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Abstract— Secure communications in wireless ad hoc networks
require setting up end-to-end secret keys for communicating node
pairs. Due to physical limitations and scalability requirements,
full key-connectivity can not be achieved by key pre-distribution.
In this paper, we develop an analytical framework for the
on-demand key establishment approach. We propose a novel
security metric, called REM resilience vector to quantify the
resilience of any key establishment schemes against Revealing,
Erasure, and Modification (REM) attacks. Our analysis shows
that previous key establishment schemes are vulnerable under
REM attacks. Relying on the new security metric, we prove a
universal bound on achievable REM resilience vectors for any on-
demand key establishment scheme. This bound that characterizes
the optimal security performance analytically is shown to be tight,
as we propose a REM-resilient key establishment scheme which
achieves any vector within this bound. In addition, we develop a
class of low complexity key establishment schemes which achieve
nearly-optimal REM-attack resilience.

I. INTRODUCTION

In wireless ad hoc networks such as sensor networks,
symmetric key cryptography is attractive due to its efficiency
under extreme node resource constraints (e.g. computation,
memory, and power). Currently, there exist three different
approaches for providing pairwise secret keys: key assignment
using trusted third parties, key pre-distribution before initial
node deployment, and key establishment by exchanging keying
messages. In particular, the key assignment schemes rely on
trusted servers for key agreement among nodes [2], [3]. These
schemes may not be practical for large-scale ad hoc networks,
since the deployment of trusted servers or base-stations is
uneconomical. The second approach, key pre-distribution, has
attracted a lot of attention recently due to its efficiency in small
or local networks. In key pre-distribution schemes [4], [9], [8],
[5], a large amount of secret keys or keying information can
be preloaded into nodes prior to deployment. Communicating
nodes then discover shared keys after deployment to achieve
a certain level of key-connectivity probability.

As pointed out in [13], [14], [15], key pre-distribution
schemes have to struggle with the conflicts among node re-
source limits, desired key-connectivity probability, scalability
in network size, and resilience against malicious attacks. Due
to the limitation of node memory and computation ability,
key pre-distribution schemes scale poorly to very large net-
works and the resulting pairwise key-connectivity probability
is relatively low. In order to provide an end-to-end key to
any communicating node pair, on-demand key establishment
becomes a necessary approach. From a security perspective,
most key pre-distribution schemes are designed to protect only

the confidentiality of secret keys, while two other security
components, integrity and availability, are not accounted for.
Key pre-distribution schemes are vulnerable when various
attacks occur simultaneously.

To address these issues, a key establishment approach that
employs pre-distributed keys as local link keys has been
proposed in [7], [9], [16]. In this approach, to set up an end-to-
end secret key between two nodes, the source node generates
a set of keying messages, from which a secret key can be
derived. Each keying message is sent through a communication
path from the source node to the destination node, which then
computes the secret key locally. The transmission is protected
by existing link keys at each hop. Since it is difficult to attack a
large fraction of keying messages simultaneously in an ad hoc
network, the key establishment approach using multi-path is
able to guard against various attacks efficiently. In particular,
an XOR-based key establishment scheme was proposed in
[9], [16], where a secret key is derived by the XOR of all
keying messages. This scheme prevents malicious attackers
from deriving the secret key if not all keying messages are
revealed. In [7], Huang et al proposed a Reed-Solomon code
based scheme that allows node pairs to derive secret keys when
both erasure and modification of keying messages occur. In a
closely related problem known as secret sharing [10], it is
shown that there exists a scheme to divide a secret into n
messages in such a way that the key is easily reconstructable
from any r + 1 pieces, but even complete knowledge of r
pieces reveals no information about the secret. When applied
to sensor networks, this technique enables the construction
of a key establishment scheme that can guard against both
revealing and erasure of keying messages.

However, all of these previous key establishment schemes
only deal with a subset of the following three attacks, in
which malicious nodes (i.e. compromised or fabricated nodes
by attackers) can (a) Reveal the keying messages passing
through them to make secret keys computable to the attackers;
(b) Erase and not-forwarding keying messages to prevent
other nodes from establishing secret keys; or (c) Modify
the forwarded keying messages to prevent other nodes from
deriving the correct secret keys. These attacks (defined as
Reveal-Erase-Modify attacks in this paper) violate the three
security properties, confidentiality, integrity, and availability
of the keying messages, respectively. The problem is similar
to the verifiable secret sharing [11], [12] in cryptography
literature, where most existing algorithms rely on complicated
algebraic operations, and thus are unsuitable for ad hoc



network applications under computation constrain. The main
contributions of this paper are as follows:
• We introduce a novel security metric, called REM re-

silience vector, to quantify the resilience of any key
establishment schemes against REM attacks. The security
performance of previous key establishment schemes [10],
[7], [9], [16] are evaluated with respect to the proposed
security metric. Our analysis and simulation show that
previous key establishment schemes are vulnerable under
REM attacks.

• We develop a unifying analytical framework, in which the
entire set of REM resilience vectors achievable by any
key establishment scheme is characterized by proving a
security performance bound in a closed-form expression.
The bound is tight in the sense that we propose an
optimal key establishment algorithm to achieve any REM
resilience vector within the bound.

• The 3-dimensional region, consisting of all feasible REM
resilience vectors, models an important security tradeoff
for the capability of defending against different types of
attacks in the REM attack model. This tradeoff region
can be used as a benchmark for the design and analysis
of key establishment protocols given system parameters.

• We propose a class of low complexity key establishment
algorithms with nearly-optimal REM-attack resilience.
The algorithms only require XOR of keying messages
and simple table lookups, as shown in our complexity
analysis. We also implement the proposed algorithm in
conjunction with the Zone Routing Protocol [18] and
compare their performance with previous key establish-
ment schemes. A significant security improvement is
observed in large-scale simulations.

II. A NEW SECURITY METRIC FOR REM ATTACKS

We consider a wireless ad hoc network where nodes are not
tamper resistant. Compromised or fabricated nodes may reveal
all their forwarding keying messages to attackers and also try
to disrupt normal key establishment in the network.
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Fig. 1. This figure illustrates a general key establishment by sending n
messages from the source node S to the destination node D.

In Fig 1, an end-to-end secret key is provided for nodes
S and D, who do not share a common key from key pre-
distribution. The procedure is described as follows: After
receiving a request message, source node S first employs a
network routing protocol and finds m paths (which can be
non-disjoint) to the destination node D. n keying messages,
denoted by M1, . . . , Mn, are generated by the source node
and then sent to the destination node, each via a different

path, i.e. message Mi is send via path (S, Ri,1, Ri,2, . . . , D).
To secure keying messages during transmission, encryptions
by existing link keys are performed at each intermediate node
before forwarding keying messages, and nodes at the next hop
decrypt the messages by the same link keys. More precisely,
the following message is sent from node Ri,j to node Ri,j+1:

Ri,j → Ri,j+1 : E[Mi, K
i,j+1
i,j ]

where E[·] denotes the encryption function and Ki,j+1
i,j is a

link key from key pre-distribution. Upon receiving the keying
messages, node D employs a function f(·) to reconstruct the
secret key KSD = f(M1, . . . , Mn) for future communication
with node S. Since secret keys are set up on demand, the key
establishment approach allows rekeying or key refreshing to
be easily implemented in wireless ad hoc networks.

In this paper, we define a REM attack as any arbitrary
combination of revealing, erasure, and modification attacks.
Each type of attack targets at a different security property:
• Revealing attacks on keying message confidentiality:

Compromised or fabricated nodes reveal to attackers the
content of keying messages traveling through them. To
quantify the resilience against this attack, we define a
threshold value r ≥ 0, such that if no more than r
messages are revealed to attackers, resulting secret keys
remain completely unknown even if all attackers collude.

Definition 1: A secret key generated by a key establish-
ment scheme with function f(·) is completely unknown
under r revealed messages if

Prob
{

f(M1, . . . ,Mn) = K̂
∣∣Mi1 , . . . , Mir

}

= Prob
{

f(M1, . . . ,Mn) = K̂
}

. (1)

for any i1, . . . , ir and any choice of key K̂.

Definition 1 implies that revealing any set of no more
than r keying messages does not change the original
probability distribution of Prob {f(M1, . . . , Mn)}. Thus,
attacks obtain zero information by knowing r out of n
keying messages.

• Erasure attacks on keying message availability: In an
attempt to prevent the end-to-end secret key from be-
ing established, compromised or fabricated nodes make
keying messages unavailable to the destination, by not-
forwarding keying messages or jamming the forwarding
link. We define e ≥ 0 to be a threshold such that the
secret key can be recovered at the destination node if no
more than e messages are erased or dropped.

• Modification attacks on keying message integrity: Since
complicated authentication methods (e.g. digital signature
using public-key cryptography) are impractical in ad hoc
networks, keying messages are subject to modification
attacks, in which compromised or fabricated nodes for-
ward modified keying messages to cause confusion. A
threshold value m ≥ 0 is chosen to denote the maximum



number of modified messages that can be corrected by a
key establishment scheme.

Definition 2: An REM attack in wireless ad hoc networks is
defined as any arbitrary combination of the revealing, erasure,
and modification attacks, defined above.

Although erasure and modification attacks can also be
regarded as transmission erasures and errors from a classical
error control coding perspective, our REM attack model in this
paper is different, because providing confidentiality (which
is irrelevant to error control coding applications) jointly with
integrity and availability is a must for establishing secret keys.
In the following, we will provide a unifying framework and
analysis for resilience of any key establishment scheme under
REM attacks.

Given that n keying messages are used for establish-
ing a secret key in a key establishment scheme, we quan-
tify its REM-attack resilience by introducing a new secu-
rity metric (r, e,m)n denoted as a REM resilience vector.

Definition 3: A key establishment scheme achieves REM
resilience (r, e,m)n, if a secret key can be successfully
established under no more than e erasure attacks and m mod-
ification attacks, and at the same time, the key is completely
unknown to attackers for up to r revealed keying messages.

For a key establishment scheme using n keying messages,
the set of achievable REM resilience vectors lies in a 3-
dimensional region, which illustrates security of the partic-
ular scheme along three axis: confidentiality, availability, and
integrity (see Figure 2).

We can analyze the security of previous key establishment
schemes under our REM framework. In [9], [16], secret keys
of length k are derived at destination nodes by the bitwise
XOR of all keying messages, each being exactly k bits, i.e.
KSD = M1 ⊕ . . . ⊕ Mn. It is easy to verified that a secret
key remains completely unknown if not all keying messages
are revealed to attackers. Thus, this scheme achieves REM
resilience (r = n − 1, e = 0, m = 0)n. In another scheme
based on secret sharing [10], a secret key is regarded as an
integer coefficient of a degree t random polynomial in GF2k ,
such that it can be recovered from any t + 1 evaluations of
the polynomial and remains completely unknown if only t
evaluations are given. Thus, it achieves (r = t, e = n − t −
1,m = 0)n. By varying the degree t, we denote the set of
achievable REM resilience vectors by (r+e = n−1,m = 0)n.

Another scheme in [7] employs Reed-Solomon (RS) codes
(a special class of error control codes) to deal with keying
message erasures and modifications. Using a secret key as
an input, keying messages are constructed by dividing the
output codeword into n pieces. For an RS-code with block
distance s, the key can be recovered if no more than e and m
keying messages are erased and modified respectively, given
that 2m + e ≤ s − 1, since each keying message is a linear

combination of the secret key, revealing any keying message
makes some choices of keys impossible. Consider a simple
scheme with 3-bit secret keys KSD = [b1b2b3] and a (7,4,3)
binary code. If an attack obtains just one bit of the codeword
b1⊕ b2 = 1, it immediately derives that the secret key can not
be [00b3] or [11b3]. According to Definition 1, the secret key
is not completely unknown to the attacker, and he can remove
four possible keys from his entire search space. Thus, we have
r = 0 for the RS code based scheme. Further, by extending
this scheme to general non-binary error control codes, a REM
resilience of (r = 0, e+2m = n−1)n can be achieved. Table I
summarizes the security analysis of previous key establishment
schemes, whose vulnerabilities under REM attacks (i.e. entries
with zero resilience) are marked by ∗ in the table.

Previous Schemes Resilience vector (r, e, m)n

r e m
XOR [9], [16] r = n− 1 e = 0∗ m = 0∗

Polynomial [10] r + e = n− 1 m = 0∗

RS code [7] r = 0∗ 2m + e = n− 1

TABLE I
SECURITY ANALYSIS FOR PREVIOUS KEY ESTABLISHMENT SCHEMES

UNDER REM ATTACKS. THIS SHOWS THAT THESE SCHEMES ARE

DESIGNED TO DEAL WITH ONLY A SUBSET OF POSSIBLE ATTACKS.

III. PROVING OPTIMAL REM RESILIENCE

In this section, we analyze the optimal REM resilience for
arbitrary key establishment schemes. For n paths and n keying
messages, we show that no matter what keying-message con-
struction and function f(·) are used, it is impossible to achieve
any REM resilience vector with r+e+2m > n−1. This result
states that r + e + 2m ≤ n− 1 is a universal upper bound on
achievable REM resilience vectors. The upper bound is also
tight, as we find an optimal key establishment scheme which
can achieve any REM resilience vector within this bound.

At first glance, it may appear that both optimality and
achievability of bound r + e + 2m ≤ n − 1 can be readily
proved by encoding secret keys using an (n, r + 1, s) linear
error control code, since the keys are undecodable from r
pieces of output codewords, and a direct application of the
Hamming distance gives 2m+ e ≤ n− r− 1. However, result
in this section is much stronger and requires more interesting
proofs.. First, our definition of security for key establishment
requires secret keys to be completely unknown, not even
partially decodable. Any piece of output codeword from a
simple (n, r +1, s)-encoding reveals certain linear constraints
of the secret keys, and thus violates the desired security.
Second, our upper bound r + e + 2m ≤ n− 1 is applicable to
any key establishment schemes with arbitrary keying-message
construction and function f(·), while linear error control
code is just one possible approach. The following analysis
provides a fundamental limit for the security performance of
key establishment, quantified by the proposed REM resilience
vector. We state the first result in the following theorem, whose
proof is given in Appendix A.



Theorem 1: Let each keying message be the same length
as the secret key. For n paths and n keying messages, a REM
resilience vector (r, e, m)n can be achieved if and only if r +
e + 2m ≤ n− 1.

Theorem 1 shows that for n > 1, the set of all achiev-
able REM resilience vectors (r, e, m)n form a 3-dimensional
tetrahedron r + e + 2m ≤ n − 1 as shown in Fig 2, while
previous key establishment schemes only explored certain 2-
dimensional sub-planes in the tetrahedron: the polynomial
based approach based on [10] achieves {r + e ≤ n− 1,m =
0}, the Reed-Solomon code based approach in [7] achieves
{r = 0, e + 2m ≤ n − 1}, and the XOR based approach in
[9] only achieves a single line {r ≤ n − 1, e = 0,m = 0}.
Theorem 1 for key establishment includes all previous results
as lower-dimensional special cases.
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Fig. 2. For n = 30, this figure plots the 3-D optimal REM resilience region
(i.e. the tetrahedron defined by r + e + 2m ≤ n − 1) and 2-D sub-planes
achieved by previous schemes.

Remark 1: When the length of keying messages is less than
that of the secret key (i.e. length(Mi) < k, ∀i), it can be
proven that a REM resilience (r, e,m)n can be achieved if and
only if r + e+2m ≤ n−d k

length(Mi)
e. This is a more general

result than Theorem 1 and applies to all key establishment
algorithms. Its proof is omitted due to space limitations.

The REM resilience vector’s optimal bound proved in The-
orem 1 provides a fundamental benchmark, from which many
important security performance metrics can be derived directly.
In ad hoc networks, a path is malicious if it contains at least
one compromised or fabricated node. As the simplest case,
if there is exactly one attack on each malicious path and the
number of each type of attack is equal (i.e. r = e = m), then
from 2m+ e+ r ≤ n− 1, it is easy to verify that a secret key
can be established if less than three quarters of the paths are
malicious, i.e. r+e+m ≤ b 3(n−1)

4 c. However, the assumption
of single attack on each path is impractical, because malicious
nodes can collude to perform multiple attacks on one path
and choose attack types to cause maximum damage. For such
smart REM attacks, we derive the maximum resilience in the
number of malicious paths as follows. We refer readers to [17]
due to space limitation.

Corollary 1: Under smart REM attacks, a secret key can

be established if and only if less than one third of paths are
malicious, i.e. bn−1

3 c.
IV. LOW-COMPLEXITY KEY ESTABLISHMENT SCHEME

Theorem 1 characterizes the optimal REM resilience. How-
ever, according to the proof of Theorem 1, it requires multipli-
cations of large integers in GFp with p > 2k for constructing
keying messages and a complicated sphere decoder to achieve
REM resilience vectors on the optimal bound. The complexity
is prohibitive for wireless ad hoc networks. In this section, we
derive a class of low-complexity key establishment schemes
that only requires bitwise XOR operations and simple table
lookups. The new algorithm, generalized from linear binary
error control codes, can achieve a nearly-optimal REM re-
silience. We first describe the proposed algorithm and then
provide a security and complexity analysis.

A. Syndrome Decoding for Linear Binary Codes

A linear binary code C is a linear subspace of the field of
binary vectors. If C is an (n, t, s)-code, then it encodes vectors
of length t into codewords of length n, whose minimum
Hamming distance is s. Let G of size n × t be a generating
matrix for this linear code. Codewords are obtained by linear
combinations of the rows of G, i.e. if ~x is a vector of length
t, then ~y = G~x has length n and is the codeword for ~x.

To correct both erasures and modifications in a received
codeword, the following syndrome decoding procedure for
binary linear codes can be employed: Let H be a parity check
matrix for code C. We first replace the erased coordinates by all
zeros (denoted by ~y0) or all ones (denoted by ~y1) and compute
two different syndromes (i.e. ~r0 = HT ~y0 and ~r1 = HT ~y1)
respectively. By looking up ~r0 and ~r1 in the syndrome table
to obtain two different error vectors ~t0 and ~t1, the one that
contains fewer number of errors on non-erased coordinates
gives us the correct syndrome that should be chosen. More
precisely, if ~r0 (or ~r1 instead) gives fewer errors, then the
original codeword can be recovered by inserting zeros (or
ones) on the erased coordinates and then subtracting the error
vector ~t0 (or ~t1) i.e. ~y = ~y0− ~t0 (or ~y = ~y1− ~t1). In classical
coding theory, it has been proven that an (n, t, s)-code is able
to correct any e erasures and m modifications at the same
time, given that 2m + e ≤ s− 1 [1].

The following illustrative example contains a generating
matrix and a parity check matrix for an (8, 2, 5) linear binary
code

G =
[

1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1

]T

,

H =




1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 1 1 1 0 1 1 1




T

.

For an input vector ~x = [1 1]T , the corresponding codeword
is given by ~y = G~x = [1 1 1 0 0 1 1 1]T . Now, suppose that
the first two bits of ~y are erased and the third bit is flipped,



i.e. the received vector becomes ~̂y = [∗ ∗ 0 0 0 1 1 1]T .
We replace erased coordinates in ~̂y with ones and zeros
respectively and compute two syndromes ~r0 = [0 0 0 0 0 1]T

and ~r1 = [0 1 0 0 0 1]T . By looking up the syndrome table
for this (8, 2, 5)-code, we get ~t0 = [0 0 0 1 1 0 0 0] and ~t1 =
[0 0 1 0 0 0 0 0]. Since ~t0 contains two errors on non-erased
coordinates, while ~t1 contains only one error, we choose all
ones on the erased bits in ~̂y and subtract ~t1 from it. This gives
us the correct codeword ~y. In the next section, we generalize
this syndrome decoding method and derive an algorithm for
secure key establishment. The proposed algorithm not only
corrects modifications and erasures, but also makes secret keys
completely unknown to attackers.

B. Low-Complexity Key Establishment Algorithm

In this section, we propose a complete protocol for key es-
tablishment in wireless ad hoc networks. Our low-complexity
algorithm relying on linear binary codes only requires bitwise
XOR operations and simple table lookups for constructing
keying messages and deriving the secret key. The protocol
is divided into four phases: (1) Request and Path-discovery,
(2) Sending Keying Messages, (3) Recovering Key, and (4)
Verification. Packets transmitted in the protocol have the
structure

ID1 ID2 Payload CmdType

where ID1 and ID2 are the IDs of the source node and the
destination node, respectively. In Phase 1, any standard ad hoc
network routing, such as the Zone Routing Protocol [18], is
employed to discover n paths, after receiving a request for key
establishment. In Phase 2, a (n + 1, t, s) error control code is
used to generate n keying messages. Let G be a generating
matrix for the code

G =




g01 g02 . . . g0t

g11 g12 . . . g1t

...
...

. . .
...

gn1 gn2 . . . gnt




(n+1)×t

(2)

In order to add freshness to the algorithm, source node
constructs t length-k pseudo-random vectors X1, . . . , Xt, and
encodes each column of matrix [X1, . . . , Xt] using G:

[KSD,M1, . . . , Mn]T = G · [X1, . . . , Xt]T (3)

where the first row of the output codeword is chosen as a
secret key and the (i + 1)’th row as keying message Mi for
i = 1, . . . , n. Since linear binary codes are used, all operations
required in this phase are simply binary XORs, denoted by ⊕.

Without loss of generality, we assume that the last e keying
messages are unavailable to the destination node due to erasure
attacks and the remaining n − e keying messages contain m
faulty ones due to modification attacks. Let H be a parity
check matrix of size (n + 1)× (n + 1− t) for the generating
matrix in (2). In Phase 3, the destination node implements a
key-recovery algorithm based on the syndrome decoding for
linear binary codes, as described in Section IV.A. Since the
secret key KSD is just the first row of the codeword in (3), the
algorithm only needs to restore the first row of the codeword,

rather than to decode all random vectors X1, . . . , Xt. In
Phase 4, the secret key is verified between the source and
destination node. Our protocol for establishing a secret key
between two nodes S and D is summarized as follows:

Phase 1: Request and Path-discovery
1) Node D broadcasts a request for key establishment:

D: D S Void ReqKey

2) Node S responses to the request and starts a routing
query for node D using the standard Zone Routing
Protocol [18].

3) Node S recodes the first n replies to its routing query
and prepares n paths to D:

(S, Ri,1, Ri,2, Ri,3, . . . , D), for i = 1, . . . , n.

Phase 2: Sending Keying Messages
1) Node S constructs t length-k pseudo-random vectors
X1, . . . ,Xt.

2) The secret key is derived by

KSD = (g01X1)⊕ (g02X2)⊕ . . .⊕ (g0tXt) .

3) Initialize i = 1.

4) Node S generates keying message Mi:

Mi = (gi1X1)⊕ (gi2X2)⊕ . . .⊕ (gitXt) .

5) Node S sends Mi to node Ri,1 and erases Mi locally

S → Ri,1: D Ri,1 E[Mi,K
i,1
s ] EstKey

6) If i < n, let i = i + 1 and go to step 4.

7) Node S erases X1, . . . , Xt from his memory.

8) Messages are forwarded to node D, for i = 1, . . . , n:

Ri,1 → Ri,2: Ri,1 Ri,2 E[Mi,K
i,2
i,1 ] EstKey

Ri,2 → Ri,3: Ri,2 Ri,3 E[Mi,K
i,3
i,2 ] EstKey

...
Ri,j → D: Ri,j D E[Mi,K

D
i,j ] EstKey

Phase 3: Recovering Key
1) Node D receives at least n − e keying messages

M̂1, . . . , M̂n−e.

2) Define a mask vector A according to the indices of
received keying messages: A1 = 0 and

Ai+1 =
{

1, if M̂i is received
0, otherwise

∀i = 1, . . . , n.

3) Node D computes a submatrix H̃ , consisting of the n−e
non-erased rows of H:

H̃i = Hi+1, for i = 1, . . . , n− e.

4) Node D computes a syndrome perturbation vector r̃ as
the XOR of the e + 1 erased rows of H:

r̃ = H1 ⊕Hn−e+2 . . .⊕Hn+1.



5) Node D computes R0 = H̃T ·
[
M̂1, . . . , M̂n−e

]T

.
6) Initialize i = 1. Let ADDR be the base address of the

syndrome table stored at the destination node.

7) Retrieve ~t0 from address ADDR + R0
i .

8) Retrieve ~t1 from address ADDR + (R0
i ⊕ r̃).

9) The i’th bit of KSD is given by

KSD,i =

{
~t01, if popcnt(~t0

∧
A) < popcnt(~t1

∧
A)

1⊕ ~t11, otherwise

10) If i < k, let i = i + 1 and go to step 5.

Phase 4: Verifying Key
1) Node D generate a random message R and computes

its hash value h(R).

2) Node D broadcasts a challenge using secret key KSD:

D: D S E[(R, h(R)),KSD] GotKey

3) Node S decrypts E[(R, h(R)),KSD]] using its version
of secret key KSD and obtains R̂.

4) Node S broadcasts an acknowledgement

S: S D R̂ ACK

5) Node D accepts KSD if it receives R̂ = R.

In Step 5 of Phase 3 above, each row of
[
M̂1, . . . , M̂n−e

]

is a valid codeword generated by (2) with e+1 erasures and m
modifications. According to the syndrome decoding procedure
described in Section IV.A, if we assume that the erased keying
messages are all zero vectors, we can compute a syndrome

matrix R0 = H̃T ·
[
M̂1, . . . , M̂n−e

]T

, where each column of
R0 is a syndrome vector. On the other hand, if we assume that
the erased keying messages are all one vectors, it is easy to
show that the syndrome for the i’th row of

[
M̂1, . . . , M̂n−e

]

becomes r̃⊕R0
i , with r̃ as a perturbation vector defined in Step

4. Therefore, by looking up the syndrome table and comparing
resulting error vectors, we can recover the first bit of the secret
key, and thereafter bit by bit. In Step 9 of Phase Recovering
Key, popcnt is a population count instruction which counts the
number of “1” bits in a word.

C. Security Analysis

The proposed low-complexity key establishment algorithm
is able to achieve nearly-optimal REM resilience vectors
(r, e, m)n by choosing different linear error control codes. For
n paths and n keying messages, we characterize the security
performance of the algorithm in Theorem 2 as follows. We
refer readers to [17] due to space limitation.

Theorem 2: For a linear binary error control code (n +
1, t, s) with dual code (n + 1, n + 1 − t, s′), the proposed
low-complexity key establishment algorithm in this section
achieves a REM resilience vector (r, e,m)n for r = s′−2 and
2m+ e = s− 2. In particular, when both codes are maximum
distance separable (MDS), the proposed algorithm achieves an
optimal REM resilience of 2m + e + r = s + s′ − 4 = n− 3.

D. Complexity Analysis

We analyze the complexity of the proposed key establish-
ment algorithm in terms of computation overhead and storage
space. For computation overhead, since we are restricted to
linear binary codes in this paper, all operations are performed
in Gf2. We observe that the algorithm consists of four basic
operations: binary XOR, table lookup, pseudo-random vectors,
and assembly instruction (i.e. popcnt and comparison). For
storage space, a syndrome table, generating and parity check
matrices, and auxiliary vectors have to be stored at each node.

Complexity Metrics Generating Recovering
Computation Bitwise XOR o(kn2) o(kn2)

Random Vector o(n) -

Table Lookup - o(k)

popcnt and comparison - o(k)

Total Computation o(kn2) o(kn2)

Storage (bits) Syndrome Table - o(n2n−t)

Coding Matrices o(n2) o(n2)

Auxiliary Vectors o(kn) o(kn)

Total Storage o(kn + n2) o(kn + n2n−t)

TABLE II
COMPLEXITY ANALYSIS SUMARY FOR THE PROPOSED KEY

ESTABLISHMENT ALGORITHM.

Table II summarizes the complexity of our proposed key es-
tablishment algorithm. As a numerical example, for a network
using n = 30 keying messages (based on a (31,14,8) code) and
an AES encryption with key size k = 128, the complexity is
on the order of 200K operations and 4M bits of storage for
generating keying messages and recovering a secret key. Our
proposed algorithm, which is able to guard against all three
attacks in the REM attack model, is much less complex than
previous schemes [10][7], which require more than 20K 32-bit
integer multiplications.

V. NUMERICAL EXAMPLES

Consider a wireless ad hoc network with Z = 1000 nodes,
uniformly distributed in a square area of size L = 100. We
assume that nodes in the neighborhood of communication
range R = 15 share pre-installed keys with probability
p. These pre-installed link keys are used to secure keying
messages during transmission. To discover n paths for each
node pair, we implement the standard Zone Routing Protocol
(ZRP) [18] with a zone radius of ρ = 2 hops. In all
simulations, compromised nodes are randomly selected from
the Z nodes such that the locations of compromised nodes are
also uniformly distributed in the area.

We define the probability of secure and successful key
establishment as the average probability that two nodes can
successfully establish a secret key, and at the same time, the
secret key remains completely unknown to attackers. For p =
0.5 and the optimal key establishment algorithm in Appendix
A, Fig. 3 plots the probability of secure and successful key
establishment for the use of n = 1, 5, 10, 20, 30, 40 keying
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Fig. 3. Probability of secure and successful
key establishment v.s. number of compromised
nodes for n = 1, 5, 10, 20, 30, 40 keying mes-
sages.
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Fig. 4. Probability of secure and successful
key establishment v.s. number of compromised
nodes for pre-installed key-sharing probability
p = 0.5, 0.6, 0.7, 0.8.
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Fig. 5. Compare the security performance
of key establishment schemes under our REM
attacks.

messages, under REM attacks with equal probability of each
type of attack. It can be observed that the optimal key
establishment algorithm with n ≥ 20 can safeguard secret
keys with a probability of over 80% for as many as 80 (i.e.
8%) malicious nodes, and its security performance benefits
from the increase of keying messages as more path diversity
is exploited. In another simulation with n = 30, Fig. 4 shows
that the probability of secure and successful key establishment
remains almost the same for different pre-installed key-sharing
probabilities p = 0.5, 0.6, 0.7, 0.8. This observation implies
that no matter what key pre-distribution algorithm is used,
the security performance achieved by the key establishment
algorithm can be guaranteed. Thus, complicated key pre-
distribution algorithms that are intended to provide high pre-
installed key-sharing probability may not be necessary, since
full key-connectivity can be achieved by our on-demand key
establishment algorithm.

For the same network model with p = 0.5 and n = 30,
we compare the security performance of different schemes:
the optimal key establishment algorithm in Appendix A, the
low-complexity key establishment algorithm in section IV,
key establishment using single path, and the three previous
multi-path key establishment schemes. Our low-complexity
algorithm proposed in Section IV has a performance that is
close to the optimal one, and is more suitable for practical
implementations. This comparison highlights the importance
of defending against multiple attacks simultaneously: Under
REM attacks, the overall security performance of a key
establishment algorithm is largely determined by the worst
individual-attack resilience (i.e. min(r, e,m)). It also demon-
strates the excellent security-complexity properties of our
proposed key establishment protocol.

VI. CONCLUSION

This paper proposes a unifying framework for analyzing
the security of any key establishment scheme, quantified by
a new metric we call a REM resilience vector. A universal
bound on achievable REM resilience vectors is derived in
closed-form and is shown to be attained by an optimal key

establishment algorithm. For practical implementations, we
also develop a low-complexity XOR-based key establishment
protocol that achieves nearly-optimal REM resilience. Our
analysis and simulation show that the capability of simultane-
ously defending against multiple attack classes, critical for the
security of wireless ad hoc networks, can indeed be achieved
with provable REM resilience and low complexity.

VII. APPENDIX

A. Proof of Theorem 1

Proof: The theorem states that the bound r + e +
2m = n − 1 is both optimal and tight. In the following, we
start by showing the optimality and then propose a new key
establishment scheme to prove the achievability.

To show r+e+2m = n−1 is optimal. If e = m = 0, then
we immediately have r ≤ n−1, since the secret key becomes
deterministic given all n keying messages. For e+m > 0, we
denote [M1, . . . , Mn] as a feasible message vector, in which
M1, . . . , Mn are a set of allowable keying messages that can
be used to establish a secret key KSD = f(M1, . . . ,Mn).
Without loss of generality, we assume that the first r keying
messages M1, . . . , Mr are revealed to attackers who are able
to collude. Then, with this information, the attackers can rule
out any feasible message vector whose first r keying messages
are not equal to M1, . . . , Mr. To guarantee that the secret key
remains completely unknown, it is necessary that the number
of remaining feasible message vectors with the first r messages
in common must be no less than 2k, i.e. the number of all
possible secret keys of length k. Formally, if H(·) denotes the
entropy function and feasible message vectors are random, we
derive

H([M1, . . . ,Mn]|M1, . . . ,Mr)
≥ H(f(M1, . . . ,Mm)|M1, . . . ,Mr)
= H(KSD|M1, . . . ,Mr)
= H(KSD) = k (4)

where KSD is the secret key. The second step is from the
information processing inequality and the last step holds



because all keys are equally likely due to the definition of
completely unknown (1). Equation (4) implies that with the
first r messages fixed, there exists at least 2k feasible message
vectors. These 2k feasible message vectors are different only in
the last m−r messages, each of length k. Thus, the minimum
Hamming distance of these feasible message vectors (i.e. the
minimum number of different messages in any two feasible
message vectors) can be no more than m − r. According to
error control coding theory, given e erasures and m modifica-
tions, two feasible message vectors with a Hamming distance
of m− r remain distinct and separable only if

2m + e + 1 ≤ n− r ⇔ r + e + 2m ≤ n− 1 (5)

This gives the optimality of bound r + e + 2m ≤ n− 1.
For achievability of the bound, we propose a new key

establishment scheme that achieves any REM resilience vector
(r, e, m)n satisfying the upper bound r + e + 2m + 1 = n.
The proposed algorithm for generating n keying messages is
similar to the polynomial evaluation used in [10]. However,
we employ a different decoding strategy and show that the
algorithm can deal with revealing, erasure, and modification
attacks at the same time. Let p > 2k be a prime number. Thus
the desired secret key can be regarded as an integer in the field
GFp, i.e. KSD ∈ [0, 2k − 1]. We generate a random degree r
polynomial in GFp as follows:

q(z) = KSD + A1z + . . . + Arz
rv (6)

where Ai ∈ GFp for i = 1, . . . , r are randomly chosen
integers. Then n keying messages are computed by evaluating
q(x) at n distinct points for z = 1, . . . , n, i.e.

[M1,M2, . . . ,Mn] = [q(1), q(2), . . . , q(n)] (7)

Since the polynomial has degree r, it has been shown in
[10] that revealing no more than r keying messages would
leave the secret key KSD completely unknown. So we only
need to show that the destination node can recover key KSD

under e erasures and m modifications, given that 2m + e =
m− r− 1. Toward this end, we re-write equation (7) using a
matrix representation:



M1

M2

...
Mn


 =




1 11 12 . . . 1r

1 21 22 . . . 2r

...
...

...
...

...
1 m1 m2 . . . mr


 ·




KSD

A1

...
Ar




It is easy to verify that the n × (r + 1) coefficient matrix
(denoted by G) on the right hand side is a Vandermonde
matrix, whose any r+1 rows are full rank. Thus, any non-zero
vector ~x in GF

(r+1)
p of size 1× (r + 1) can be orthogonal to

at most r rows of matrix G. We have

∀~x 6= ~0, Hamming(G~x,~0) ≥ n− r (8)

where ~0 is a zero vector and Hamming(·) is the Hamming
distance function. This implies that matrix G is a gener-
ating matrix for a (n, r + 1, s) linear error control code
in GFp with a minimum Hamming distance of at least
n − r. According to error control coding theory, given that

2m + e + 1 ≤ n − r, any m modifications and e erasures
of the keying messages can be corrected at the destination
node using a sphere decoding algorithm which finds the
closest feasible message vector to the received one [1]. We
summarize the optimal key establishment algorithm as follows:

Optimal Key Establishment Algorithm
1) Source node generates a random key KSD and r random

integers A1, . . . , Ar.

2) Source node generates Mi = KSD + A1i + . . . + Ari
r

and sends it to destination node, for i = 1, . . . , n.

3) Destination node employs sphere decoding to derive
KSD upon receiving the keying messages.

This complete the proof of Theorem 1.
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