∑ f∈Fn exp
(
−βxn

f

)
∑ f∈Fn+1

exp
(
−βxn+1

f

) = ∑
fn∈R(fn+1)

exp
(
−βxn

fn

)
∑c′∈C ,

gn+1= fn∪{c′}
exp
(
−βxn+1

gn+1

) .
where R(fn+1) is defined as the set of all states fn that can
lead to fn+1 by one step VM migration.

Given that the necessary condition holds, we can implement
the Markov chain with the optimal stationary distribution, by
following the transition rules in a straightforward way:
• Upon a job arrival, we assign the job to a configuration

c with a probability proportional to the exponential of
the system performance under configuration fn+1 = fn∪
{c}. The calculation of this quantity does not require re-
shuffling other VMs and the global knowledge.

• Upon a job departure, and suppose the system was in
state fn+1 before the departure, we choose to switch to a
state fn ∈ R(fn+1) by migrating one remaining job, with
probability

∑ f∈Fn+1 exp
(
−βxn+1

f

)
∑ f∈Fn

exp
(
−βxn

f

) ×
exp
(
−βxn

fn

)
∑c′∈C ,gn+1= fn∪{c′} exp

(
−βxn+1

gn+1

) . (17)

However, implementing the VM migration upon job departures
requires global information of the network and cannot be
estimated locally without re-shuffling all VMs. The above
observation motivates us to find an approximated MC imple-
mentation that is appealing to local implementation.

2) Approximated Markov Chain Promoting Localized Im-
plementation: We next consider a special class of objective
function g(·), where g is a linear or piece-wise linear cost
function commonly used in traffic engineering problems [10].
Let g′m be the maximum slope of g, and Rmax be the maximum
VM traffic demand.

Proposition 1. Define ∆ = g′mRm +α , then 0≤ xn+1
min −xn

min ≤
∆. Further, we have

|C | ≥
∑ f∈Fn+1 exp

(
−βxn+1

f

)
∑ f∈Fn exp

(
−βxn

f

) ≥ |C |exp(−β∆) .

The result is a straightforward application of the ∆-bound.
For large β , the upper bound and lower bound are close and
we have the approximation

∑ f∈Fn+1
exp
(
−βxn+1

f

)
∑ f∈Fn exp

(
−βxn

f

) ≈ |C |. (18)

We apply this approximation to the VM migration proba-
bility (17) for job departure and we obtain an approximated
MC that enables the local implementation:

q(n+1, fn+1)→(n, fn) = (n+1)µ×
exp
(
−β

(
xn

fn +∆− 1
β

log |C |
))

∑c′∈C ,gn+1= fn∪{c′} exp
(
−βxn+1

gn+1

) .
(19)

With such approximation, the Markov chain is easy to
implement, requiring no knowledge of global information.
The price we pay is that the approximated Markov chain no
longer converges to the exact desired stationary distribution
as in (13), but to a neighborhood around it. The size of
such neighborhood can be characterized using the perturbation
approach [20], [21]. The key idea is to treat the approximation
as a perturbation to the original Markov chain, and bound the
resulting difference in the stationary distribution. It can be
shown that

∑
∀n,∀ f∈Fn

∣∣p̄n, fn − p∗n, fn

∣∣≤ κ|E|,

where E is the difference between the original transition rate
matrix and the approximated (perturbed) matrix, and κ is a
conditional number of Markov chain.

C. Online Algorithms

Finally, we present the algorithm that solves the dynamic
VMPR problem in Figure 4. The online algorithm consists
of two components: job arrival and job departure. Upon a
new job arrival, we make local arrangements for the new job
without migrating existing jobs and modifying their routes. We
reutilize the greedy algorithm presented in Figure 3 to find a
set of good neighborhood, and assign the new job to one of
the configurations according to the transition probability (14)
derived from the optimal Markov chain design. Upon a job
departure, we pick one job from the existing tenants and
probabilistically migrate it to new machines, according to (19).
The candidate job to be migrated are selected among those
who create the system bottleneck, i.e., jobs that generate flows
on the most congested links. Such heuristic greatly reduces the
search space and performs well in practice.

VMPR-online
Upon job k arrival:

Gk ←GreedyAdd(G, fk−1,k)
Fk ←{ fk−1}×Gk

Choose f ∈Fk with probability proportional to exp
(
−βx f

)
Accommodate job k and set up routing according to f
fk ← f

Upon job k departure:
Find the most-congested edge el ∈ E(G)
Let J be the set of jobs that use edge el
for each job j ∈ J

Let F j be the set of possible configurations by migrating j
Calculate the transition probability of f j ∈F j acc. to (19)

end for
Fk−1←

⋃
j∈J F j

Migrate to configuration f ∈Fk−1 probabilistically
fk−1← f

Fig. 4. Online algorithm for dynamic VM placement and routing problem.
The dynamic VMPR solution is appealing to a practical

implementation, since (i) we do not require VM migrations
when new jobs arrive and at most one job migration when
jobs depart, (ii) the computation of migration probability only
requires local information only, i.e., without the need of global
knowledge by moving other jobs. The computation of our
algorithm upon each job arrival/departure only takes a couple

of seconds even just on a typical laptop for a topology with
hundreds of nodes.

V. PERFORMANCE EVALUATION

A. Evaluation Setup
In this section, we evaluate our algorithms on various

data center topologies, including clique, fat-tree, HyperX, and
BCube. The fat-tree topology in [14] consists of a collection of
edge and aggregation switches that form a complete bipartite
graph. It offers equal length paths between edge switches.
Clique and HyperX in [3] improve scalability of fat-tree by
using fewer switches and smaller hop counts. BCube in [17]
is a multi-level network architecture where host machines are
part of the network infrastructure, i.e., they forward packets
on behalf of other hosts. These four topologies have been
designed with different goals in mind, and are shown in
Figure 9.

To provide benchmarks for our evaluations, we consider two
heuristics for server placement and two heuristics for routing
selection, whose combinations give four different baseline
strategies.

1) The sequential placement strategy (seq) places tenant
VMs sequentially in the server stack, i.e., always search-
ing from the lowest-id machine, and tried to place VMs
of the same job on the same host machine or in the
neighborhood. The seq strategy attempts to localize
traffic and concentrates host subscription.

2) The random placement strategy (rp) randomly picks one
or two available host machines for a job. The rp strategy
ties to spread VMs and their traffic cross network.

3) The shortest path strategy (sp) selects a path with
minimum end-to-end congestion.

4) The oblivious routing strategy (obl) does not consider
the congestion level of a path and randomly selects one
among the available paths with the shortest hop count.

Our VMPR-online solution (ma) presented in the previous
section will be compared to these four baseline strategies:
seq-obl, seq-sp, rp-obl and rp-sp, in various settings
of topology, traffic, and application.

We consider the maximum core switch utilization which
indicates the utilization of the most congested links connecting
core switches, which is often a good estimate of the network
bisection bandwidth. We also show the system cost (our
objective function) - balancing link cost and node cost.

While data center traffic is quite different from Internet traf-
fic and traffic traces are generally proprietary and unavailable,
recent studies on data center traffic measurement do provide
us a good characterization on application workload and traffic
patterns inside a data center. For example, Ersoz et al. [22]
characterized the job inter-arrival time of a Web-based service
with backend database application as a log-normal distribution,
and the job size being also log-normal distributed. Kandula
et al. [23] reported an empirical observation of flow duration
distribution in a 1500-server Microsoft data center over a two-
month period. Chen et al. [24] showed that the VM resource
consumptions in a Google data center can be readily clustered
depending on if the job is CPU or memory intensive.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Max Core Switch Utilization

ma
seq−obl
seq−sp
rp−obl
rp−sp

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Max Core Switch Utilization

ma
seq−obl
seq−sp
rp−obl
rp−sp

(a) Low traffic load (b) High traffic load

Fig. 5. Performance of online algorithms with synthesized traffic trace on a
128-node fat-tree topology.

Based on the study mentioned above, we construct a synthe-
sized workload emulating the DC traffic. In particular, we use
the job inter-arrival time from a log-normal distribution [22],
and draw the flow duration from an empirical distribution
given in [23]. We pre-define several classes of applications,
e.g., CPU-intensive or memory-intensive, each of which has
a high consumption on the corresponding resource. We then
vary the parameters in these distributions to reflect different
workloads in a data center.

We also run our experiment using a real workload from large
computing clusters [25]. The workload contains 11 days of
activity of cluster machines - job number, arrival time, waiting
time, service time, CPU usage, memory usage, etc.

B. Evaluation of Online Algorithms

We next present our simulation results on our online algo-
rithm with the synthesized workload and with the real trace.

Performance of online approximation algorithm. In this
scenario, we consider one type of resource and let each VM
size requirement be uniformly distributed in [0.2, 0.8]. We
vary the job arrival rates to emulate low workload and heavy
workload using our synthesized data center workload. We run
the ma algorithm and four other algorithms using the same
traffic trace on a 128-host fat-tree topology.

Figure 5 shows the CDF of maximum core switch utilization
under low and heavy traffic load, respectively. In all cases, the
ma algorithm consistently outperforms other heuristics by as
much as 50%, and such improvement is more significant under
heavy traffic load. This is because our online approximation
algorithm not only takes into account the current job but
also future arrivals. Among other four heuristics, seq-sp
performs well because it optimizes both traffic locality and
careful route selection in an intuitive way. However, in the
fat-tree topology, the random placement strategy sometimes
outperforms the sequential placement strategy due to the very
rich path diversity between any pair of hosts provided by fat-
tree topology.

Impact of data center topologies. We compare the five
algorithms on four typical datacenter topologies: clique, fat-
tree, HyperX and BCube. Figure 6 presents the results.

We employ heavy traffic load and assign every link in
every topology at the same capacity. The synthesized traffic
is used. VM resource requirements are uniformly distributed

between 0.2 and 0.8. We present the topologies in the order
of a decreasing degree of path diversity (with an increasing
number of switch ports needed). In all topologies with different
sizes, our algorithm ma shows less congestion in the maximum
core switch over other heuristics, with the only exception with
the 64-node clique that seq-sp performs reasonably well.
Since all-pair connectivity between hosts provides good path
property and thus has less room for improvement. In general,
the performance improvement of ma is more significant in
topologies with better connectivity and path diversity (unless
the topology is completely a clique), especially in the case of
large topologies.

Clique−64 Fattree−128 HyperX−125 BCube−64
0

0.5

1

1.5

M
ax

 C
or

e
S

w
itc

h
U

til
iz

at
io

n

ma
seq−obl

seq−sp

rp−obl
rp−sp

Fig. 6. Comparison of performance on large topologies.

Elephant v.s. mice flows. We next study the impact of
flow sizes on the effectiveness of our algorithm. In practice,
different applications usually preserve their own traffic pat-
terns, e.g., computation intensive jobs usually generate small
but persistent flows that exchange computation results, and
file transfers that generate large bursty flows. We define two
types of jobs, one that generates elephant flows on the order
of 1Gbps, and the other that generates mice flows on the
order of 1Mbps. In this experiment, we fix the total amount
of workload, i.e., the average traffic rate, while varying the
percentage of elephant flows in the network. We run all
algorithms with the synthesized traffic on a 125-host BCube
topology, and present the performance in Figure 7, under a
spectrum of elephant and mice flows mixtures.

A few and very large elephants expectedly amplifiy the
worst case congestion. As the fraction of elephant flows
increases inside the network, the congestion on the maximum
core switch decreases for all algorithms, since the elephant
size shrinks given that the total workload is fixed. Our algo-
rithm consistently achieves significant improvement over other
heuristics, demonstrating that our algorithm can nicely handle
different combination of large and small flows. It is interesting
that the improvement margin is quite stable in all fractions of
elephants, indicating that our algorithm is insensitive to flow
sizes.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Percentage of Elephant Flows

M
ax

 C
or

e
S

w
itc

h
U

til
iz

at
io

n

ma
seq−obl
seq−sp
rp−obl
rp−sp

Fig. 7. Performance comparison with varying mix of elephant and mice flows.

Impact of VM size distribution. We next study the impact of
different VM size distributions, i.e., the amount of resource re-
quired by each VM instance. Different data center applications
have their own patterns of resource consumption, e.g., CPU-
intensive application request more CPU cycles and similarly
memory-intensive applications request more memories. In this
experiment we consider only one type of resource. We define
the following resource consumption patterns. Applications
with uniformly large demand request 100% of host resource
for all VMs. Applications with uniformly small demand re-
quest 25% of host resource for all VMs. Applications with ran-
dom demand request an amount uniformly distributed between
0 and 100% for each VM. The bimodal demand is generated
from two normal distributions N(0.3,0.1) and N(0.7,0.1) with
equal probability. All evaluations are performed on a 125-host
BCube with the synthesized traffic and results are presented
in Figure 8.

Our algorithm ma is more effective when the VM size is
small and more variant. The sequential placement algorithms
(seq-obl and seq-sp) also work well for uniformly small
VM sizes since small VM sizes provide an opportunity to
place all VMs on the same machine. Uniformly large VM
sizes does not give much room to improve the performance.
In both random and bimodal cases, our algorithm improves
50% performance over other heuristics.

Uni. Large Uni. Small Random Bimodal
0

0.5

1

1.5

2

Vitural Machine Size

M
ax

 C
or

e
S

w
itc

h
U

til
iz

at
io

n

ma
seq−obl
seq−sp
rp−obl
rp−sp

Fig. 8. Impact of different VM sizes.

Real Workload. We evaluate the performance of online algo-
rithms with the real workload obtained from large computing
clusters. We extract 4,000 jobs and use its arrival times and
flow durations. We fix the topology to fat-tree and use the
same parameters used for Figure 5, except that we now vary
the intensity of traffic between VMs. Figure 10 shows the
performance cost of all online algorithms. As we increase the
intensity of traffic between VMs, the overall performance cost
increases due to more congestion in the network. As expected,
rp-obl, which selects the minimum hop count regardless
of congestion in the link, becomes worse with higher traffic
intensity between VMs. Our algorithm ma shows the minimum
cost among all tested algorithms.

VI. RELATED WORK

Virtual machine placement. In [6], the authors formulated a
problem for minimizing total communication distance among
VM pairs. The idea is to place VM pairs with heavy traffic
among them on host machines with small network cost (which
is defined as the number of hops between host machines).
In another paper [26], the same authors exploit statistical
multiplexing among workload patterns of multiple VMs, and

Clique Fat-Tree HyperX BCube

Fig. 9. Datacenter Architecture

0 50 100 150
0

0.2

0.4

0.6

0.8

1

System Performance Cost

ma
seq−obl
seq−sp
rp−obl
rp−sp

0 100 200 300
0

0.2

0.4

0.6

0.8

1

System Performance Cost

ma
seq−obl
seq−sp
rp−obl
rp−sp

(a) Low VM traffic intensity (b) High VM traffic intensity

Fig. 10. Performance of online algorithms with real work load while varying
the intensity of the traffic between VMs.

propose an algorithm for selecting VM combinations with
complementary workload patterns.

Scalable data center architecture. Most data centers follow a
three tier architecture, e.g., Tree in [13], PortLand in [14], VL2
in [15], and DCell in [16]. Recently, a new multi-level network
architecture, BCube, is proposed in [17]. These architectures
together with their own routing algorithms have been designed
independently with different goals in mind.

Data center traffic measurement. Several papers [6], [11],
[22], [24], [23] have provided empirical measurement study on
network traffic patterns of commercial cloud services, includ-
ing Amazon EC2, GFS, MapReduce, and a data warehouse
hosted by IBM Global Services. Several trends have been
observed: (1) Traffic volumes from VMs are largely uneven.
(2) Average traffic per VM is stable at large time-scale. (3)
Traffic RTTs have small mean and large variance.

VII. CONCLUSION

Traditionally, VM placement and routing for data center
network are performed separately and the benefits of a joint
design are unknown. We solve a joint optimization problem by
using the Markov approximation method. Beyond the previous
work that only provides a general framework, our new method
is specifically tailored to the data center architecture and VM
dynamics. Leveraging both synthetic and real traces from
operational networks, we demonstrate that our approach is
effective, scalable and cost-efficient, compared to common
heuristics that miss the opportunity of a joint design.

REFERENCES

[1] “Openflow,” http://www.openflow.org.
[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,

“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
USENIX NSDI, 2010.

[3] M. Schlansker, Y. Turner, J. Tourrilhes, and A. Karp, “Ensemble routing
for datacenter networks,” in ANCS, 2010.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proc. ACM Symposium on Operating Systems Principles, 2003.

[5] C. Kim, “Floodless in seattle: A scalable ethernet architecture for large
enterprises,” in ACM SIGCOMM, 2008.

[6] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in IEEE
INFOCOM, 2010.

[7] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 1, pp. 68–73, 2009.

[8] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN:
Cots data-center ethernet for multipathing over arbitrary topologies,” in
Proc. USENIX NSDI, 2010.

[9] M. Schlansker, J. Tourrilhes, Y. Turner, and J. Santos, “Killer fabrics
for scalable datacenters,” in Proc. ICC, 2010.

[10] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in IEEE INFOCOM, pp. 519–528, 2000.

[11] G. Wang and T. E. Ng, “The impact of virtualization on network
performance of amazon ec2 data center,” in IEEE INFOCOM, 2010.

[12] J. P. Srikanth and P. Bahl, “Flyways to de-congest data center networks,”
in Proc. SIGCOMM Workshop on Hot Topics in Networking, 2009.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM, 2008.

[14] R. Mysore, A. Pamboris, and A. Vahdat, “Portland: A scalable fault-
tolerant layer 2 data center network fabric,” in ACM SIGCOMM, 2009.

[15] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” in ACM SIGCOMM, 2009.

[16] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: a
scalable and fault-tolerant network structure for data centers,” in ACM
SIGCOMM, 2008.

[17] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Bcube: A
high performance, server-centric network architecture for modular data
centers,” in ACM SIGCOMM, 2009.

[18] M. Chen, S. C. Liew, Z. Shao, and C. Kai, “Markov approximation for
combinatorial network optimization,” in Proc. of IEEE INFOCOM, (San
Diego, CA, USA), 2010.

[19] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint vm placement
and routing for data center traffic engineering,” tech. rep., EE, Princeton
Univ., 2011, http://www.princeton.edu/ chiangm/vm.pdf.

[20] G. Cho and C. Meyer, “Comparison of perturbation bounds for the
stationary distribution of a Markov chain,” Linear Algebra and its
Applications, vol. 335, no. 1-3, pp. 137–150, 2001.

[21] A. Mitrophanov, “The spectral gap and perturbation bounds for re-
versible continuous-time Markov chains,” Journal of Applied Probabil-
ity, vol. 41, no. 4, pp. 1219–1222, 2004.

[22] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic
in a cluster-based, multi-tier data center,” ICDCS ’07, pp. 59–69, 2007.

[23] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel, “The nature of
data center traffic: Measurements and analysis,” in IMC, 2009.

[24] Y. Chen, A. S. Ganapathi, R. Griffith, and R. H. Katz, “Analysis and
lessons from a publicly available google cluster trace,” Tech. Rep.
UCB/EECS-2010-95, EECS, University of California, Berkeley, 2010.

[25] “Logs of real parallel workloads from production systems,”
http://www.cs.huji.ac.il/labs/parallel/workload/logs.html.

[26] X. Meng, C. Isci, J. Kephart, L. Zhang, and E. Boulillet, “Efficient
resource provisioning in compute clouds via VM multiplexing,” in Proc.
ICAC, 2010.

