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Abstract—Customizing program binary and communication
features is a commonly adopted strategy to counter network
security threats like session hijacking, context confusion, and im-
personation attacks. A potential attacker may have enough time
to launch an attack targeting these vulnerabilities by rerouting
the target request to a malicious server or hijacking the traffic.
This paper presents a novel system Verify-Pro, a framework
for server authentication using communication protocol dialects,
to customize the communication features, enforce continuous
authentication, detect the adversary, and prevent sensitive in-
formation leakage. Specifically, we leverage a machine learning
approach (pre-trained neural network model) on both client and
server machines to trigger a specific dialect that dynamically
changes for each request (e.g., get filename in FTP). Then,
a decision tree algorithm is developed to automatically detect
the adversary and terminate the entire session if the message
is from an adversary. We implement a prototype of Verify-
Pro and evaluate its practicality on standard communication
protocol: FTP (File Transfer Protocol) and present a case study
of the internet of things protocol MQTT (Message Queuing
Telemetry Transport). Our experimental results show that by
sending misleading information through message packets from
an attacker at the application layer, the recipient can identify
whether the sender is genuine or spoofed, with a negligible
overhead of < 1%.

Index Terms—Program customization, Protocol dialects, Ma-
chine Learning, Network security, Authentication.

I. INTRODUCTION

Communication protocols form the backbone of distributed
computing infrastructure, where applications rely on data
transfers to execute their tasks. It is, therefore, critical to
preserve their security to avoid adversaries from exploiting any
loopholes, bugs, and misconfigurations inherently embedded
in the relevant software services. Numerous attacks in this
threat space have been widely studied in the past- examples
include obscuring network sources [1], [2], impersonating
genuine sites [2], [3], MitM attacks through hijacking the
request packets [4], where the attackers can easily launch them
remotely without establishing a physical connection to their
victims. In 2020, Barracuda researchers reported that conver-
sation hijacking had increased 400% in 4 months [5]. Also,
most legacy systems, including naval assets, are vulnerable to
cyber attacks. To boost the security of such legacy systems,
automated techniques that let the network protocols adapt and
transform would be critical to achieve secure communication.

In many communication protocols (including the imple-
mentation of most popularly used protocols such as FTP [6],
HTTP [7] & MQTT [7]), authentication typically occurs prior

to the start of the session and this leaves them vulnerable to the
communication protocol’s attack surface. To counter them, we
seek techniques that would ensure continuous authentication
for every request in a session through cleverly leveraging
application layer features.

Existing methods are limited to increasing complexity
against potential attacks because low-level system proper-
ties (e.g., IP address [8], [9], TCP three-way handshakes [10],
port numbers and proxies [9]) offer limited degree of freedom
for mutation. Due to the above reasons, we design Verify-Pro
with protocol dialects that leverage application layer properties
and dynamically trigger a dialect to minimize the application
attack surface. The problem is further complicated in insecure
communication protocols like FTP, HTTP, and MQTT, as
the data is transferred via plain text. The extensive use of
these protocols and lack of continuous authentication for every
request motivated the need for continuous authentication. For
instance, the biggest file-sharing companies like Box.com and
BrickFTP use FTP for their services because of its compati-
bility with legacy systems [11].

In this work, we present Verify-Pro, a framework that
performs Protocol Feature Customization (PFC) by creating
protocol dialects for each request in the session to improve
the overall system security and maintain the core functionality
of the underlying communication protocol. In this paper, we
define protocol dialect as variations of a standard protocol
implementation at the binary level to incorporate additional
security measures. Variations can be in the form of mutating
message packets, generating different request-response trans-
actions based on a few environmental conditions.

Verify-Pro consists of three major modules: (1) Protocol
dialects (PDs), (2) Dialect Decision Mechanism (DDM), and
(3) Server Response Verification (SRV). The PDs module com-
prises several customized transactions used for communication
between the client and server. When a command (e.g., get
file.txt in FTP Protocol) is triggered by the client to retrieve a
file from the server storage, the DDM module in the client is
activated, and the request is fed as input to its neural network
and a response dialect ‘Di’ is determined for future verifica-
tion. We note that the dialect selection must be unpredictable
to eavesdroppers to prevent the hijacking attacks. To this end,
we deploy a pre-trained neural network model on both client-
server systems equipped with a customized design. In contrast
to the shared key, the proposed mechanism induces the ability
to dynamically and randomly change the indexing of dialect



for both client-server systems.
In addition, the DDM module provides a more secure way

to trigger a dialect and use that dialect as the handshake to
induce the system complexity (for the attacker) and resiliency
by randomly changing the dialects. The strategies applied to
the neural network are: 1. Uniform distribution of dialects
offers an advantage in making it hard for the attacker to reverse
engineer the neural network (guess the dialect number) as all
the dialects are evenly distributed across the sample requests.
2. Dialect selection based on cost property offers a flexible
neural network model to trigger the dialect with less cost
and make the system more efficient (least cost for a dialect
results in that dialect ‘Di’ predicted more frequently across
the sample requests). 3. Consolidated loss includes a trade-off
factor ‘a’ which decides the sensitivity to the above-described
properties. Since the client needs to verify the server’s dialect
in which the response was dispatched, the SRV module on
the client side verifies if the server responds to the request
using the ‘correct’ dialect ‘Di’. To our knowledge, this paper
is the first to use a neural network as a decision mechanism
(DDM) in triggering the dialects that dynamically change the
transactions for each request.

The main contributions of our work are as follows:

• We propose Verify-Pro, an automated framework for
applying communication protocol dialects as fingerprints
to authenticate servers. We harness different protocol
dialect implementations and leverage them to create
unique responses that help authenticate servers during
communication and improve security.

• Verify-Pro uses a neural network model to select a unique
dialect for response to be used for each request. The
motivation behind the neural network model is to deploy
a customized mechanism for the selection of dialect and
avoid reverse engineering attacks by adversaries.

• We design and implement Verify-Pro prototype on FTP
& MQTT, and evaluate its effectiveness using dialects as
fingerprints on a real-world setup. Our evaluation results
show that Verify-Pro can successfully counter the attack
surface and improve the security in File-sharing system.

II. THREAT MODEL

From an offensive perspective, the attacker’s objective is to
send an unwanted or malformed response to a target machine.
We consider a threat model in which an adversary can actively
divert the requests and responses exchanged between the client
and server machines. For example, the active adversary can
replay, use proxies, intercept, fabricate new messages and
stop messages from reaching their destination (by sending the
request to a malicious server)-request hijacking. In particular
an attacker can launch the context confusion attacks by setting
their base station in the same LAN as the victims, being able
to reroute the encrypted traffic (request), where the MitM
attacks rely on shared TLS certificates [4], [12]. Bugs related
to malicious response or lack of continuous authentication are
reported in CVE-2019-9760 and CVE-2021-41638 on FTP.
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Figure 1: Verify-Pro System Diagram.

We make the following assumptions to support the Verify-
Pro system: 1) The responses sent from server to client can be
malformed or replayed, and the request sent by the genuine
client can be hijacked to a flawed server. 2) We further
assume that the attacker has no means to access or directly
compromise the software, storage, and data structures of the
neural network executing on the client and server.

III. SYSTEM DESIGN

Verify-Pro consists of three major modules: (1) Protocol
dialects (PDs), (2) Dialect Decision Mechanism (DDM), and
(3) Server Response Verification (SRV). In Figure 1, we
provide an illustration of the Verify-Pro system diagram.

1) Phase 1: Protocol dialects (PDs): At the core of creating
customized protocol dialects, the important problem is to
understand the variations in the handshakes. We perform
PFC by implementing customized transaction functions (e.g.,
mutating the message format variations) in the communication
protocol. We leverage these handshakes, cross-graft them into
an existing communication protocol and use them as finger-
prints to verify the identity of the response sender. We design
fifteen dialects (in FTP) as a proof-of-concept, and they are
deployed in both client and server machines to communicate
effectively in one of the dialects triggered for each request.
We present few handshakes of FTP protocol in Figure 2 &
3a (due to page restriction we only provided eight dialects).
The server’s response to different dialects is highlighted in
green. Each dialect has a unique message structure that helps
the client identify the dialect number used by the server to send
its response. The protocol dialects are spawned as different
versions of a protocol deployed into the single communication
protocol binary. Furthermore, deploying dialects as threads
gives us an added advantage of minimal overhead and less
cost, as the triggering of each dialect happens in milliseconds.



2) Phase 2: Dialect Decision Mechanism (DDM): We
implement the DDM module as a deep neural network which
has input as the ‘request’ (e.g., get file.txt in FTP protocol),
label as the dialect number (ranges from 1 to 15). The output
of the DDM module will be used as the dialect number to
start the communication, and the customized handshake is
initiated. We make use of the NLP corpus of words https:
//norvig.com/ngrams/ for creating a customized dataset. Our
neural network requires the input to be the ‘request’ of the
communication protocol. The dataset only includes the list of
requests (e.g., get filename) as the model is constructed in
an unsupervised setting, as it contains a large set of 150K
unlabeled sample requests. We note that the dialect selection
must be unpredictable to eavesdroppers in order to prevent the
MitM- session hijacking and context confusion attacks [4]. To
this end, we deploy a pre-trained neural network model on
both client-server systems equipped with a customized design
with the following strategies:
Uniform distribution of dialects offer an advantage in mak-
ing it hard for the attacker to reverse engineer the neural
network (guess the dialect number) as all the dialects are
evenly distributed across the sample requests. We used entropy
maximization in the loss function for training. Here, the
P (yi) represents the occurrence of particular dialect number
of request yi (computed as the number of occurrences of
requests with a particular probability i divided by the number
of all requests of that particular family), log2 is a logarithm
with base 2, and M is the total number of dialects (classes).
This property makes the neural network model resilient as
the attacker will have to invest time and effort to predict or
inverse the model as all the dialects have an equal probability
of occurring.

Uniformity loss (l1) : min

M∑
i=1

(P (yi)log2(P (yi))) (1)

Dialect selection based on cost property offers a flexible
neural network model to trigger the dialect with less cost and
make the system more efficient (least cost for a dialect results
in that dialect number Di predicted more frequently across the
sample requests). We assume cost Ci (where Ci is the cost
of each dialect) for each dialect and P (yi) is the probability
distribution of choosing a dialect, then we aim to minimize the
sum of P (yi)× Ci which is the expected cost. M is defined
as the total number of dialects (classes). This property offers
the flexibility to make custom predictions based on the cost
individually assigned to each dialect. For example, to confuse
the middle attackers, we intended to communicate in dialect 4
with the highest chance of prediction, whereas dialect 8 should
have the least chance. In this case, we assign a higher value
as the cost to dialect 4, whereas the least number (cost) for
dialect 8. After training, the model would predict dialect 4 with
a high frequency instead of uniform distribution of dialects.
Customization with cost makes the system more flexible to
revise the prediction frequently and confuse the attackers.

Cost based dialect loss (l2) : min

M∑
i=1

(P (yi)(Ci)) (2)

Consolidated loss: We use the formula from equation (3) to
calculate the consolidated loss using a trade-off factor ‘a’, in
range [0,1]. The combination of these losses l1 (1) & l2 (2)
proved to be effective such as, by varying the ‘a’ value, the
prediction of dialects will gradually change from ‘finding the
dialect with low cost’ to ‘evenly distributing the dialects’
across the sample requests and allows a customized design
for prediction of dialects.

Consolidated loss (l3) : (a× l2) + ((1− a)× l1) (3)

3) Phase 3: Server Response Verification (SRV): After
receiving the server’s response, the client sends the response
as the input to the decision tree, which verifies the response
structure (format in which the packets are sent) of the sender’s
response (i.e., server’s response) to avoid overlapping with any
dialect’s response or any malicious response. In our decision
tree model, an input x is traversed in the tree learned on ∆.
For example in FTP protocol, we show our server response -
the input is:

Input: ‘P1: command/ P2: filename, length of filename’

For the learning purpose, we convert the input into sized
vectors, and we consider the data types with fields separated
by ‘,’ and the packets separated by ‘/’. Packet 1 (P1) has
a string as the first field for the above input, and packet
2 (P2) has a string as the first field and an integer as the
second field. Since we verify the data type of each field in
the packet and the structure of the packet, this compels us to
create a data set of 150K samples with random strings and
integers according to each dialect response pattern. Following
the vector conversion, the input is traversed through the
pre-trained model, and a class (dialect number) is predicted
with which that response structure matches. After verifying
the message pattern received and confirming the dialect, we
also verify the values of fields, as the client already knows
some information about the message it will receive (such as
command, length of command). We used CART [13] decision
tree for making the decisions to detect the adversary and
terminate the communication channel.

Figure 2: Request-Response of Dialect 1 and Dialect 6 in FTP.

IV. EVALUATION

We prototyped Verify-Pro on File Transfer Protocol (FTP)
program binary as a proof of concept. We customize the

https://norvig.com/ngrams/
https://norvig.com/ngrams/


FTP protocol on client-server systems to include 15 cus-
tomized transactions-protocol dialects to provide continuous
authentication for each request in the session. In Figure 3a,
we provide the list of all the protocol dialects. We create a
variety of dialects by changing the communication rules such
as packet mutation, generating different request-responses,
communicating in binary format. For example, in dialect 5, the
communication happens with numbers - 1 (means file exist) &
0 (means file does not exist), Dialect 7- divides a single packet
and sends the information in sub-packets. Dialect 4 sends the
file size in two separate packets, and in the same way, all
the dialects have a unique response structure before the file
is transferred. Our main aim is to detect the adversary in the
initial phase of a handshake so that the client can terminate the
connection without even entering the file transferring process.

(a) File Transfer Protocol Dialects (b) Timing diagram of GET

Figure 3: FTP dialects and timing diagram

Experiment Setup: Our experiments are conducted on a 3.20
GHz Intel(R) Core(TM) CPU i7-4790S machine with 15.5
Gigabytes of main memory. The operating system is Ubuntu
18.04 LTS. We choose FTP & MQTT as our preliminary
benchmarks. We implement the prototype of Verify-Pro based
on communication protocols to utilize the infrastructure of
dialect library, dialect pattern and decision tree based authen-
ticity verification in the form of several python modules. We
used the library scapy [14] and wireshark [15] for the com-
munication protocols implementation primitives and packet
capturing. Our code consists of 4800 lines of python code
compared with the default python implementation of target
program binaries (FTP & MQTT), together with 300 lines
of python code for automation and testing the communica-
tion protocols. To demonstrate the precursory experiments of
Verify-Pro against the attack surface mentioned above, we
created a setup containing proof-of-concept implementation
with the Verify-Pro knowledge base and according to the
system (experimental) resources available.
DDM module training process: Our model is a simple deep
neural network, which is able to map the input feature vectors
x = x1, ...xn (converting the ‘request’ into high-dimensional
vectors) consisting of n samples to an output yi (which is the
dialect number for a given request). The input of the neural

network has a size of n = 100 (vector for each request), fed as
a high dimensional feature vector. The model has two hidden
layers with 128 neurons each and ‘relu’ activation function
in each layer but the last layer has n neurons (n represents
the number of dialects) with ‘softmax’ activation function.
The ADAM optimizer was used for the training process. The
models were implemented by using Python3.6 and Keras [16]
with Tensorflow backend [16]. We used 15 neurons in the last
layer, 0.0001-learning rate, 100 epochs for cost loss and 100
epochs for entropy loss, 128-batch size, trained and tested the
model with 80%-20% ratio as the system configuration.
SRV module training process: We use the sklearn [16]
package in Python, to design a decision tree (CART [13])
without manually specifying the rules for decision making. To
train a CART decision tree classifier, given a training dataset,
the decision tree is obtained by splitting the set into subsets
from the root node to the children node. The splitting is based
on the rules derived by the Gini index. In our scheme, we only
consider the pre-trained decision tree model on the client-side
to verify the authenticity of the server’s response. We train the
classifier with max depth = 7, trained and tested the model
with 80%-20% ratio as the system configuration.

A. Customizing FTP

FTP [6], [11] is a standard communication protocol used
for data transfer between client-server systems. As a target
protocol for our proof-of-concept evaluation, FTP has two
main benefits: (a) a light-weight network protocol having finer
performance, flexibility, and ease in testing, and (b) It has less
complexity in design, supports in customizing the protocol at
the binary level for providing additional security measures.
FTP packet format contains IP header, TCP header and FTP
message (file). When a request ‘get filename’ is sent to
the server, the default FTP protocol has a request-response
handshake (shown in Figure 3b). After applying Verify-Pro
on FTP, the PDs module comprises a dialect library on client-
server machines. DDM module on both client-server systems
is used to choose a dialect ‘Di’ for each unique request ‘Ri’.
Request ‘Ri’ (undialected request) is sent to the server, and
the client awaits the response from the server to verify the
server identity. On the server-side, utilizing the request ‘Ri’
received from the client, the server uses the DDM module to
determine the dialect number ‘Di’ to send a dialected response
‘resp’ to the client. In turn, the client uses the SRV module
to validate the server’s response.

1) Analysis of Table Ia: In the end, we evaluate the execu-
tion overhead of Verify-Pro, by transferring a file of 20 bytes
with dialect eight and compare the results with standard FTP
(deployed dialect-8 template). Execution overhead metrics:
System time: Time recorded from the user login to a 20 byte
file transfer in seconds for Dialect 8 (Verify-Pro) and FTP
(deployed dialect-8 template).
DDM time: Time logged from triggering of the user request
to the prediction of dialect number.
SRV time: Time logged from feeding the response as input to
the Decision tree until outputting the dialect as confirmation.



To be concrete with our evaluation, we also check the overhead
of the modules which are added when compared with the
original FTP implementation. We present the overhead of
DDM and SRV modules. Since both these modules have pre-
trained models with a size of 12MB for neural network model
and 7KB for decision tree models, the execution time of
these modules is negligible. Besides the overhead of DDM,
SRV modules, the remaining overhead incurs when the client
verifies information of each field such as command, filename,
etc. Our PDs module does not incur any overhead. The dialects
are created as threads such that only one instance ‘Ci’ will
be activated for a given dialect ‘Di’ and for the unique
request ‘Ri’. To avoid potential statistical bias, we execute the
experiment multiple times and compute the average overhead
(see Table Ia). Precisely, we conclude that the addition of PDs,
DDM, SRV modules incurs 0.536% overhead (from system
time), which is trivial; in turn, the addition of these modules
enforces continuous authentication. Furthermore, the run-time
overhead for all the protocol dialects is < 1% (on average),
which is negligible.

(a) a = 1 for l2 loss & a = 0 for l1 loss

(b) a = 0 for l2 loss & a = 1 for l1 loss

Figure 4: Variations of charts with the trade-off factor a. This
graph shows dialect numbers on x− axis & requests on y − axis.

2) Case Study: FTP: To demonstrate the effectiveness of
our Verify-Pro tool, we create an attacker FTP server that im-
plements a spoofed (or impersonate) dialect of the FTP. Once
client and server (equipped with Verify-pro countermeasure)
systems are on the communication loop, the target request is
sent from a genuine client to a malicious server (connection

reset) by an MitM attacker [17] to launch the context confu-
sion attacks [4] and origin issues [18]. The malicious server
can start fabricating and sending malicious responses to the
genuine client. The communication channel between genuine
client and server systems is shown in Figure 5. The client
sends the get joyal.txt command (FTP passive implementation-
client sends the port number) to retrieve the file from server
storage. Communication happens with dialect-4 as the file
size is divided and sent in two packets. Figure 6 shows the
communication between client and attacker server machines
to retrieve loka.txt file from server storage. It is obvious
that the attacker server (as PoC, we used a shadow neural
network with 64 as batch size to show the dialect mismatch,
whereas our genuine server uses 128 as batch size) finds
it difficult to understand the dialect evolution pattern gener-
ated by the DDM module. The client-server systems share
a different neural network, subsequently selecting different
dialects for the same request and the handshake is aborted
with attacker server sending a response not found & no file is
transferred. The malicious server fails in the dialect evolution
phase, as continuous authentication is performed for every
request in the session and the client protocol dialect pattern
changes dynamically for every request. From the preliminary
experiments, we believe that our method helps to safeguard
the communication protocols by countering the attack vectors
such as rerouting the target request [4], malicious messages.
In particular, using the customized neural network helps us
choose the dialects and randomly change the pattern with
significantly less cost (training the model: 20 seconds).

3) Analysis of Table Ib: We present the attack success prob-
ability (i.e., 1/(no.of dialects)) to predict the correct dialect.
The increase in the number of dialects results in the attacker
having significantly less probability to predict the correct

Figure 5: Scenario-1: Client & Server communication channel



Performance analysis of Verify-Pro (FTP) vs. FTP
Performance Index FTP Verify-Pro (FTP)
CPU% Utilization <1% 1%
System time/sec 43.871 sec 44.106 sec
DDM model time/sec N/A (No DDM) 0.0723 sec
SRV model time/sec N/A (No SRV) 0.000525 sec

(only on client)

(a) Performance Metrics.

Probability for the attacker in predicting the correct dialect
Number of Dialects Property Success probability (%)
8 Uniform Distribution (l1) 12.5%
50 Uniform Distribution (l1) 2%
75 Uniform Distribution (l1) 1.33%
100 Uniform Distribution (l1) 1%
1000 Uniform Distribution (l1) 0.1%

(b) Attacker Success Probability.

MPD vs. Verify-Pro (FTP)
Prototype Execution

overhead (%)
MPD [19] 4.43%
Verify-Pro (our work) 1%

(c) Execution Overhead (%)

Table I: Evaluating the performance, attacker success probability & overhead of the designed Verify-Pro in FTP.

dialect. For instance, the attacker’s success probability with
the uniform distribution loss (l1) and the number of dialects
(=100) is 1% and will be even smaller when the dialects are
increased. On the other hand, when the cost-based loss (l2) is
used, only a specific dialect will be predicted more often and
obfuscates the attack surface. We observed zero correlation
between the two sample datasets by experimenting with the
two different testing datasets with 10K sample requests, each
using the uniform distribution and dialect selection with cost
properties. As our work is a PoC, we mainly show the analysis
of FTP protocol with fifteen dialects. Our customization frame-
work provides the broad capabilities that can be incorporated
into any communication protocol and provides an automated
program feature selection using the learning-based approach
(DDM). Further increasing the protocol dialects via deep
learning or formal analysis provides interesting directions for
future work.

4) Trade-offs of DDM module: In this section, we use
a trade-off factor a to show the flexibility of the DDM
module to adapt to different user requirements. To mini-
mize the compromise of communication between ships and
naval bases, we consider two base stations (bs-1 & bs-2)
to use a customized transaction (protocol dialect-1) to start
the communication. In that case, bs-1 sends the request to
bs-2 and then bs-2 (if it’s genuine) feeds the request ‘Ri’
to the DDM module and responds in a dialect ‘Di’. After
receiving the message, bs-1 deconstructs the message from
bs-2 and verifies the dialect number ‘Di’ of the sender’s
response. For instance, in scenario-1 (Fig 4b) to obfuscate
the eavesdropper, our prototype can be effective to minimize
the cyber attacks by communicating in different dialects by
assigning the full priority to the l1 loss. This practice eases the
message exchange between the two parties by using diverse set
of protocol dialects. On the other hand, in scenario-2 (Fig 4a),
the base stations bs-1 & bs-2 can communicate in a single
protocol dialect pattern for the entire session by assigning

Figure 6: Scenario-2: Client & Attacker-Server channel

full priority to the l2 loss and specifying highest cost to the
dialect according to user requirements. The interesting find
from Figure 4b is that, as the a value decreases from 1 to 0,
we observed that all the dialects are evenly distributed in such
a way that every dialect has an equal likelihood of happening.

B. Case study: Applying Verify-Pro knowledge base on MQTT

MQTT [7] is a standard lightweight IoT messaging protocol
that is used for IoT devices. It is a binary-based protocol,
which has command and command acknowledgment format.
The MQTT protocol payload carries the data such as binary,
ASCII data, etc. It uses packets of small size, hence offers
benefits for low bandwidth applications. MQTT publish packet
(Figure 7.) contains a fixed header (including control header),
variable header, and payload on the application layer [20]. The
client will send a publish packet to the server, and the server
will respond with ‘pub − ack’ message. The timing diagram
of connect packet and publish packet is shown in Figure 8.
MQTT connect packet (Figure 9.) contains the 2-byte fixed
header (always present), variable header and the payload on
the application layer. We programmed a standard MQTT client
and broker (server) and applied our Verify-Pro knowledge base
on them. We customized the publish and connect packets in
the MQTT protocol and we assume the client has to prove its
authenticity to the server.

Figure 7: MQTT publish packet format [20].

ServerClient

Establish Connection 

Publish packet
Request 

Publish Acknowledgement
Response 

MQTT-PUBLISH Packet

ServerClient

Establish Connection 

Request connection
(CONNECT)

Send acknowledgment
(CONNACK)

MQTT-CONNECT Packet

Figure 8: Timing diagram of MQTT publish & connect
packets.



Table II presents the protocol dialects applied on MQTT
protocol. Feature customization like including external fea-
tures (command name, length of command, etc.) can be
cross-grafted to the MQTT handshake to generate diverse
set of dialects. As can be seen from Table III, continuous
authentication can be implemented on MQTT with minimal
additional overhead (< 0.8%), less cost and can be deployed
incrementally, hence making it a scalable solution. Given its
security benefits, we believe that Verify-Pro can function as an
additional strong protection layer in conjunction with existing
authentication mechanisms. Execution overhead metrics:
System time: We compute the average time for all the dialects
(MQTT). We only recorded the system time for one complete
handshake. More precisely, the time the dialect is triggered
and gets the confirmation of dialect from another machine.

Dialect name Mutations done
1) Header shuffle (publish packet) Topic and message fields are switched
2) Mutation of payload (publish
packet)

A default MQTT has 1 topic and 1 value in each publish
packet, but this variant publishes the message with 2
topics and 2 values to save bandwidth

3) Mutation of payload (publish
packet)

Remove the topic field and send both topic and value as
a single packet

4) Drop bytes (connect packet) Drop keep-alive bytes
5) Field switching (connect
packet)

Protocol version and the connect flags are swapped

Table II: MQTT protocol dialects.

Performance Index MQTT Verify-Pro (MQTT)
CPU Utilization <1% <1%
System time/sec 4.293 4.325
DDM model time/sec N/A (No DDM) 0.0715 sec
SRV model time/sec N/A (No SRV) 0.000617 sec

(only on server)

Table III: Performance analysis of MQTT protocol

C. Impact on program security

An adverse side-effect of communication protocols, espe-
cially for FTP and MQTT, is that authentication typically oc-
curs before the start of the session. Even without removing any
required functionality, the software can also be transformed
to be more efficient. Program Feature Customization (PFC)
is one such technique for such situations to effectively protect
the system by enforcing continuous authentication to avoid the
adversary compromising a server which could lead to disas-
trous outcomes. Conversely, legacy systems supported commu-
nication protocols contain multiple user-desired features that
may be rarely used (unnecessary features from functionality
standpoint), which results in software bloat. Such rarely used
protocol features could be exploited by malicious parties as
back-door entries to gain access to sensitive information.

For instance, performing feature elimination (remove the
fields) on the keep-alive bytes (Table II) in MQTT connect
removes the CVE-2020-13849 vulnerability by curtailing the

Protocol name
length 

(2 bytes)

Protocol
Name

Protocol 
level

Connect Flag
byte

Keep
alive Payload

Variable header

Figure 9: MQTT connect packet format [20].

Denial of Service (DoS) attacks. We survey the known CVEs
of different programs that can be uprooted by our Verify-Pro
knowledge base. For instance, in MQTT, i) the CVE-2020-
6881, known as DoS vulnerability can be used to detect abnor-
mal messages by crafting the messages according to a dialect
pattern in Table II and enforcing continuous authentication; ii)
the CVE-2021-21967 which can cause denial of service, can
be negated by imposing continuous authentication to obfuscate
the middle attackers and changing the communication rules
for the publish packet; iii) CVE-2020-27220, CVE-2021-
3618, which have the weak authentication bug, can terminate
the connection with the attacker even after advancing the
username and password stage by enforcing continuous au-
thentication. The CVE-2021-41637, CVE-2021-41638, CVE-
2021-41638 (weak authentication problem), CVE-2016-4971,
CVE-2019-9760 (traffic hijacking bug: redirect target request
to attacker server) in FTP can be nullified by enforcing
continuous authentication for every request in the session.
In total, we found 10 CVEs in MQTT and FTP network
protocols during the 2019-2022 and one from 2016. Not all the
vulnerabilities can be directly eliminated by our PFC as some
vulnerabilities are the applications and program binaries of
the standard network protocols. As a preliminary experiment,
we performed feature cross-grafting, feature elimination, and
protocol dialecting and used a custom-built learning-based
approach to the network protocol implementation. In all the
cases, Verify-Pro is validated, tested, and verified to ensure that
it does not break the existing protocol functionality. Further,
to protect network communication’s privacy and data integrity,
TLS and SSL can be wrapped with the protocol dialects to
boost the security of the standard protocol.

V. RELATED WORK

In this section, we first discuss the existing efforts on
protocol customization and program binary analysis to reduce
vulnerabilities in real-world programs to develop the secured
version of the protocol binary. Further, we briefly discuss how
Verify-Pro is related to previous work in this research area.
Protocol Customization. Existing approaches focus on com-
munication protocol mutations by leveraging lower-level sys-
tem configurations (e.g., IP address) [9], [10], [21]–[23].
Different from these works, our scheme mainly focuses on
leveraging the application layer features in designing proto-
col dialects and enforces continuous authentication for every
request in the session. Ghost-MTD [24] proposed a protocol
mutation scheme that uses a previously shared one-time bit
sequence (OTBS). In this mechanism, the protocol variation
pattern should be predefined between the user and service
module of the server system. The closest work to this paper
is MPD [19], which dynamically customizes a communica-
tion protocol into various protocol dialects by leveraging the
application layer properties to create a moving target defense
with an execution overhead of 4.43% (includes randomization,
pseudo-random function, and consistent hash mapping, which
suffer overhead problems). Our approach, however, uses a
DDM module to trigger a dialect instead of using randomiza-



tion properties by achieving 77% less computation overhead
than MPD [19]. In contrast to the previous works, some works
focus on fingerprinting methods [8], [25], [26]. For instance,
Hfinger [26] a malware fingerprinting tool that extracts the
information from the parts of the request such as URI, protocol
information, headers, etc., and generates fingerprints.
Program binary analysis. Binary analysis and program
rewriting techniques have been widely employed in the se-
curity research to remove undesired code in the program
binary to reduce the attack surfaces [27]–[30]. In MORPH [28]
and Hecate [29], deep learning-based methods are used for
trace analysis, which provides insights into our design by
deploying a deep learning-based decision model to trigger a
communication protocol variant and their constituent functions
by mapping the requests to a program feature.

VI. CONCLUSION

We presented a novel framework Verify-Pro, which aims
to use the dialects as fingerprints during communication and
dynamically select them to enforce continuous authentication.
Empirical results indicate that Verify-Pro can minimize the
attack surface, assist in effective communication, and improve
overall system security while incurring negligible execution
overhead of <1% for the network protocols (FTP & MQTT)
and achieves 77% less overhead compared to MPD [19].
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[7] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of

communication protocols for internet of things and related challenges of
fog and cloud computing integration,” ACM Computing Surveys (CSUR),
vol. 51, no. 6, pp. 1–29, 2019.

[8] S. Hao, N. A. Syed, N. Feamster, A. G. Gray, and S. Krasser, “De-
tecting spammers with snare: Spatio-temporal network-level automatic
reputation engine.” in USENIX security symposium, vol. 9, 2009.

[9] J.-H. Cho, D. P. Sharma, H. Alavizadeh, S. Yoon, N. Ben-Asher, T. J.
Moore, D. S. Kim, H. Lim, and F. F. Nelson, “Toward proactive, adaptive
defense: A survey on moving target defense,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 1, pp. 709–745, 2020.

[10] E. Al-Shaer, “Toward network configuration randomization for moving
target defense,” in Moving Target Defense. Springer, 2011, pp. 153–
159.

[11] D. Springall, Z. Durumeric, and J. A. Halderman, “Ftp: The forgotten
cloud,” in 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE, 2016, pp. 503–513.

[12] E. S. Alashwali and K. Rasmussen, “What’s in a downgrade? a taxon-
omy of downgrade attacks in the tls protocol and application protocols
using tls,” in International Conference on Security and Privacy in
Communication Systems. Springer, 2018, pp. 468–487.

[13] L. Breiman, J. Friedman, C. Stone, and R. Olshen, “Classification and
regression trees chapman & hall,” New York, 1984.

[14] (2016) Scapy: the python-based interactive packet manipulation
program & library. supports python 2 & python 3. [Online]. Available:
https://github.com/secdev/scapy.git

[15] (1998) Wireshark: open-source packet analyzer. [Online]. Available:
https://www.wireshark.org/

[16] M. J. Douglass, “Book review: hands-on machine learning with scikit-
learn, keras, and tensorflow, by aurélien géron,” 2020.
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