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Value Functions Factorization With Latent State
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Abstract—The use of centralized training and decentralized ex-
ecution for value function factorization demonstrates the poten-
tial for addressing cooperative multi-agent reinforcement tasks.
QMIX, one of the methods in this field, has emerged as the leading
approach and showed superior performance on the StarCraft II
micromanagement benchmark. Nonetheless, its monotonic mixing
method of combining per-agent estimates in QMIX has limita-
tions in representing joint action Q-values and may not provide
enough global state information for accurately estimating single-
agent value function, which can lead to suboptimal results. To
this end, we present LSF-SAC, a novel framework that features
a variational inference-based information-sharing mechanism as
extra state information to assist individual agents in the value
function factorization. We demonstrate that such latent individual
state information sharing can significantly expand the power of
value function factorization, while fully decentralized execution can
still be maintained in LSF-SAC through a soft-actor-critic design.
We evaluate LSF-SAC on the StarCraft II micromanagement chal-
lenge and demonstrate that it outperforms several state-of-the-art
methods in challenging collaborative tasks. We further set extensive
ablation studies for locating the key factors accounting for its
performance improvements. We believe that this new insight can
lead to new local value estimation methods and variational deep
learning algorithms.

Index Terms—Machine learning, reinforcement learning, multi-
agent systems.

I. INTRODUCTION

R EINFORCEMENT learning has been shown to match or
surpass human performance in multiple domains, includ-

ing various Atari games [3], [25], [26], Go [22], and StarCraft
II [45]. Many real-world problems, like autonomous vehicles
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coordination [17] and network packet delivery [50] often in-
volve multiple agents’ decision making, which can be modeled
as multi-agent reinforcement learning (MARL). Even though
multi-agent cooperative problems could be solved by single-
agent algorithms, joint state, and action space imply limited
scalability [29], [41]. Further, partial observability and commu-
nication constraints give rise to additional challenges to MARL
problems. One approach to deal with such issues is the paradigm
of centralized training and decentralized execution (CTDE) [21].
The approaches for CTDE mainly include value function decom-
position [34], [39] and multi-agent policy gradient [4].

Value decomposition based approaches like QMIX [34] rep-
resent the joint action values using a monotonic mixing func-
tion of per-agent estimates. The algorithms recorded the best
performance on many StarCraft II micromanagement challenge
maps [24]. Further, it is demonstrated [31] that multi-agent
policy gradient is substantially outperformed by QMIX on
both multi-agent particle world environment (MPE) [27] and
StarCraft multi-agent challenge (SMAC) [35]. Despite recent
attempts for combining policy gradient methods and value de-
composition, e.g., VDAC [38], and mSAC [32], the achieved
improvements over QMIX are limited. One of the fundamental
challenges is that the restricted function class permitted by
QMIX limits the joint action Q-values it can represent, lead-
ing to suboptimal value approximations and inefficient explo-
rations [24]. A number of proposals have been made to refine
the value function factorization of QMIX, e.g., QTRAN [37]
and weighted QMIX [33]. However, solving tasks that require
significant coordination remains a key challenge.

To this end, we propose LSF-SAC a Latent State information
sharing assisted value function factorization under multi-agent
Soft-Actor-Critic paradigm. In particular, we introduce a novel
peer-assisted information-sharing mechanism to enable effec-
tive value function factorization by sharing the latent individual
states, which can be considered extra state information for more
accurate individual Q-value estimation by each agent. While
global information sharing or communications in MARL - e.g.,
TarMAC [2] - typically prevents fully distributed decision-
making, we show that by leveraging the design of soft-actor-
critic, LSF-SAC is able to retain fully decentralized execution
while enjoying the benefits of latent individual states sharing.
It also incorporates the entropy measure of the policy into the
reward to encourage exploration.
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The key insight of LSF-SAC is that existing approaches
of value function factorization mainly use the joint state
information only in the mixing network, which yet is restricted
by the function class it can represent. We show an accurate
independent value function estimation requires not only the state
information of one specific agent but also a proper represen-
tation of all individual state information. We propose a way
to extract and utilize the extra state information for individual,
per-agent value function estimation through a variational infer-
ence method, serving as latent individual state information, since
it’s impossible and unnecessary to feed the whole state infor-
mation to individual value function estimations. It is shown to
significantly improve the power of value function factorization.
Since we utilize such latent state information sharing only in
centralized critic, the CTDE assumptions are preserved without
affecting fully decentralized decision making, unlike previous
work introducing global communications [47]. Further, we note
that combining actor-critic framework with value decomposition
in LSF-SAC offers a way to decouple the decision-making of
individual agents (through separate policy networks) from value
function networks, while also allowing the maximization of
entropy to enhance its stability and exploration.

Our key contributions are summarized as follows:
� Our novel approach, LSF-SAC, introduces a unique

method for value function factorization that incorporates
additional individual latent state information to enhance
per-agent value function estimation. Our study demon-
strates that the inclusion of latent state information can
substantially enhance the efficacy of monotonic factoriza-
tion operators, representing the first framework for value
function factorization to leverage this technique.

� The soft-actor-critic design in LSF-SAC enables the seg-
regation of policy networks and value function networks
for individual agents, allowing a completely decentral-
ized execution while still maintaining the advantages of
peer-assisted value function factorization. Additionally,
LSF-SAC promotes an entropy maximization approach for
multi-agent reinforcement learning, resulting in a more
effective exploration.

� Our results showcase the efficacy of LSF-SAC and high-
light its superior performance compared to several state-
of-the-art baselines on the StarCraft II micromanage-
ment challenge, by achieving better outcomes and faster
convergence.

II. BACKGROUND

A. Value Function Decomposition

Value function decomposition methods [34], [37], [39], [48]
learn a jointQ functionsQtot(τ,a) as a function of combined in-
dividual Q functions, conditioning individual local observation
history,then these local Q values are combined with a learnable
mixing neural network to produce joint Q values [36].

Qtot(τ,a) = qmix
(
s,
[
qi
(
τ i, ai

)])
(1)

Under the principle of guaranteed consistency between global
optimal joint actions and local optimal actions, a global argmax
performed on Qtot yields the same result as a set of individual
argmax operations performed on each local qi, also known as
Individual Global Maximum (IGM):

argmax
u

Qtot =

(
argmax

u1

Q1, . . . , argmax
uN

QN

)
(2)

VDN [39] takes the joint value function as a summation of local
action-value:

Qtot(τ ,u) =

N∑
i=1

Qi(τi, ui) (3)

while QMIX proposed a more general case of VDN by ap-
proximating a broader class of monotonic functions to represent
joint action-value functions rather than a summation of the local
action values.

∂Qtot(τ ,u)

∂Qi (τi, ui)
> 0, ∀i ∈ N . (4)

QPLEX [46] provides IGM consistency by taking advantage of
the duplex dueling architecture,

Qtot(τ ,u) =

N∑
i=1

Qi (τ , ui) +

N∑
i=1

(λi(τ ,u)− 1)Ai (τ , ui)

(5)
where

Ai (τ , ui) = wi(τ ) [Qi (τi, ui)− Vi (τi)] , Vi (τi)
= max

ui

Qi (τi, ui) , (6)

wi(τ ) is a positive weight, yet its operator still limits it to only
discrete action space [51].

B. Maximum Entropy Deep Reinforcement Learning

In a maximum entropy reinforcement learning framework,
also known as soft-actor-critic [10], the objective is to maximize
not only the cumulative expected total reward, but also the
expected entropy of the policy:

J(π) =

T∑
t=0

E(st,at)∼ρπ [r (st,at) + αH (π (·|st))] (7)

where ρπ(st,at) denotes the state-action marginal distribution
of the trajectory induced by the policy π(at|st). Soft actor-critic
utilized actor-critic architecture with independent policy and
value networks and an off-policy paradigm for efficient data
collection and entropy maximization for effective exploration.
It is considered a state-of-the-art baseline for many RL problems
with continuous actions due to its stability and capability.

C. Multi-Agent Policy Gradient Method

Multi-agent policy gradient (MAPG) methods are extensions
to policy gradient algorithms, with policy πθa(u

a|oa). Com-
pared with single-agent policy gradient methods, MAPG usually
faces the issues of high variance gradient estimates [41] and
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credit assignment [5]. A general multi-agent policy gradient can
be written as:

∇θJ = Eπ

[∑
u

∇θ log πθ (ua|oa)Qπ(s,u)
]

Current literature on multi-agent policy gradients often lever-
ages centralized training with a decentralized execution (CTDE)
approach. This involves using a central critic to obtain additional
state information s, and helps avoid the high variance associated
with vanilla multi-agent policy gradients. For instance, [41] uti-
lize a central critic to estimate Q(s, (a1, . . . , an)) and optimize
parameters in actors by following a multi-agent DDPG gradient,
which is derived from:

∇θαJ = Eπ
[
∇θaπ (ua|oa)∇u ·Qua(s,u)|uα=π(oα)

]
COMA [4] proposes to apply the following counterfactual policy
gradients to solve the credit assignment issue by as: where
Aa(s,u) =

∑
u− πθ(u

a|τa)Qaπ(s, (u−a, ua)) is the counterfac-
tual advantage for agent a.

D. Variational Autoencoders

For variables X ∈ X which are generated from unknown
random variable z based on a generative distribution pu(x|z)
with unknown parameter u and a prior distribution on the
latent variables, of which we assume is a Gaussian with 0
mean and unit variance p(z) = N (z;0, I). To approximate the
true posterior p(z|x) with a variational distribution qw(z|�x) =
N (z;μ,Σ,w). [19], [20], [30] proposed Variational Autoen-
coders (VAE) to learn this distribution by using the Kullback-
Leibler (KL) divergence from the approximate to the true poste-
rior DKL(qw(z|x)‖p(z|x)), the lower bound on the evidence
log p(x) is derived as log p(x) ≥ Ez∼qw(z|x)[log pu(x|z)]−
DKL(qw(z|x)‖p(z)). [15] proposed β-VAE, where a parameter
β ≥ 0 is used to control the trade-off between the reconstruction
loss and the KL-divergence.

E. Information Bottleneck Method

Information bottleneck method [43] is a technique in infor-
mation theory which introduced as the principle of extracting
the relevant information with random input variable X ∈ X
and output random variable Y ∈ Y , while finding the proper
tradeoff between extraction accuracy and complexity. Given the
joint distribution p(x, y), their relevant information is defined
as their mutual information I(X;Y ). This problem can also be
seen as a rate-distortion problem [44] with non-fixed distortion
measure conditioning the optimal map, defined as

dIB = DKL(p(y|x)‖p(y|x̂))
where DKL is the Kullback-Leibler divergence. Then the ex-
pected IB distortion E[dIB(x, x̂)] = DIB = I(X;Y |X̂), with
the variational principle as

L[p(x̂|x)] = I(X; X̂)− βI(X;Y |X̂)

where β is a positive Lagrange multiplier operates as a tradeoff
parameter between accuracy and complexity. [1] further pro-
posed a variational approximation to the information bottleneck
using deep neural networks.

III. RELATED WORKS

Cooperative multi-agent decision-making confronts the sit-
uation of exponentially growing joint state and action spaces,
which can pose significant challenges [40]. While various strate-
gies such as independent Q-learning and mean field games have
been explored in the literature, they often struggle to perform
well on complex tasks or require agents with homogenous capa-
bilities [38]. Recently, a centralized training and decentralized
execution (CTDE) paradigm has been proposed to tackle these
challenges for scalable decision-making [21]. Key approaches
within the CTDE framework include value function decompo-
sition and multi-agent policy gradient methods.

Compared to value-based methods, Policy Gradient meth-
ods are generally considered to have more stable convergence
and can be extended more easily to continuous action prob-
lems [8]. One representative approach in the multi-agent Policy
Gradient category is COMA [4], which employs a centralized
critic module to estimate an individual agent’s counterfactual
advantage. However, as highlighted in recent studies [31], [54],
value-based methods still outperform multi-agent policy-based
methods like MADDPG [41] in the StarCraft multi-agent chal-
lenge (SMAC) [35].

To address the limitations of centralized critic modules,
decomposed actor-critic methods that combine value func-
tion decomposition and policy gradient methods with decom-
posed critics have been introduced to guide policy gradients.
VDAC [38] utilizes a structure similar to QMIX to estimate
the joint state-value function, while DOP [48] uses a network
similar to Qatten [49] for policy gradients with off-policy tree
backup and on-policy TD. However, the authors of [48] note that
decomposed critics are constrained by their limited expressive
capability and may not converge to global optima, even if indi-
vidual policies converge to local optima [51]. Although exten-
sions of the monotonic mixing function, such as QTRAN [37],
and weighted QMIX [33], have been explored, significant
challenges remain when tackling tasks that require substantial
coordination.

Another related topic is representational learning for rein-
forcement learning, and various methods have been proposed
to learn effective state representations. For instance, [9] pro-
posed a VAE-based forward model to learn state representa-
tions in the environment. [7] developed a technique to learn
Gaussian embedding representations of different tasks during
meta-testing. [18] introduced a recurrent VAE model that en-
codes observation and action history and learns a variational
distribution of the task.

As also analyzed and suggested in MAVEN [24] and
QTRAN [37], the representational constraints on the joint
action-values introduced by the monotonic mixing network in
QMIX [33] and similar methods will lead to provably poor
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exploration and sub-optimal behavior policies. To solve this
issue, one of the directions is to release the restriction of the joint
action-value functions, e.g., QTRAN uses a linear summation
over the utility functions and an additional value estimation,
WQMIX [33] uses an unrestricted joint action-value function
estimator as the weighted projection of a wider class of joint
action-value functions; another direction is to promote a more
committed exploration algorithm to recover the poor exploration
introduced by the monotonic constraints, e.g., MAVEN com-
bines value and policy-based methods with agents conditioning
their behavior on a variable controlled policy for a temporally
extended exploration. In this work, our proposed Decomposed
Soft-actor-critic will promote the exploration through entropy
maximization, while providing additional information from la-
tent state information as assisted information for value function
factorization.

Another topic related is communication-based MARL meth-
ods. Although the requirement of communication abilities might
limit the actual use case of the proposed algorithm, with commu-
nications enabled, MARL agents will have a better understand-
ing of the environment (or the other agents), and are therefore
able to coordinate their behaviors and potentially better per-
formances. Most works leverage local information to generate
encoded messages. The messages may contain individual obser-
vations [11], [12], or intended actions (or plans) [13], [47] . A
close paper to our work is NDQ [47], which also utilizes latent
variables to represent the information as the communication
messages during the decentralized agents’ execution. Although
we both consider information extraction as an information
bottleneck problem, there are several key differences between
our work and NDQ: (I) NDQ is a value-based method, while
our work is a policy-based method under the soft-actor-critic
framework. (II) NDQ requires communication between agents
during decentralized execution, which limits its use cases, while
we only utilize the latent extra state information during the
central critics so that CTDE is maintained. (III) NDQ requires
one-to-one communication during the execution stage, while in
this work, we introduce a latent information-sharing mechanism
that can be considered as an all-to-all message-sharing method.
By enabling the latent information sharing mechanism in our
work as a communication method, this work could potentially
be transformed to a communication-based method, and many
communication-based methods can be transformed into a frame-
work where communication is only used for centralized training
and restricted during execution, nevertheless, their performance
and the actual use case may vary a lot.

The proposed LSF-SAC method leverages an actor-critic
design with latent state information for value function factor-
ization. We introduce a novel way to utilize the extra state
information, as inspired from β-VAE [15], by using variational
inference in a decomposed critic as latent state information for
better individual value estimation. Despite information sharing,
CTDE is still maintained due to the use of actor-critic structure.
We also utilize the entropy and expected return maximization for
better exploration through soft actor-critic with separate actor
and critic networks.

IV. SYSTEM MODEL

We approach the problem as a fully cooperative multi-agent
environment with a decentralized partially observable Markov
decision process (DEC-POMDP) [28]. The DEC-POMDP is
defined as given by a tupleG = 〈I, S, U, P, r, Z,O, n, γ〉, where
I≡ {1, 2, . . . , n} is the finite set of agents. The state of the
system is defined as a finite set of global states s ∈ S, from
which each agent draws its own observation from the observation
function oi ∈ O(s, i) : S ×A→ O. At each timestamp t, each
agent i chooses an action ui ∈ U where U is a set of actions
available, forming a joint action selection u. A shared reward is
then given as r = R(s,a) : S ×U→ R, and each agent tran-
sitions to a new state s′ based on the transition probability func-
tion P (s′|s,u) : S × U → [0, 1]. Each agent maintains its own
action-observation history τi ∈ T ≡ (O × U)∗. Then a joint ac-
tion value function Qπtot(τ ,u) = Es0:∞ ,u0:∞[

∑∞
t=0 γ

trt|s0 =
s,u0 = u,π] is proposed with policy π, and γ ∈ [0, 1) is the
discount factor. Notation in bold represents joint quantities
across all agents, and quantities with superscript i are specific
to agent i.

V. PROPOSED APPROACH

In this section, we first introduce the main structure of our
proposed method, LSF-SAC, then we discuss the detailed imple-
mentation of the key designs, namely soft actor-critic framework
for multi-agent reinforcement learning and value decomposition
with latent information-sharing mechanism, and their corre-
sponding optimizing strategies.

A. Framework Overview

In our learning framework (Fig. 1), each individual actor
(Green part) outputs πθ(ai|τ i) only conditioned on its own local
observation history. The centralized mixing network (Orange
Part) approximates the joint action-value function from indi-
vidual value functions (Blue part). A latent information-sharing
mechanism (Purple part) is proposed to encode the extracted
extra state information to assist individual agents in local action-
value estimation. Function approximators (neural networks) are
used for both actor and critic networks and optimized with
stochastic gradient descent.

The centralized critic network consists of (i) a local Q-network
for each agent, (ii) a mixing network that takes all individ-
ual action-values with their weights and biases generated by
a separate hyper-network, and (iii) an extra state information
encoder to generate latent state information for facilitating
individual Q-value estimation. For each agent i, the local Q
network represents its local Q value function qi(τi, ai,mi)
where mi is the extra state information for agent i drawn
from the global information sharing pool. More precisely, the
information for agent i is generated from the messages of
all other agents following a multivariate Gaussian distribu-
tion, denoted as mi =< mout

1 · · ·mout
i · · ·mout

n > with mout
i ∼

N(fm(τi; θm), I)), where τi is the local observation history,
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Fig. 1. Overview of LSF-SAC Approach. Best viewed in color.

θm is the parameters of encoder fm and I is an identity
matrix.

The mixing network is a feed-forward network, following the
approach in QMIX, which mixes all local Q values to produce an
estimateQtot. The weights and biases of the mixing network are
generated by a hypernetwork that takes joint state information s.
To enforce monotonicity, the weights generated from the hyper-
networks are followed by an absolute function to create non-
negative values. The decentralized actor-network is similar to
the individual Q network, except it only conditions on its own
observation and action history, and a softmax layer is added to the
end of the network to convert logits into categorical distribution.
The overall goal is to minimize:

L(θ) = LTD(θTD) + λ1Lm (θm) + λ2Lπ (θπ) (8)

whereLTD(θTD) is the TD loss, of which we show it can also be
used as the center critic loss, Lm(θm) is the message encoding
loss, and Lπ(θπ) is the joint actor (policy) loss. λ1 and λ2 are
the weighting terms. The details about latent state information
generation and soft-actor-critic framework along with how to
optimize them will be discussed in the following section.

B. Variational Approach Based Latent State Information

One of the key advantages of multi-agent policy gradients
under the CTDE assumption is the effective utilization of extra
state information. In our design, not only is the extra state
information accessible to the mixing network but also to the in-
dividual agents’ value networks (through information sharing).
Due to the partial observability and uncertainty of the multi-
agent environments, the individual value estimation conditioned
on its own observation and action history can be volatile and
unreliable. Intuitively, introducing extra information from other
agents helps remove the ambiguity and uncertainty of current
observation to enable effective individual value estimation.

However, it remains a crucial problem how to efficiently and
effectively encode such extra state information. In most scenar-
ios, even during the centralized training stage, it is impossible to
directly feed the whole state information as input for individual
value functions, as it consists of other agents’ observation and
unseen state information, without a carefully designed algorithm
it is hard for a local agent to utilize them; at the same time,
the input size of global state information is significantly larger
than local observations, which would make the training longer
to converge. We consider this as an information bottleneck
problem [43], specifically, for agent i, we maximize the mutual
information between other agents’ encoded information and
their actions while minimizing the mutual information between
its own encoded information and action selection, so that only
the necessary information is chosen and then efficiently encoded.

To encode additional state information for estimating indi-
vidual values in an efficient and effective manner, we approach
this problem as an information bottleneck problem [43], and the
objective for each agent i can be written as:

Jm (θm) =

n∑
j=1

[Iθm (Aj ;Mi|Tj ,Mj)− βIθm
(Mi;Ti)] (9)

where Aj is agent j’s action selection, Mi is a random variable
of mout

i , Tj is a random variable of τj , and a parameter β ≥ 0
is used to control the trade-off between the mutual information
of its own and other agents. However, since the mutual infor-
mation is intractable, this does not result in a model that can
be learned. To overcome this challenge, we utilize variational
approximation techniques, specifically the deep variational in-
formation bottleneck approach [1]. By parameterizing our model
with a neural network, we can derive and optimize a varia-
tional lower bound for the first term of our objective function,
as follows. Detailed derivations and proofs can be found in
Appendix A.1.
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Lemma 1: A lower bound of mutual information
Iθm(Aj ;Mi|Tj ,Mj) is

ET∼D,Mj∼fm [−H[p(Aj |T), qψ(Aj |Tj ,M)]]

where qψ is a variational Gaussian distribution with parameters
ψ to approximate the unknown posterior p(Aj |Tj ,Mj), T =
{T1, T2, . . . , Tn}, M = {M1,M2, . . . ,Mn}.

Proof: We provide a proof outline as follows.

Iθc (Aj ;Mi|Tj ,Mj)

=

∫
dajdτjdmjp (aj , τj ,mj) log

p (aj |τj ,mj)

p
(
aj |τj ,mout

j

)
where p(aj |τj ,mj) is fully defined by our decoder fm and
Markov Chain [23]. Note this is intractable in our case, let
qψ(aj |τj ,mj) be a variational approximation to p(aj |τj ,mj).
Since the KL-divergence is always positive,

hence

Iθc(Aj ;Mi|Tj ,Mj)

≥
∫
dajdτjdmjp (aj , τj ,mj) log

qψ (aj |τj ,mj)

p
(
aj |τj ,mout

j

)
= ET∼D,Mj∼fm [−H[p(Aj |T), qψ(Aj |Tj ,M)]]

+H(Aj |Tj ,Mout
j )

ConsiderH(Aj |Tj ,Mout
j ) is a positive term that is independent

of our optimization procedure and can be ignored, then we have

Iθm (Aj ;Mi|Tj ,Mj)

≥ ET∼D,Mj∼fm [−H [p (Aj |T) , qψ (Aj |Tj ,M)]] (10)

�
Similarly, by introducing another variational approximator

qφ, we have

Iθm
(Mi;Ti) = ETi∼D,Mj∼fm [DKL (p (Mi|Ti) ‖p (Mi))]

≤ ETi∼D,Mj∼fm [DKL (p (Mi|Ti) ‖qφ (Mi))]
(11)

where DKL denotes the Kullback-Leibler divergence operator
and qφ(Mi) is a variational posterior estimator of p(Mi) with
parameters φ (see Appendix A.1 for details). Then with the
evidence lower bound derived above we optimize this bound
for the message encoding objective which is to minimize

Lm(θm) = ET∼D,Mj∼fm [−H[p(Aj |T), qψ(Aj |Tj ,Mj)]

+ βDKL(p(Mi|Ti)‖qφ(Mi))]. (12)

C. Factorizing Multi Agent Maximum Entropy RL

In this section, we present one possible implementation of
expanding soft actor-critic to the multi-agent domain with latent
state information assisted value function decomposition, its
objective extended to the multi-agent domain can be defined
as

J(π) =
∑
t

E [r (st,at) + αH (π (·|st))] (13)

Algorithm 1: LSF-SAC.
1: for k = 0 to train_steps_limits do
2: Reset environment
3: for t = 0 to max_episode do
4: For each agent i, choose action ai ∼ πi
5: Execute joint action a, record reward r,
6: save state-action history τ , next state st+1

7: Store (τ , a, r, τ ′) in replay buffer D
8: end for
9: for t = 1 to T do

10: Sample minibatch B from D
11: Generate latent state information
12: mout

i ∼N(fm(τi; θm), I)), for i = 0 to n
13: Update critic network
14: θTD ← η∇̂LTD(θTD) w.r.t (9)
15: Update policy network
16: π ← η∇̂L(π) w.r.t (7)
17: Update encoding network
18: θm ← η∇̂Lm(θm) w.r.t (5)
19: Update temperature parameter
20: α← η∇̂α w.r.t (8)
21: if time_to_update_target_network then
22: θ− ← θ
23: end if
24: end for
25: end for
26: Return π

where the temperature α is the hyper-parameter to control the
trade-off between maximizing the expected return and maximiz-
ing the entropy for better exploration.

Following the previous research on value decomposition, to
maximize both the expected return and the entropy, we find the
soft policy loss of LSF-SAC as:

LLP (π)=ED [α logπ (ut|τ t)−Qπtot (st, τt,ut,mt)]

= − qmixing
(
st,Eπi

[
qi
(
τ it , u

i
t,m

i
t

)
− α log πi

(
uit|τ it

) ])
(14)

where qmixing is the value decomposition operator with ui ∼
πi(oi), and D is the replay buffer used to sample training data
(state-action history and reward, etc.).

Then, we can tune the temperature α as proposed in [10] by
optimizing the following:

J(α) = Eat∼πt
[−α log πi(at|st)− αH0] (15)

Unlike VDAC which shares the same network for actor net-
works and local Q value estimations, we use a separate network
for policy networks and train them independently from critic
networks. Latent state information is used for individual critics
for joint action value function factorization. We propose a latent
state information-assisted soft value decomposition design as

Qtot(τ ,a,m;θ) = qmixing(st,Eπi [qi(τ it , a
i
t,m

i
t);θ])
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TABLE I
PAYOFF MATRIX OF THE ONE-STEP MATRIX GAME, Q1,Q2 AND

RECONSTRUCTED Qtot OF SELECTED ALGORITHMS

We then use TD advantage with latent information sharing the
design as the critic loss, i.e.,

LTD(θ)=[r+γmax
a∗

Qtot
(
τ ′,a′,m′;θ−

)−Qπtot(τ,a,m;θ)]2

=[r+γmax
a∗

qmixing(st,Eπi [qi(τ it+1, a
i
t+1,m

i
t+1);θ

−])

− qmixing(st,Eπi [qi(τ it , a
i
t,m

i
t);θ])]

2 (16)

where ai ∼ πi(oi), θ− is the parameters of the target network
that are periodically updated. Detailed derivations can be found
in Appendix A.2.

VI. EXPERIMENTS

In this section, we first empirically study the improvements
of power in value function factorization achieved by LSF-SAC
through a non-monotonic matrix game. We compare the results
with several existing value function factorization methods. Then
in StarCraft II, we compare LSF-SAC with several state-of-the-
art baselines. Finally, we perform several ablation studies to
analyze the factors that contribute to the performance.

A. Single-State Matrix Game

Proposed in QTRAN [37], the non-monotonic matrix game,
as illustrated in Table I(a), consists of two agents with three
available actions and a shared reward. We show the value func-
tion factorization results of QTRAN, LSF-SAC, VDN, QMIX,
and DOP [48].

Table I(b)–(f) shows the learning results of selected algo-
rithms, QTRAN and LSF-SAC can learn a policy that each agent
jointly takes the optimal action conditioning only on their local
observations, meaning successful factorization. DOP falls into
the sub-optimum caused by miscoordination penalties, similar
to VDN and QMIX, which are limited by additivity and mono-
tonicity constraints. Although QTRAN managed to address such
limitations with more general value decomposition, as pointed
out in later works [24] that it poses computationally intractable

constraints that can lead to poor empirical performance on
complex MARL domains. It is also worth noting that LSF-SAC
can find the optimal joint action under the monotonic constraints
by providing variational information, however, its joint action
value estimation will still be restricted by such limitation; this in-
dicates that the multi-agent entropy maximization design and the
utilization of latent state information can significantly enhance
the exploration policies and improve the power of the monotonic
factorization operators in a mixing network like QMIX.

Besides the single-state matrix game example shown in Table
I, we can also consider a multi-state problem with two agents,
A and B. Let (o(A)

1 , o
(B)
1 ) and (o

(A)
2 , o

(B)
2 ) be the two agents’

observations in two different states s1 and s2. Providing latent
informationmB conditioned on o(B)

1 and o(B)
2 will enable Agent

A to better estimate its local utility QA(o(A),mB) in the two
states s1 and s2. Thus, with the latent information mA and
mB , the joint action-value function estimate with a mixing net-
work f is given by Qtot = f(QA(o

(A),mB), QB(o
(B),mA)),

which is able to represent a larger class of functions than
Qtot = f(QA(o

(A)), QB(o
(B))), for the goal of estimating

Q∗(o(A), o(B)).

B. Predator-Prey Environments

We first evaluate the performance of our baseline algorithms
on a partially-observable multi-agent environment Predator-
Prey environment as described in [53]. This environment in-
volves 8 predators cooperating to catch 8 AI-controlled prey
units on a 10 × 10 grid, with successful captures requiring at
least two predators to surround and capture a prey unit simul-
taneously. Our aim is to test the algorithms’ ability to handle
relative over-generalization and monotonicity constraints. More
details are provided in the Appendix on this environment. In this
relatively easy testing environment, we observe satisfying final
results compared to SOTA works. Although, at the beginning
of the training, a larger shaded area indicates a more volatile
training procedure, this could be due to the insufficient training
of the information generation module at its earlier stage demon-
strating the effect of the overhead from the information sharing
mechanism.

C. Decentralised Starcraft II Micromanagement Benchmark

To further assess the effectiveness of our approach, we bench-
mark its performance against various state-of-the-art multi-agent
reinforcement learning (MARL) methods on selected scenarios
from the StarCraft Multi-Agent Challenge (SMAC) [35].

We then perform several ablation studies to analyze the factors
that contribute to the performance. It is worth noting that the
StarCraft Multi-Agent Challenges (SMAC) are affected by sev-
eral code-level optimizations techniques, i.e., hyper-parameter
tuning, as also found by [16], some works are relying on heavy
hyper-parameters tuning to achieve results that they otherwise
cannot. Consistent with previous work, we carry out the test with
the same hyperparameters settings across all algorithms. More
details about the algorithm implementation and settings can be
found in Appendix C.
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Fig. 2. Illustration of SMAC benchmark on map 5m_vs_6 m, where the
testing algorithm is to control the 5 marines on the left (marked green), combating
with 6 marines controlled by the game built-in AI on the right (marked red).

In the SMAC benchmark1, each agent is responsible for
controlling a unit that collaborates with other friendly units
in combat against the game’s built-in AI-controlled units. The
combat can take on a symmetric form, where both parties have
access to the same units, or it can be asymmetric. Our testing is
conducted on 10 different maps that cover all difficulty levels,
including 4 easy maps (3 m, 3s5z, 8 m, 1c3s5z), 3
hard maps (3s_vs_5z, 5m_vs_6 m, 27m_vs_30 m,),
and 3 super-hard maps (6h_vs_8z, corridor, MMM2,
27m_vs_30 m). We selected these maps based on criteria
such as the size of the action space (27m-vs-30 m), the
need for advanced exploration strategies (corridor), and the
requirement for a high level of coordination between agents
(6h_vs_8z). The same default environment setting was used
for all benchmark algorithms in our testing, and each baseline
algorithm was trained using 4 random seeds and evaluated every
10,000 training steps with 32 testing episodes. Further details
on the environment setup and hyperparameter settings can be
found in Appendix A.3.3. We compare LSF-SAC with several
state-of-the-art MARL algorithms as baselines. We choose two
decomposed actor-critic methods: FOP [51] and DOP [52], one
decomposed policy gradient method: VDAC [38], three decom-
posed value-based method: WQMIX [33], QPLEX [46] and
QMIX [34],2 and finally a communication-based value-based
method: NDQ [47].

D. General Results

Following the practice of previous works [35], for every
map result, we compare the winning rate and plot the me-
dian with the shaded area representing the highest and lowest
range from testing results in Fig. 2. In general, we observe
LSF-SAC achieves strong performance on all selected SMAC
maps, notably it outperforms the state-of-the-art algorithms or
achieves faster and more stable convergence at a higher win
rate. Note that LSF-SAC performs exceptionally well on testing
maps with challenging tasks that require more state information
or substantial cooperation. Previous research has shown that

1In this article, all SMAC experiments are carried out utilizing the latest
SC2.4.10, performance is always not comparable across versions. We imple-
mented our algorithm based on an open-sourced codebase [16].

2In this section we refer WQMIX to ow-qmix as it shows a generally better
performance than cw-qmix.

Fig. 3. Results on Predator-Prey Environments.

there exists a performance gap between state-of-the-art (SOTA)
value-based methods and policy gradient methods, particularly
on maps that require the use of extensive exploration techniques.

In easy scenarios, almost all algorithms perform well. As the
built-in AI would tend to attack the nearest enemy, by pulling
back the friendly unit with a lower health value is a simple
strategy to learn for winning. No significant performance gap
was observed except for the training converging speed.

Within hard maps, LSF-SAC is able to train a usable policy
that outperforms all baseline algorithms. On 27m_vs_30 m
and MMM2, LSF-SAC performs exceptionally in terms of the
convergence speed and the final performance. On corridor,
LSF-SAC and the selected two value-based methods are able to
learn a model, with our method converging faster with slightly
better performance, while policy-based methods suffer from this
map as it requires more exploration to find the specific trick in
winning this challenging scenario. On 5m_vs_6 m, although
within a similar performance range, LSF-SAC converges to a
policy with lower variance and slightly better performance in
the end. Finally, on 6h_vs_8z, which is a super hard map that
requires extensive exploration techniques, LSF-SAC achieves
both faster convergence and better performance by a large mar-
gin as compared to the selected baselines.

It is also worth noting that the performance gap between
value-based and policy-based methods still exists even for the
state-of-the-art methods, while LSF-SAC as a policy-based
method not only narrows such gap but also achieves remarkable
performance.

E. Ablation Study

In this section, we perform a comparison between LSF-SAC
and several modified algorithms to understand the contribution
of different modules in LSF-SAC. We choose one of the previ-
ously tested SMAC maps: MMM2. Each experiment is repeated
with three independent runs with random seeds with their me-
dian results presented.

1) Ablation 1: First, we consider the setting of LSF-SAC
without the extra state info encoding (Purple part in Fig. 1) as
MASAC. This demonstrates how multi-agent soft-actor-critic
works alone. It highlights the importance of latent state infor-
mation by comparing the results of MASAC against the original
LSF-SAC.
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Fig. 4. Results of 4 easy maps on the SMAC benchmark.

Fig. 5. Results of hard and super hard maps on the SMAC benchmark.

Fig. 6. Ablation Results on MMM2.

2) Ablation 2: We also consider a fixed temperature design as
LSF-SAC_Fixed_αwith fixed α = 1.0 (MASAC α = 1.0); this
is to understand the effectiveness of the design in automatically
updating the temperature α.

3) Ablation 3: We then consider the implementation of
a multi-agent soft-actor-critic with value decomposition as
MASAC, and the implementation of multi-agent advantage
actor-critic with value decomposition as MAA2C, which can
be considered as QMIX under a SAC and A2C setting, respec-
tively [38]. This is to find the contribution of soft-actor-critic in
enhancing exploration.
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4) Ablation 4: Finally we note that the original (single-
agent) soft-actor-critic algorithm [10] and several other works
use two independently trained soft Q-functions and use the
minimum of the two as the policy for optimizing, as [6],
[14] points out that policy steps are known to degrade
the performance of value-based methods, e.g. in [32] they
train with L(θ) = [(rt + γminj∈1,2Qtot((s′t, τ

′
t,a

′
t; θ
−
j )))−

Qtot(st, τ t,at; θ))
2]. Their performance comparison can be

found in the ablation studies as MASAC_DoubleQ [32]. This
is to find if TD advantage with double Q learning is more
stable under MARL when combined with value function
decomposition.

F. Ablation Results

By comparing the results of MASAC and LSF-SAC, we
observe an improvement in both maps regarding the per-
formance of LSF-SAC, which confirms the contribution of
the latent state information assisted value decomposition
design.

Also, LSF-SAC with α = 1.0 is able to achieve a higher
winning rate and faster convergence than MASAC. The per-
formance gap between LSF-SAC and MASAC demonstrates
the importance of the proposed latent assistive information
and our design of entropy maximization specialized for value
decomposition methods. The performance gap between LSF-
SAC and LSF-SAC with fixed α indicates the necessity of
self-updating temperature term in balancing the trade-off be-
tween promoting exploration and maximizing the expected
rewards.

Finally, although MSAC_DoubleQ delivers a learnable pol-
icy at a plodding pace, this could potentially be the result
of a complex model and relatively continuous reward in this
specific environment. Also, due to its redundant network size,
we find that MSAC_DoubleQ, with its double value function
design, takes a significantly longer time for training. This
proves TD advantage with a single value function might be
sufficient to optimize multi-agent actor critics within value
decomposition methods. Nevertheless, we observe the de-
sign of the double Q network demonstrated the most stable
training process with the lowest variance among all ablated
baselines.

VII. CONCLUSION

In this article, we propose LSF-SAC, a novel framework
that combines latent state information assisted individual value
estimation for joint value function factorization and multi-agent
entropy maximization, for collaborative multi-agent reinforce-
ment learning under the CTDE paradigm. We introduce an
information-theoretical regularization method for optimizing
the latent state information assisted latent information generator
to efficiently and effectively utilize extra state information in
individual value estimation, while CTDE can still be main-
tained through a soft-actor-critic design. We also propose one
possible implementation of expanding the off-policy maximum
entropy deep reinforcement learning to the multi-agent domain

with latent state information. Empirical results show that our
framework significantly outperforms the baseline methods in
the SMAC environment. We further analyze the key factors
contributing to the performance in our framework by a set of
ablation studies. In future works, we plan to focus on expanding
the proposed method with better generation and utilization of
the extra state information with theoretical demonstrations of
its assisting benefits.
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