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1. INTRODUCTION
The ability to account system resource usage by software is
the key to the design and optimization of modern computer
systems. For example, scheduling and memory management
are two classic operating system (OS) functions based on the
ability to account the CPU and memory usage by process.
Energy has become an important system resource due to
electricity and thermal concerns. This is particularly true for
mobile systems that are battery-powered and require com-
pact form factors. Knowing the energy contribution by a
process, or per-process energy accounting, is the foundation
for OS energy management and optimization [10, 8], incen-
tive mechanisms for emerging applications in participatory
sensing and cooperative communication, detecting rogue ap-
plications [7], and software optimization for energy [5].

Per-process energy accounting has been a long-standing, hard
problem for multiprocessing systems where multiple pro-
cesses can be active at the same time. Yet modern mobile
systems are multiprocessing. Mobile System-on-Chip (SoC)
provides multiple, heterogeneous processing units that can
serve several software processes simultaneously within a sched-
uler period. The multiprocessing capabilities have been cap-
italized by both the mobile OSes and third-party applica-
tions developers, e.g., to enable background applications in
mobile systems.

In the past decade, many researchers have attempted to
solve the problem with a two-step approach, exemplified re-
cently by [11, 7, 5, 9]. They first employ a model for system
energy consumption that estimates system energy consump-
tion from system resource usage statistics obtainable in soft-
ware. By estimating the contributions by a process to the
usage statistics and plugging them into the linear model, the
authors infer the energy contribution by the process. This
approach is fundamentally limited because energy estimation
in the first step is significantly hindered by how the estima-
tion is distributed to processes in the second step. That is,
the model must employ linear aggregation and employ pre-

dictors that can be counted per process. As a result, existing
solutions only work when there is a single running applica-
tion and where system energy consumption is determined by
hardware visible to software such as CPU, memory, and disk
usage. Unfortunately, modern mobile systems are multipro-
cessing and have rich collection of I/O and heterogeneous
resources, many of which contribute significantly to system
energy consumption but remain invisible to the OS [6]. None
of the existing solutions provide accurate per-process energy
accounting when multiple processes are active. Even worse,
there is no known ground truth with which one could eval-
uate any policy for allocating system energy consumption
to running processing, e.g., policies based on per-process re-
source usage.

2. MULTI-PLAYER GAME
Our key insight is that per-process energy accounting can be
formulated as a problem that has been extensively studied
in game theory: when multiple players participate in a game
and the game produces a surplus, how to divide the surplus
among the players? Shapley value [1] is a well-known single
value solution to this problem. For any coalition of players
S ⊆ N = 1, 2, . . . , n, we denote v(S) as the game surplus if
played by coalition S. Let φi(v) denote the share of surplus
player i receives. Shapley value defines the only way to
distribute the surplus among the n players that satisfies four
simple axioms [1]. That is, the share received by player i,
phii(v), is

φi(v) =
∑

S⊆N\{i}
|S|!(n|S|1)!

n!
(v(S ∪ {i})v(S)),

where |S| is the cardinality of S, or the number of members
of S. To calculate Shapley value φi(v), one need not only the
surplus when all n players play, v(N), but also the surplus
when a subset of the n players play, or v(S), for all S ⊆ N .
Shapley value has been widely applied for solving benefit and
cost sharing problems in diverse fields including computer
science [4, 3].

We apply multi-player game theory to per-process energy
accounting by treating any time interval in which the sys-
tem under question consumes energy as a game; the pro-
cesses active in the interval the players; and the system
energy consumption, E(N), the game surplus. Naturally,
Shapley value provides a powerful framework to allocate the
system energy consumption to the processes. We note the



four axioms required by Shapley value are natural for treat-
ing system energy consumption as a multi-player game. (i)
Efficiency requires the sum of the energy contributions by
all processes be equal to the total system energy consump-
tion. (ii) Symmetry requires that the energy contributions
by two processes are identical if replacing one with the other
in a game does not change the system energy consumption
of every possible coalition. (iii) Dummy requires that if
adding a process to every possible coalition will not change
the system energy consumption, the energy contribution by
this process should be zero. (iv) Additivity requires that the
same energy attribution policy should work for all the time
intervals of the same length.

3. CHALLENGES AND SOLUTIONS
In theory, given E(S) for all S ⊆ N , calculating the energy
contribution by a process based on Shapley value is simple.
The key problem, however, is to obtain E(S) for all S ⊆ N ,
which poses three system challenges.

First, there are 2n subsets for n processes. In order to ap-
ply Shapley value, one must obtain E(S), the system energy
consumption, for 2n different coalitions, i.e., S, which can
be practically very difficult, if possible at all. Second, E(S)
depends on not only which processes are running, but also
the dynamics of process execution such as the CPU time of
each process and the execution order. Therefore, E(S) is
not a fixed number but a random variable. The variance of
E(S) introduces uncertainty in energy accounting by Shap-
ley value. Finally, E(S) is further affected by the hardware
state in a mobile system such as CPU frequency, display
brightness, and GPS on/off mode. This will introduce even
more variance in E(S).

We have been investigating three methods to tackle the
above challenges. The first two challenges can be tackled
by estimating system energy consumption, E, in situ for
very short time intervals, down to the OS scheduler period,
which is 10 ms in most mobile systems. Fewer processes
can run simultaneously in a shorter time interval. In a time
interval of 10 ms, n is not many more than the number of
processing units. Moreover, in a shorter time interval, the
process execution dynamics have less impact on energy con-
sumption. By monitoring the system energy consumption
in situ for an extended period of time, one can potentially
acquire E(S) for many different S. In [2], we report promis-
ing results from estimating system energy consumption for
10 ms time intervals in situ using power readings from the
battery interface and a suite of machine learning techniques.
The first challenge can be further tackled by extending the
Shapley value theory to work without E(S) for all S ⊆ N ,
or a partially defined multi-player game. Finally, to address
the third challenge, one can incorporate hardware states as
a condition into E(S), or estimate system energy consump-
tion for a coalition S given the hardware state s, E(S|s).
As a result, one can apply Shapley value separately to time
intervals with a given hardware state.
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