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Abstract—We present a set of five axioms for fairness measures remains unclear what it means to say that 3 is more fair
in resource allocation. A family of fairness measures satfging thana = 2.

the axioms is constructed. Well-known notions such as-fairness, Clearly, these two approaches for quantifying fairess are

Jain’s index, and entropy are shown to be special cases. Pregies . . o :
of fairness measures satisfying the axioms are proven, inaling different. On the one handy-fair utility functions are con-

Schur-concavity. Among the engineering implications is a gn- tinuous and strictly increasing in each entry xf thus its
eralized Jain's index that tunes the resolution of the fairress maximization results in Pareto optimal resource allocetio

measure, a new understanding ob-fair utility functions, and an  On the other hand, scale-invariant fairness measures {baes

interpretation of “larger « is more fair”. We also construct an map x to the same value as a normalize}l are unaffected

alternative set of four axioms to capture efficiency objecties and . .

feasibility constraints. by the magnitude ok, and an allocation that does not use
all the resources can be as fair as one that does. Can the two

I. QUANTIFYING FAIRNESS approaches be unified?
Given a vectox € R, wherez; is the resource allocated To address the above questions, we develop an axiomatic
to user:, how fair is it? approach to measure fairness. We discover that a set of

One approach to quantify the degree of fairness associafiveé axioms, each of which simple and intuitive, can lead
with x is through a fairness measure, which is a functfon to a useful family of fairness measures. The axioms are:
that mapsx into a real number. Various fairness measures hatlee Axiom of Continuity, of Homogeneity, of Asymptotic
been proposed throughout the years, e.qg., in [1], [2], [&], [ Saturation, of Irrelevance of Partition, and of Monototyici
[5], [6]. These range from simple ones, e.g., the ratio betweStarting with these five axioms, we cageneratea family of
the smallest and the largest entriesxoto more sophisticated fairness measures from a generator functjoany increasing
functions, e.g., Jain’s index and the entropy function. 8amh and continuous function that leads to a well-defined “mean”
these fairness measures mapo normalized ranges betweerfunction (i.e., from any Kolmogorov-Nagumo function [16])

0 and 1, where 0 denotes the minimum fairness, 1 denotes Hue example, using power functions with expongénhas the
maximum fairness, often corresponding to-amwhere allz; generator function, we derive a unique family of fairness
are the same, and a larger value indicate more fairness. Rwasuregs that includes all of the following as special cases,
example, min-max ratio [1] is given by the maximum rati@epending on the choice of: Jain’s index, maximum or
of any two user’s resource allocation, while Jain’s indek [3minimum ratio, entropy, and-fair utility, and reveals new
computes a normalized square mean. How are these fairn@gmess measures corresponding to other ranggs of
measure are related? Is one measures “better” than any?othetn particular, forg < 1, well-known fairness measures (e.g.,
What other measures of fairness may be useful? Jain’s index and entropy) are special cases of our conginjct

An alternative approach that has gained attention in tla@d we generalize Jain’s index to provide a flexible tradeoff
networking research community since [7], [8] is the optibetween “resolution” and “strictness” of the fairness nueas
mization theoretic approach ai-fairness and the associated-or 5 > 0, «-fair utility functions can be factorized as the
utility maximization. Given a set of feasible allocatiores, product of two components: our fairness measure with «
maximizer of thea-fair utility function satisfies the definition and a function of the total throughput that captures theescal
of a-fairness. Two well-known examples are as follows: ar efficiency, of x. Such a factorization also quantifies a
maximizer of the log utility functiondq = 1) is proportionally tradeoff between fairness and efficiency in achieving Paret
fair, and a maximizer of the-fair utility function withae — oo dominance with the maximum possibte and facilitates a
is max-min fair. More recentlya-fair utility functions have clearer understanding of what it means to say that a laiger
also been connected to divergence measures [9], and in [18];more fair” for generakx € [0, 00).

[11], the parametes: was viewed as a fairness measure in the The axiomatic construction of fairness measures also illu-
sense that a fairer allocation is one that is the maximizemnof minates their engineering implications. Any fairness roeas
o-fair utility function with largera. — although the exact role satisfying the five axioms can be proven to have many useful
of « in trading-off fairness and throughput can sometimes Ipeoperties, including Schur-concavity [14]. Consequgrahy
surprising [12]. While it is often held that — oo is more operation balancing resources between two user alwayksesu
fair than « = 1, which is in turn more fair thamy = 0, it in a higher fairness value, extending previous resultsgusin



majorization to characterize fairness [4], [13].

first introduce the following set of axioms aboyit whose

The development of an axiomatic theory of fairness takexplanations and implications are given next.

another turn towards the end of the paper. By removing thel)
Axiom of Homogeneity, we propose an alternative set of
four axioms, which allows efficiency of resource allocation )
be jointly captured in the fairness measure. We show how
this alternative system connects with constrained optition
based resource allocation, where magnitude matters due to
the feasibility constraint and an objective function theatdrs
efficiency.

The rest of this paper is organized as follows: The five
axioms for fairness measures are introduced and discussed i
Section Il. Schur-concavity and other properties are pidoe
any fairness measure satisfying the five axioms in Section Il
We construct a unique family of fairness measures in Sec-
tion IV and discuss its relation to previous work. Genegiz
Jain’s index is revealed from this family of fairness measur
in Section V. Section VI provides a new understanding of
a-fairness by establishing a connection of our fairness oreas
to the «-fair utility functions. In Section VII we propose a
second set of axioms that directly incorporates a notion of
efficiency. Concluding remarks are made in Section VIII. Due
to space limitations all proofs can be found in the onliné ful
version [19], together with a discussion contrasting ttapgr
with the well-known axiomatic theories of Nash bargaining
solution and Shapley value in economics. Main notation is
shown in Table I.

4)

Axiom of ContinuityFairness measurg(x) is continu-
ous onR? for all integern > 1.

Axiom of HomogeneityFairness measurg(x) is a
homogeneous function of degree 0:

fx)=f(t-x), Vt>0. Q)

Without loss of generality, for a single user, we take
|f(z1)| =1 for all z; > 0, i.e., fairness is a constant
forn = 1.

) Axiom of Asymptotic Saturatiofairness measurg(x)

of equal resource allocations eventually becomes inde-
pendent of the number of users:

. f(1n+1)
)

Axiom of Irrelevance of Partitionlf we partition the
elements ofk into two partsx = [x',x?], the fairness
index f(x!,x?) can be computed recursively (with
respect to a generator functigily)) and is independent
of the patrtition, i.e.,

2
o) = f (ot (3o 706) ).
- 3)

where w(x!) and w(x?) denote the sum of resource
vectorsx! andx? respectively, ang(y) is a continuous
and strictly monotonic function that can generate the
following function h:

h=g! (Z sig (f(xi))> :

with positive weights satisfying _, s; = 1 such thath
qualifies as aneanfunction [15] of { f(x?), Vi}.

Axiom of Monotonicity.For n 2 users, fairness
measure f(6,1 — #) is monotonically increasing as
the absolute difference between the two elements (i.e.
|1 — 26|) shrinks to zero.

—1. @)

(4)

Variable Meaning
x Resource allocation vector of length
x! Sorted vector with smallest element being first
w(x) Sum of all elements ok
fC), fa() Fairness measure (of paramet®r
g(+) Generator function 5
S Positive weights for weighted mean )
1, Vector of all ones of lengtm
Xry Vector x majorizes vectory
Parameter for power functiog(y) = y°
Ua(+) a-fair utility with parametera
H() Shannon entropy function
J() Jain’s index
Dr(4) Our utility for fairness and efficiency

TABLE |
TABLE OF MAIN NOTATION.

II. AXIOMS

Axioms 1-2 are very intuitive. The Axiom of Continuity
says that a slight change in resource allocation shows up
as a slight change in the fairness measure. The Axiom of
Homogeneity says that the fairness measure is indepentlent o
the unit of measurement or absolute magnitude of the resourc
allocation.

Due to the Axiom of of Homogeneity, for an optimization
formulation of resource allocation, the fairness meagi(se)
alone cannot be used as the objective function if efficiency
(which depends on magnitude’, z;) is to be captured. In
Section VI, we will connect this fairness measure with an
efficiency measure im-fair utility function. In Section VII,
we will remove the Axiom of of Homogeneity and propose an

Let x be a resource allocation vector withnon-negative alternative set of axioms, which make measfife) dependent

elements. A fairness measuféx) is a mapping fromx to
a real number, i.e.f : R} — R, for all integern > 1. We

on both magnitude and distribution of, thus capturing
fairness and efficiency at the same time.



Axiom 3 is a technical condition used to ensure uniqueve denote the resource allocation at level 1 by a vector
ness of the fairness measure and invariance under change ef [w(x!),w(x?)] and if the resource allocation at level
variable by fixing a scaling. For example, suppgde) is a 2 are equak! = x? =y, it is straight forward to verify that
fairness measure satisfying all axioms (with respect to ammeAxiom 4 implies
functiong(y)) except Axiom 3. It is easy to see that by making
a logarithmic change of variables, fairness meadugef (x) fly®z) = f(y)- f(2), (6)
also satisfies all axioms, respect to a mean funatiéti, other

! where ® is the direct product of two vectors. As we will
than Axiom 3.

show in Section VII, an extension of equation (6) gives an
alternative way of stating Axiom 4 and leads to a set of more
general axioms on fairness.

Initial: > w Axiom 5 is the only axiom that actually involves\alue
_ i=1 N statement on fairness: when there are just two users, more
. . equalized is more fair. This axiom specifies an increasing
Level 1: S S @ direction of fairness and ensures uniquenesp(gf). Consider
i=1 i=ht1 the allocation of a unit resource to two usersas [0, 1—6)].
7N 7N It is intuitive that fairness strictly improves s— % since the
Level 2 @1,...,%5  Thyl,--->Tn difference between the two resource shares tends to bessmall
TABLE I This intuition also holds for all existing fairness measyeg.,

ILLUSTRATION OF THE HIERARCHICAL COMPUTATION OF FAIRNESS Various, Spread, deviation, max-min ratio, Jain's mdﬁxa”-
utility, and entropy.
So f f Axi 1-3 thenstructionof By definition, axioms are true, as long as they are consistent
S0 far, none or AXIoms 1-3 CONcerns thenstructionol  5nq non-redundant. However, not all sets of axioms are lisefu
fairness measure as the number of users varies. A hlerafchu:hifying known notions, discovering new measures and prop-
c:?nstrucnon OJ fglrn(]::'s.s is defined in I?Rf\xmmRA fWh'Chbrties, and providing important insights. We start showtimg
allows us to derive faimess measufe: R} — Of ™ yse of the above five axioms with the following existence (the

users Le_iUfSIVEW from lower dimensiong,: R} — R ar_1d axioms are consistent) and unigueness results. All praads ¢
f+ RY™" — R for integer0 < k < n. The recursive be found at [19].

computation is illustrated by a two-level representation i
Table II. Letx! = [z1,..., 2] andx? = [zx41,...,7,]. The
computation is performed as follows. At level 1, since th
total resource is divided into two chunks(x!) andw(x!),
fairness across the chunks obtained in this level is medsu
by f (w(x'), w(x?)). At level 2, the two chunks of resources f(1) =n"-f(1), (7)
are further allocated té andn — k users, achieving fairness
f(x') and f(x?), respectively. To compute overall fairness oWvherer is a constant exponent.
the resource allocatior = [z, 22, ..., z,], we combine the  Theorem 2:(Uniquenes3.Given a generator functiop the
fairness obtained in the two levels using a multiplication iresulting f(x) satisfying Axioms 1-5 is unique.
equation (3).

As we consider a continuous and strictly increasing gen- Ill. PROPERTIES OFFAIRNESSMEASURES
erator functiong(y), the function (4) is a mean value [15] e first prove an intuitive corollary from the five axioms
for {f(x"),vi}, which represents the average fairness @hat will be useful for the rest of the presentation.

individual parts ofx. The set of generator functions giving rise Corollary 1: (Symmetry. fairness measure satisfying Ax-
to the same fairness measures may not unique, e.g., Io@ariﬁgms 1-5 is éymmetric ovér

and power functions. The simplest case is wheis identity

Theorem 1:(Existence. There exists a fairness measure
é(x) satisfying Axioms 1-5. Furthermore, the fairness
achieved by equal-resource allocatiahs is independent of
}ge choice ofg(y), i.e.,

ands; = 1/n for all i. A natural choice of the weighy; in flay,ma, .o xn) = f(@i), Tigy oo T4, ), (8)
(3) is to choose the value proportional to the sum resource

of vectorx'. More generally, we will consider the followingWhere i1, ....i, is an arbitrary permutation of indices
weights 1,...,n.

The symmetry property shows that the fairness measure
i = m, (5) f(c\; satisfying Axiorr_ws 1-5is irre!evant of Iabgling qf users.
e now make a direct connection of our axiomatic theory
wherep > 0 is an arbitrary exponent. Whem= 0, weights to a line of work on measuring statistical dispersion by
in (5) are equal and lead to an un-weighted mean in Axiom dector majorization, including the popular Gini Coeffidien
As shown in Section 4, the paramejeican be chosen such[18]. Majorization [14] is a partial order over vectors taidy
that the hierarchical computation is independent of partit whether the elements of vectarare less spread out than the
as stated in Axiom 4. As a special case of Axiom 4, i€lements of vectoy. We say thatx is majorized byy, and

wP (x?)



we writex <y, if >0, z; = > 1, y; (always satisfied due IV. A FAMILY OF FAIRNESSMEASURES

to Axiom 2) and A. Constructing Fairness Measures
d d For any functiong(y) satisfying the condition in Axiom 4,
sz < Zyl, ford=1,...,n, (9) we can generate from(y) a uniquef(x). Such anf(x) is a
i=1 i=1 well-defined fairness measure if it also satisfies Axioms.1-5

" " , + + We then refer to the correspondipgy) as a generator of the
wherez; andy,; are theith elements ofx' andy', sorted t,iness measure.

in ascending order. According to this definition, among the o i . : . .
. . Definition 1: Functiong(y) is a generator if there exists a
vectors with the same sum of elements, one with the equal S : .
x) satisfying Axioms 1-5 with respect t@(y).

elements is the most majorizing vector. ) _
Intuitively, x < y can be interpreted ag being a fairer We note, however, that different generator functions may

allocation tharx. It is a classical result [14] thatis majorized 9€nerate the same fairness measure. Although it is difficult
by y, if and only if, from x we can produce by a finite to find the entire set of g_eneratogsy), we.have found th_at
sequence of Robin Hood operations. many forms ofg(y) functions (e.g., logarithm, polynomial,

Majorization alone cannot be used to define a fairnegéponential, and their combinations) result in fairnessame

measure since it is a partial order and fails to compare rrect?ureﬁ equ:\t/alent _to tthose dgetnera_tedd bfy Tlhfe _famlly of power
in certain cases. Still, if resource allocatienis majorized unctions. ft remains to be determined It all fairness meesu

by y, it is desirable to have a fairess meastirsuch that satisfying Axioms 1-5 can be generated by power functions.

; . . ) o
£(x) < f(y). A function satisfying this property is known 'N this section, we consider power functiongy) = |y|”.

as Schur-concave. In statistics and economics, many nmsglarameterized by and derive the resulting family of fairness

of statistical dispersion are known to be Schur-concayg, e1'€asures, which indeed satisfy all the axioms. The absolute
alue ensures that(y) is non-increasing oveR ;. for 8 > 0,

Gini Coefficient and Robin Hood Ratio [18], and we show ouf .
fairmess measure also is Schur-concave: and overR_ for 5 < 0. From here on, we replace Equation

. . .~ (3) in Axiom 4 by
Theorem 3:(Schur-concavity.A fairness measure satisfy-

ing Axioms 1-5 is Schur-concave:

2 B
f(xl,XQ) =f (w(xl)aw(XQ)) ) < 84 fﬁ(xz)> s
f(x) < fly), if x=y. (10) ;

where the weights; are given by (5).

l\_lex; we present several properties of fairmess MeasUreSheorem 4:(Fairness measures generated by power func-
satisfying the axioms, whose proofs rely on Schur-conyawttions) For power mean ((y) = |y with parameterg),

Corollary 2: (Equal-resource allocation is fairestd fair-  Axjoms 1-5 define a unique family of fairness measures as
ness measurg(x) satisfying Axioms 1-5 is maximized by fgllows

equal-resource allocations, i.e.,

n 1-8r] B
f(1,) = max f(x). (11) f(x) = Z ( i ) , for Br <1 (14)
i=1

xER® > T

Corollary 3: (Collecting a fixed-tax is unfair)f a fixed n 1-pr 7
amountc > 0 of the resource is subtracted from each user fx) = — Z Li for Br > 1 (15)
(i.e. z; — c for all 7), the resulting fairness measure decreases Pl > T ’ -

f(x—c-1,) < f(x), VYe>0, (12) wherer = 1;—” is a constant exponent, which determines

the growth rate of maximum fairness as population size
wherec > 0 must be small enough such that all elements @icreases. ie.

x — ¢ 1,, are positive.

. . . 1,) =n"- f(1). 16
Corollary 4: (Inactive user achieves no fairnes®\hen a f(An) =n"- f(1) (16)

fairmess measurg¢(x) satisfying Axioms 1-5 is generated by For different parametep, the faimess measures derived
by p > 0 in 5, Removing users with zero resources does nghove are equivalent up to a constant expoment

change fairness: i
fo.0(x) = [fora]” (%), (17)

if we denotef;s , as the fairness measure with paramefers
andr. According to Theorem I; determines the growth rate
_ _ of maximum fairness as population sizeincreases. Without
Lin a Robin Hood operation, we replace two elemenjsand z; < x; | f lit h -1 h that th .
with z; — e and z; + ¢, respectively, for some € (0,z; — ;). In other 0ss o ger!era| y, we C OO_SJe— suc )a € maximum
words, we take from the richz(), and give to the poora;). average fairness per user is a consté%l"— = f(1). From

f(x,00) = f(x), Vn=1. (13)



a user’s perspective, her perception of maximum fairness is a

independent of the population size of the system. From now :

on, we will use a unified representation of the constructed 2 .

fairness measurers: !

n 1-877 2 ° :

. X; 0 :

fa(x) = sign(1 - 3) - Z(ZZ ) . (18) !

i=1 i g :

-4 :

where sigf-) is the sign function. :

We summarize the special cases in Table lll, wheére -6 :

sweeps from-co to oo andH (-) denotes the entropy function. peo ' ﬁ;gy

For some values off, the corresponding mean functign r s 0 s o

has a standard name, and for some, known approaches t B

measure fairness are_recovered’ while fore _(O’ _1) and Fig. 1. Plot of fairnessfz(x) for different values of3: 8 > 0 recovers the
B € (—1,—00), new fairness measures are discovered. Fofuglity-based approach, andl < 0 recovers the index-based approach.
fixed resource allocation vectar= [1, 2, 5], we plot fairness
f(x) for different values ofs in Figure 1.

changing other users’ allocation, the fairnes]s measures3in

xj B
increases if and only it; < & = ( 2 ) and0 < e <

Value of 3 Our Fairness Measure Known Names > zjl.*"
Xr — Z;.
B — oo — max; {% Max ratio .
i , Corollary 7: (L_ower bound under box—cons_tra_untslj) a
Be1,o0) _ [(1 —B)Uars (ﬁ)] i a-fair utility resource all_ocatlonX = [x1,22,..., %] satlsfles_ box-
) constraints, i.e.xmin < T; < Tmae TOr all ¢, the fairness
Be(0,1) [(1 — B)Waep (ﬁx))] 5 a-fair utility measures in (18) is lower bounded by a constant that only
depends o, Zimin, Tmaz:
B8—0 eH(w?x)) Entropy -5 1
- _ B
e \1-8r] F(x) > sign(1 — ) - WP+l -m)” (21)
pe- [ = (3) ] No name (L +1—p)7
2
p=-1 i =0 J(x) Jainsindex \yherel’ = Zmaz andy = % The bound is tight
1-prE when au fraction of users ave; = T4, and the remaining
B e (=1,-00) { i=1 (J(i;)) } No name 1 — p fraction of users have; = zin.
8= —oco min; {Z%} Min ratio These results provide intuition on how the family of fairaes
. measures may be interpreted and applied. Through Corol-
TABLE Il lary 5, by specifying a level of fairness, we can limit the

PREVIOUS RESULTS ARE RECOVERED AS SPECIAL CASES OF OUR  nymber of starved users in a system. Corollary 6 implies that
AXIOMATIC CONSTRUCTION. FOR3 € (0, —1) AND 3 € (—1, —0c0), NEW

FAIRNESS MEASURES OFGENERALIZED JAIN’ S INDEX ARE REVEALED. 7 serves as a threshold for identifying “poor” and “rich” user
since assigning an additionalamount of resource to useér
improves fairness ift; < z, and reduces fairness if; > Z.
B. Engineering Implications Additionally, this provides intuition into threshold meitis for

. . . allocating resources serially.
The fairness measurgg in (18) corresponding to the gen- g Y

erator functiong(y) = |y|® satisfies a number of properties, V. APPLICATION 1: GENERALIZING JAIN’S INDEX
which give interesting engineering implications to ourti@iss Wheng = —1 (i.e., harmonic mean is used in Axiom 4), we
measure. get a scalar multiple of the widely used Jain’s ind&) =
Corollary 5: (Number of inactive usershhe fairness mea- %f(x).
sures in (18) also count the number of inactive users in theypon inspection of (18) and the specific cases noted in
system. Whenfs < 0, f(x) — —oc if any user is assigned Table IIl, we note that any0, —co) U 3 € (0,1) the range
zero resource. Whefi > 0, of fairness measurgs;(x) lies betweenl andn. Equivalently,
Number of users with zero resoureen — f(x)(19) wle can say that the.fairnesprer gserre;ides in the interyal
_ S o [;_, 1]. When the limit as3 — 0 is considered, the resulting
Maximum resource to a user =-——. (20) fairness measure can also be shown to have this property.
F(x) Becausefs(x) for 4 < 1 has this characteristic, we refer
Corollary 6: (Threshold level of resourcel) we increase to this subclass of our family of fairness measures as the
resource allocation to usérby a small amount, while not generalization of Jain’s index.




Definition 2: Jz(x) = 1 f5(x) is a generalized Jain’s indexbetween f3(x) and # becomes linear, suggesting a stricter
parameterized by < 1. concept of fairness — for the same allocation,fas» —oco

The common properties of our fairness index proven fRore faimess is lost. Therefore, the paramgtean tune the
Section 11l and IV carry over to this generalized Jain's inde 9eneralization of Jain’s index for different tradeoffs between

For 8 = —1, J_1(x) reduces to the original Jain's index.  the resolution and the strictness of fairness measure.
VI. APPLICATION 2: UNDERSTANDING a-FAIRNESS
B=+0.5 Due to Axiom 2, the Axiom of Homogeneity, our fairness
2 - measures only express desirability over the- 1)-dimension
- l‘?W‘l | ‘ ‘ subspace orthogonal to thke, vector. Hence, they do not
0 01 02 5 10° 0.4 0.5 capture any notion of efficiency of an allocation.
2 We focus in this section on the widely appliedfair utility
. “ﬂ W function:
0 0.1 0.2 5 0.3 0.4 0.5 Ll S0, a1
=-2.5 Z— e
Uq(z;), where Uy(z) = ¢ 172 = )
I N (T
K3
Y 0.1 0.2 0.3 0.4 0.5 ] . - ) (24)
p=-4.0 We first show that the-fairness network utility function can

family of fairness measures we constructed and one corre-
sponding to efficiency. We then demonstrate that, for a fixed
Fig. 2. Plot of the faimess measufg (6, 1 —6) against, for resource allo- the factorization can be viewed as a single point on the @tim
cationx = [0,1— 6] and different choices of = {—4.0,-2.5, -1.0,0.5}.  tradeoff curve between fairness and efficiency. Furtheemor

It can be observed thafiz (6, 1 — 6) is monotonic ag8 — 1. Further, smaller this particular point is one where maximum emphasis is
values of|1 — 3| results in a steeper incline over sm@lli.e., the low-fairness _ ) o . .
region. placed on fairness while maintaining Pareto optimality hadf t
allocation. This allows us to quantitatively interpret thelief

of “larger « is more fair” across alla > 0.

- 1% | W be factored into two components: one corresponding to the
0 . . . :

Theorem 5:(Monotonicity with respect t@.) The fairness
measures in (18) is negative and decreasingdfar (1,00), A. Factorization ofe-fair Utility Function

and positive and increasing fgr ¢ (—oo, 1): Re-arranging the terms of the equation in Table IIl, we have

dfp(x) -
W S O fOI‘ ﬁ S (1, OO), (22) Ua:ﬁ(x) = ﬁ |fﬁ(x)|6 <Z xl)
3%") >0 for f € (—00,1). (23) |

f5(x)|” - Us <Z x> : (25)

The monotonicity of fairness measurgg(x) on 8 € i
(—o0,1) gives an engineering interpretation f Figure 2 whereUs (3, z;) is the one-dimensional version of thefair
plots fairnessfz (0, 1 —0) for resource allocatios = [#,1—6] utility function with o = 3. For 8 — 1, it is easy to show
and different choices ¢f = {—4.0, —2.5,—1.0,0.5}. The ver- that our fairness measurg(x), multiplied by a function of
tical bars in the figure represent the level sets of funcfiofor  throughput) ", z;, equalsa-fair utility function with o = 1.
valuesfs(6;,1—0;) = % (frmaz — fmin),1=1,2,...,9. For Similarly, for 3 — oo, it equals «a-fair utility function as
fixed resource allocations, singeincreases ag approaches « — oo. Therefore, Equation (25) also holds for proportional
1, the level sets off are pushed toward the region withfairness atx = 1 and max-min fairness at — oc.
small # (i.e., the low-fairness region), resulting in a steeper Equation (25) demonstrates that thdair utility functions
incline in the region. In the extreme case Bf = 1, all can be factorized as the product of two components: a farnes
level set boundaries align with the y-axis in the plot. Thmeasure,|f5(x)|ﬁ, and an efficiency measurés (>, x;).
fairness measurg’ point-wise converges to step functionsThe fairness measutés(x)|” only depends on the normalized
fs(0,1 — ) = 2. Therefore, parametes characterizes the distribution,x/(}", z;), of resources (due to Axiom 2), while
shape of the fairness measures: a smaller valye-efj| (i.e., the efficiency measure is a function of the sum resorcer;.
0 closer to 1) causes the level sets to be condensed in th&he factorization ofx-fair utility functions is illustrated in
low-fairness region. Table IV and decouples the two components to tackle issues

Since the fairness measure must still evaluate to a numisech as fairness-efficiency tradeoff and feasibilityxofinder
between 1 and here, the monotonicty and resulting shift ira given constraint set.For example, it helps to explain the
granularity of the fairness measure associated with vgrygin counter-intuitive throughput behavior in [12]: an alldoat
suggests differences in evaluating unfairness. At oneemér vector that maximizes the-fair utility with a largera: may not
{8 — 1 any solution where no user receives an allocation bk less efficient, because thefair utility incorporates both
zero is fairest. On the other hand,&s~ —oo the relationship fairness and efficiency at the same time.



Allocation: x When weight\ = 0, the corresponding points i is most

J \ efficient. When weight\ = %‘ it can be shown that the
Factorize: x/ 3, >imi factorization in (25) is equivalent to (26). Therefosefairness

! ! corresponds to the solution of an optimization that plabes t
Measure: fs (x/ Y, 2:) U (5, 2:) maximum emphasis on the fairness measure parameterized by

N / 8 = « while preserving Pareto optimality. Allocations ih
Combine: Un—p(x) corresponding to other values afachieve a tradeoff between

fairness and efficiency, while Pareto optimality is preserv
TABLE IV

ILLUSTRATION OF THE FACTORIZATION OF THE-FAIR UTILITY
FUNCTIONS INTO A FAIRNESS COMPONENT OF THE NORMALIZED
RESOURCE DISTRIBUTION AND A EFFICIENCY COMPONENT OF THE SUM

RESOURCE

B. Pareto Optimality in Fairness-Efficiency Tradeoffs A

Although Corollary 2 states equal allocation is fairest, an
a-fair allocation may not have an equal distribution. This is, L Fai .
because the additional efficiency component in (25) can skew
the optimizer (i.e., the resource allocation resultingrfre-fair
utility maximization) away from an equal distribution. For
this to happen there must exist an allocation that is feasibl | 2 25 3 a5 2
(within the constraint set of realizable allocations) wih i '
large enough gain in efficiency over all equal distribution @ (b)
allocafuons. Hence, the magnitude of this s_kewmg depends lgg. 3. (a) Feasible region (i.e., the constraint set of tilsyumaximization
the fairness parametet (= 3), the constraint set ok, and problem) where overemphasis of fairess violates Paremirgmce, and (b)
the relative importance of fairness and efficiency. its faimness-efficiency tradeoff fo = 3. Region A corresponds to Pareto
 Gided by the product form of (25), we consider a ScalaEi) ulens, Regon B uher e condion o Treoe volled
ization of the maximization of the two objectives: fairnessl
efficiency:

fa(x)

Figure 3(b) illustrates an optimal fairness-efficiencyltaff
Pa(x) =M (fs(x)) + ¢ (Z sz) ; (26) curve{ [f5(x), Siz], ¥x = arg maxxep ®a(x), VA p corre-

L sponding to the constraint set shown in Figure 3(a). Thefset o
where§ € (0,1) U (1,00) is fixed, A & [0, 00) absorbs the o qiinizarsp in (29), which is obtained by maximizing Pareto
exponents in the fairess component of (25) and is a weighf imay tilities (26), is shown by curvel in Figure 3(b).
specifying the relative emphasis placed on the fairness, an ’

27) C. Why Largera is More Fair

In the previous subsection we demonstrated the factosizati
5) is an extreme point on the tradeoff curve between fagne
and efficiency for fixe@d = . What happens whem becomes

(y) = sign(y) log(|y|)-

factorization of (25) from the sum in the scalarized (26).
An allocation vectok is said to be Pareto dominated byf bigger?
zi < y; for alli andz; < y; for at least some. An allocation We denote by« the gradient operator with respect to the
, . o . x
is called Pareto optimal if it is not Pareto dominated by aector x. For a differentiable function, we use the standard
other feasible allocation. If the relative emphasis on igfficy . : d - b ' h di f
is sufficiently high, Pareto optimality of the solution caa b'"er Product («,y) = >, ziy;) between the gradient o
y high, p y of the solution ca . - S
. A ... " the function and a normalized vector to denote the direation
maintained. To preserve Pareto optimality, we require that

Pareto dominates, then® (y) > B (x) derivative of the function.
y ' MY A Theorem 7: (Monotonicity of fairness-efficiency reward ra-

Theorem 6: Preserving Pareto optimalitfthe necessary tio.) Let allocationx be given. Definep = 11 X as

i i - ati nen = 51— =5 @
and sufficient condition or\ such that®(y) > ®A(x) if  the vector pointing from the allocation to the nearest feis
y Pareto dominates is

maximizing solution. Then the fairness-efficiency rewaatia:

<Van—ﬁ (), ﬁ> (30)

Consider the set of maximizers of (26) farin the range <Van—ﬁ(X)7 1_">
in Theorem 6: 1]l

r< |2 ‘ (28)

S

P— {X % = argmax By (x), VA < ‘ Jé] 5‘ } (29) is non-decreasing with, i.e. highera gives a greater relative
pdS —

1 reward for fairer solutions.



The the choice of direction is a direct result of Axiom 2 3')
and Corollary 2, which together imply thatis the direction
that most increases fairness and is orthogonal to incréases
efficiency.

An increase in either fairness or efficiency is a “desirable”
outcome. The choice ofv dictates exactly how desirable
one objective is relative to the other (for a fixed alloca}ion
Theorem 7 states that, with a larges there is a larger
component of the utility function gradient in the directioh
fairer solutions, relative to the component in the direttod
more efficiency. Notice, however, that comparison must be
in terms of the ratio between these two gradient components
rather than the magnitude of the gradient, and both fairnesg)

Axiom of Irrelevance of SplittingFor an allocation
vector x = [z1,x2], we split each element; into
multiple elements by a direct produgty!, wherey!

is a non-negative vector. If the splitting vectors have
equal weightsw(y1) = w(y?), the fairness of the new
allocation vectorz;y!, z2y?] is given by

F(zy', ay®) = F(x) g~ <Z Sivg (F(yi))> :

;=1

1 (32)
where ) . s; = 1 are positive weights ang(y) is a
continuous and strictly increasing function.

Axiom of Monotonicity.For n 2 users, fairness

and efficiency may increase simultaneously.

This result provides a justification for the belief that larg
a is “more fair”, not just fora € {0, 1, 00}, but for anya €
[0,00). Figure 4 depicts how this ratio increases with= (
for some examples allocations.

I o ©
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‘
.
[y
Ly
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Fairness—Efficiency Reward Ratio

o
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.

Fig. 4. Monotonic behavior of the ratio (30) as a functionoofThree fixed
allocations are considered, and solutions that are alreadse fair have a
lower ratio.

measureF'(z1,x2) increases as ratio; /x2 goes to 1,
when sum resource; + - is fixed.

Axioms 1 and 2 remain the same as Axioms 1 and 3
before. Axiom 4 is equivalent to Axiom 5 with the additional
qualification that the sum-resource does not change. This
qualification was previously unnecessary due to Axiom 2 —
f(x) does not vary with the amount of total resources —
however, is now required in the new set of axioms. Axiom 3
is used to recursively construct fairness measkife) from
lower dimensions and is similar to the Axiom 4. The vector
[z1y1, 22y2] can be viewed as a generalized direct product of
vectorx with two different vectorgs* andy?, which split the
resource of each element &fto multiple users. Ify! = y?2,
this splitting reduces to a direct product.

Since the Axiom of Homogeneity is removed, fairness
measuref’(x) depends on the absolute magnitude of resource
vector x. Using Axiom 3, we can prove thatF'(x) is a
homogeneous function of real degree. Furthermore, the two
sets of axioms are equivalent, if the order of homogeneity
is zero. This means that the new axiomatic system is more
general than the original one.

Theorem 8:(Existence and Uniquenes$:or each genera-

tor g(y), there exists a unique fairness measki(&) satisfying
Axioms 17— 4. We have,

(33)

VII. ALTERNATIVE AXIOMS
Given a set of useful axioms, it is important to ask if .
by
modifying some of the five axioms here, for example, Axiom 2 F(x) = f(x)- (Z xl)
that decouples the concern on efficiency from fairness, what i
of axioms lead to the construction of fairness measures thgifness measure satisfying Axioms 1-5 with respect to the
do not automatically decouple from the notions of efficiencygame generatay(y).

other useful axiomatic systems are possible. By removing or
kind of fairness measures will result? Can an alternative Sﬁhere% € R is the degree of homogeneity anfdx) is a
and feasibility of resource allocation?

In this section, we propose a set of alternative axioms, Mhigymmetry

includes Axioms 1-5 as a special case. Eet R} — R be

While it is easy to verify that some properties, like that of
in Section Il also hold for fairness measilx),
some properties of fairness measures satisfying Axioms 1-5

a general fairness measure satisfying four axioms as fellow, e |4t in the generalization. For instance, we can no longe

1’) Axiom of ContinuityFairness measurg'(x) is contin-
uous onR” for all integern > 1.

2') Axiom of Asymptotic Saturatiofairness measurg(x)

say that equal allocations are best.
When power generatorgy) = |y|® are considered, from
Axioms I'— 4 we can derive fairness measure » (x), which

of equal resource allocations eventually becomes inde-parameterized by both and 5,

pendent of the number of users:

F(1,
lim 7( +1)

=1
n—oo F(Ly)

(31)

1

Fpa(x) = fp(x) - <Z x) :

(34)



This unifies our results in Sections IV-VI: Generalized 3ainbe a function dependent on the feasible region of allocation
index is a special case df »(x) for 1/A =0 and3 < 1; These possibilities mean that alternative sets of axioms of
fairness measurgs(x) is a subclass ofz z(x) for A = 0; fairness, ones with a value statement different from that in
and a-utility is obtained for1/A = 3/(1 — 3) and8 > 0 Axiom 5 or Axiom 4 in this paper, deserve further exploration.

by comparing (34) and (26). The degree of homogenkgity
determines howFs »(x) scales as throughput increases. The
decomposition of fairness and efficiency in Section VI is no¥
an immediate consequence from Axioms$— #'. 2
There is a useful connection with the characterization 09
a-fair utility function in the last section. The absolute wal (3]
|A| is equivalent to the parameter used for defining the utility
function (26) in Section VI.B. From Theorem 6, we carmy]
conclude that fairness measufg ,(x) is Pareto optimal if
|8

and only if
A~ 1—ﬂ" [6]

For everyg, there is a minimum degree of homogeneity such
that Pareto optimality can be achieved. When inequality (351
is not satisfiedFj3 »(x) loses Pareto optimality and produces
less throughput-efficient solutions if it is used as an dbjec [g]
function in utility optimization. Fairness measures withal
degree of homogeneity/\ are more suitable for computing[g]
index values of fairness.

The degree of homogeneity of a fairness measure satisfyin
of fairness and efficiency. Moreover, when power functionsi]

(5]

! (35)

Axioms 1— 4 parameterizes a tradeoff between the conce[ﬁ
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