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Multi-Resource Allocation: Fairness-Efficiency
Tradeoffs in a Unifying Framework

Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang

Abstract—Quantifying the notion of fairness is under-explored
when there are multiple types of resources and users request
different ratios of the different resources. A typical example
is datacenters processing jobs with heterogeneous resource re-
quirements on CPU, memory, network, bandwidth, etc. This
paper develops a unifying framework addressing the fairness-
efficiency tradeoff in light of multiple types of resources. We
develop two families of fairness functions that provide different
tradeoffs, characterize the effect of user requests’ heterogeneity,
and prove conditions under which these fairness measures satisfy
the Pareto efficiency, sharing incentive, and envy-free properties.
Intuitions behind the analysis are explained in two visualizations
of multi-resource allocation. We also investigate people’s fairness
perceptions through an online survey of allocation preferences
and provide a brief overview of related work on fairness.

I. I NTRODUCTION

A. Motivation

Comparing fairness of different allocations of asingle
type of resource has been extensively studied. Fairness can
be quantified with a variety of metrics, such as Jain’s in-
dex [1]. Alternatively, different notions of fairness, including
proportional and max-min fairness, can be achieved through
maximization ofα-fair or isoelastic utility functions [2]. These
approaches, as well as others from economics and sociology,
have recently been unified as the unique family of functions
satisfying four axioms for fairness metrics, as summarizedin
[3], [4]. The tradeoff between fairness and efficiency has also
been studied in [5]–[7].

When it comes to allocatingmultiple types of resources,
however, there has been much less systematic study, the recent
paper [8] being a notable exception. Indeed, it is unclear what
it means to say that a multi-resource allocation is “fair.” Each
user in a network requires a certaincombination of different
resource types to process one job, and this combination may
differ from user to user. For example, datacenters allocatedif-
ferent resources (memory, CPUs, storage, bandwidth, etc.)to
competing users with different requirements. One user might
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Fig. 1. An example of multi-resource requirements in datacenters.

have computational jobs requiring more CPU cycles than
memory, while another might have the opposite requirements.

The need for multi-resource fairness functions can be il-
lustrated with a very simple example, as shown in Fig. 1. In
this example, two users require CPUs and memory in order
to perform some jobs. User 1 requires 2 GB of memory and
3 CPUs per job, while user 2 needs 2 GB of memory and 1
CPU per job. There is a total of 6 GB of memory and 4 CPUs.

Many allocations might be considered “fair” in this exam-
ple: should users be allocated resources in proportion to their
resource requirements? Or should they be allocated resources
so as to process equal numbers of jobs? The fairness measure
proposed recently in [8], calledDominant Resource Fairness
(DRF), allocates resources according to max-min fairness on
dominant resource shares. In this example, DRF would allocate
0.76 jobs to user 1 and 1.71 jobs to user 2, for a total of 2.47
jobs processed. But this allocation brings about a significant
loss in system efficiency; e.g., a more unequal allocation of
0.17 jobs to user 1 and 2.83 jobs to user 2 yields a total
of 3 jobs. An in-between allocation can be realized if another
well-known fairness metric,α-fairness, is adapted for multiple
resources following our methods in Section III-B. Forα = 0.5,
user 1 has 0.57 jobs and user 2 has 2.29 jobs, for a total of
2.86 jobs. Each of these allocations represents one point of
the fairness-efficiency tradeoff. This paper develops a unifying
framework for studying this tradeoff in light of multiple types
of resources and heterogeneity in users’ resource requirements.

Multi-resource allocation problems arise in increasingly
many applications. Datacenters that sellbundles of CPUs,
memory, storage, and network bandwidth are just one example.
In fact, even the classical problem of bandwidth allocationin
a congested network can be viewed as a special case of multi-
resource allocation. Given a network and its topology, we can
view each link as a separate resource with a distinct capacity.
Each user is represented by a network flow, which uses a pre-
defined subset of links. In this special case, resource requests
on all the links must be the same for each user.

In general, multi-resource allocationcannot be trivially
turned into single-resource allocation by assuming different
resources are interchangeable. For example, if a cloud client
needs 2 units of CPU and 5 units of networking bandwidth to
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finish 1 unit of job, adding more doesnot reduce the need for
5 units of bandwidth.

B. Unique Challenges of Multi-Resource Fairness

The following new challenges on fairness arise due to the
presence of multiple types of resources:

• In a single-resource scenario, users’ resource require-
ments can be represented with a scalar. With multiple
resources, users have vectors of resource requirements,
which may all look different and must be scalarized
before fairness can be evaluated. We present two ways
to visualize user heterogeneity in Section III-A and two
methods for this scalarization in Section III-B, yielding
parametrized families of multi-resource fairness measures
that satisfy the axioms of [4].

• In a single-resource scenario, the most efficient allocation
will clearly use the entire resource. In a multi-resource
scenario, however, users’ heterogeneous resource require-
ments may not allow each resource to be completely used.
Even how to measure efficiency is unclear: should we
use the total number of jobs allocated?1 Or the amount
of leftover resource capacity? Section V numerically
examines both of these efficiency metrics, while Props.
1 and 2 and their corollaries examine the impact of user
heterogeneity on the number of jobs processed.

• The extension of max-min fairness to multiple resources
is shown in [8] to satisfy such properties as Pareto-eff
iciency for certain parameter values. We characterize the
parameterizations under which our multi-resource fair-
ness functions satisfy Pareto-efficiency, sharing incentive,
and envy-freeness (Props. 3-5 and their corollaries).

• The existence of a fairness-efficiency tradeoff depends
on both the scalarization of users’ resource requirements
and the subsequent evaluation of fairness. We show
that a greater emphasis on equity or fairness need not
always decrease efficiency (Prop. 6) and give analytical
conditions on when the fairness-efficiency tradeoff exists
(Props. 7 and 8 and their corollaries).

• When a fairness-efficiency tradeoff exists, the “best” op-
erating point along this tradeoff depends on the operator’s
exogenously determined preferences. We characterize this
psychological component to fairness by conducting a
human subject experiment in which participants are asked
to rank possible allocation choices given in an online
survey. Our results indicate that people tend to cluster
into two different groups–one preferring efficiency over
fairness and one fairness over efficiency.

After further discussion of related work in Section II,
Section III develops our two new families of fairness functions,
which we call Fairness on Dominant Shares (FDS)and
Generalized Fairness on Jobs (GFJ). FDS includes the max-
min fairness measure DRF proposed in [8] as a special case.
We investigate key properties of these functions in Section
IV and characterize conditions under which they are satisf
ied by FDS and GFJ. Section V then applies our fairness

1The phrases “jobs allocated” and “jobs processed” are used interchange-
ably throughout the paper.

functions to numerical examples of datacenters. We examine
the relationship between the fairness-efficiency tradeoff and
FDS and GFJ parameterizations. In Section VI, we experiment
with characterizing the parameter values consistent with real
people’s fairness judgements, analyzing results from an online
survey of 143 participants who were asked to rank different
possible resource allocations for an example datacenter. All
proofs can be found in the technical report [3].

II. RELATED WORK

Much of the existing theory on the fairness of resource
allocations is devoted to allocations of a single resource [4],
[9]–[11] (e.g. allocating available link bandwidth to network
flows [12]–[15]). The recent work [4] develops the following
family of fairness functions for a single resource, unifying
previously developed fairness measures. It was proven that
this family, parametrized by two numbers, is theonly family
of functions satisfying four simple axioms of fairness metrics:

fβ,λ(x) = sgn(1−β)





n
∑

i=1

(

xi
∑n

j=1 xj

)1−β




1
β ( n
∑

i=1

xi

)λ

,

(1)
whereβ ∈ R andλ ∈ R are parameters. The parameterβ gives
the “type” of fairness measured by (1), and the parameterλ
gives the emphasis on efficiency. A larger|λ| indicates greater
emphasis on efficiency over fairness. If we takeλ = 1−β

β
and

β > 0, we recoverα-fairness forα = β. In particular, taking
the limit asβ → 1 yields proportional fairness.

Even multi-resource allocation problems, such as scheduling
jobs in a datacenter, are often simply treated as a single
resource problem (e.g. the Hadoop and Dryad schedulers [16]).
A recent paper [8] generalizes the max-min fairness measure
to multiple resource settings. Our work develops a unified
analytical framework for fairness of multi-resource allocations.
In particular, in contrast to [8], we incorporate the tradeoff
between fairness and efficiency in multi-resource settings.

In the technical report [3], we provide a more comprehen-
sive survey of other work on fairness. In addition to further
discussion on fairness in engineering frameworks, we summa-
rize theories of fairness from computer science, economics,
political philosophy, and sociology.

III. FAIRNESS-EFFICIENCY OFMULTI -RESOURCE

ALLOCATIONS

We first present “dual” visualizations of heterogeneity
among users’ requirements for multiple resources in Sec-
tion III-A. Section III-B then develops two new families
of fairness functions, which scalarize these heterogeneous
resource requirement vectors and use them to evaluate the
fairness of multi-resource allocations. These two families are
Fairness on Dominant Shares (FDS) and Generalized Fairness
on Jobs (GFJ). FDS measures the fairness of users’ resource
allocations by accounting for both the number of jobs allocated
to each user (a function of the resources available) and the
heterogeneity in different resource requirements across users.
GFJ, on the other hand, assumes that users’ utility depends
solely on the number of jobs they are allocated, irrespective
of their differing resource needs.
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A. Visualizing User Heterogeneity

A major challenge of multi-resource fairness is incorpo-
rating the heterogeneity of different users’ requirementsfor
different resources into the assessment of its fairness. Visual-
izing this heterogeneity can yield useful insights. Moreover,
Section V examines in detail how heterogeneity affects the
optimal allocation and achieved efficiency.

Figure 2 provides two ways to visualize user heterogeneity.
Each userj requiresRij of resource typei for each job.

The first (top) visualization has as many dimensions as there
are different types of resources. The axes correspond to the
resources (two types of resources here for visual simplicity),
with the box representing the resource constraints. The slope
σi of the line corresponding to each useri is the ratio of that
user’s requirements for the two resources. The heterogeneity of
users’ resource requirements can be captured with the variance
of the{σi}:2 homogeneity occurs at 0 variance (all users have
the same resource requirements) and the dashed line becomes
straight. Heterogeneity increases with the variance ofσ.

The second (bottom) visualization has as many dimensions
as there are different users. The axes correspond to the
jobs allocated to each user (two users here for simplicity of
drawing), with feasible allocations shown as shaded regions
bounded by linear resource constraints. The slopesτi of
constraint linei reflect the ratio of user 1’s and user 2’s
requirements for resourcei. Again, the heterogeneity of users’
resource requirements can be captured in the variance of the
τi. Homogeneity occurs when the variance is 0; in that case
the resource constraints have the same slope and reduce to one
constraint. Heterogeneity increases with the variance ofτ .

B. Defining Multi-Resource Fairness

1) Fairness on Dominant Shares (FDS): As defined in
[8], a user’sdominant share is the maximum share of any
resource allocated to that user.

Let xj denote the number of jobs allocated to each user
j andCi the capacity of each resourcei. Then we have the
resource constraints

∑n
j=1 Rijxj ≤ Ci for all resourcesi,

whereRij is the amount of resourcei which userj requires
for one job, and there aren users. For ease of notation, we
define γij = Rij/Ci as the share of resourcei required by
userj to process one job. We let

µj = max
i

{

Rij

Ci

}

(2)

denote the maximum share of a resource required by userj
to process one job; thenµjxj is userj’s dominant share.

We introduce the fairness measuresfFDS
β,λ :

sgn(1− β)


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
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λ

.

(3)
These fairness measures extend those developed in [4] for
a single resource; details on their derivation are given in
that work. Hereβ 6= 1 and λ are pre-specified parameters.

2We assume that theσi are realizations of a random variableσ.

Fig. 2. Two visualizations of user heterogeneity. The linesin the top graph
show the ratio of users’ requirements for two different resources, while the
lines in the bottom graph show the feasible allocation region. The slopes of
those lines reflect the ratio of two users’ requirements foreach resource.

Note thatβ = 1 is a trivial case, since (3) then reduces to

n
(

∑n
j=1 µjxj

)λ

, so that each allocation gives equal fairness.
We make a standard assumption that all resources and all jobs
are infinitely divisible, which is typical of many multi-resource
settings [17], [18]. An illustrative example of FDS is givenin
Section III-B3.

The fairness function (3) may be divided into two compo-
nents, one representing fairness and one efficiency. The sum
of the dominant shares raised to the powerλ represents eff
iciency; thus,λ parametrizes efficiency’s relative importance.

The remainder of (3) is parametrized byβ and represents the
fairness of the allocation. It is easily seen that for any value
of β 6= 1, this component of (3) is maximized at an equal
allocation. However, different values ofβ will yield different
orderings of unequal allocations. One allocation may be more
fair than another whenβ = β1 is used to parametrize fairness,
but the second allocation may be more fair than the first when
β = β2 6= β1 is used.

Though different values ofβ give different types of fairness,
we can generally say that “largerβ is more fair.” As β →
∞, we obtain max-min fairness on the ratio of each user’s
dominant share to the sum of all the dominant shares.

As β → ∞ and λ = 1−β
β

, the fairness functionfβ,λ ap-
proaches max-min fairness on the dominant shares. Dominant
resource fairness (DRF), proposed in [8], is thus a special case
of FDS. Again lettingµjxj denote the dominant share of user
j, DRF can be expressed as

min {µ1x1, µ2x2, . . . , µnxn} . (4)

Maximizing this equation subject to the constraints
∑n

j=1 Rijxj ≤ Ci, ∀ i, yields the DRF-optimal allocation.
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FDS is therefore a generalization of DRF, in which choosing
the parametersβ and λ allows one to achieve different
tradeoffs between fairness and efficiency.

FDS also includes the well-knownα-fairness family of
functions as a special case. This fact easily follows from
the relationship of the single-resource functions in [4] to
α-fairness, which is generally used to measure fairness in
bandwidth allocation (see references in Section II). Taking
α = β ≥ 0 andλ = 1−β

β
, the FDS function (3) becomes

sgn(1− β)

(

n
∑

i=1

(µixi)
1−β

)
1
β

; (5)

optimizing this function is equivalent to optimizing theα-
fairness function on dominant shares

n
∑

j=1

(µjxj)
1−α

1− α
. (6)

2) Generalized Fairness on Jobs (GFJ): Since some users
require more resources per job than others, it might be more
fair for those who require more resources to be allocated fewer
jobs, thus increasing efficiency across all users. FDS captures
this perspective. However, an individual user often cares only
about the number of jobs processed (without accounting for
heterogeneous resource requirements), and hence each user’s
notion of fairness may be based only on the number of jobs
she is allocated. This motivates us to introduce another fairness
measure called Generalized Fairness on Jobs (GFJ), which
uses the number of jobs allocated (instead of dominant shares)
in the fairness function.

GFJ can be further motivated with bandwidth allocation
examples. The utility function used in these scenarios is
generallyα-fairness applied to the bandwidth allocated to each
flow. These functions are therefore a special case of GFJ, a
family of functions given by

fGFJ
β,λ = sgn(1− β)





n
∑

j=1

(

xj
∑n

k=1 xk

)1−β




1
β ( n
∑

k=1

xk

)λ

.

(7)
Hereβ andλ are two parameters (just as in FDS) andxj is
the number of jobs processed for userj. As for FDS, we have
the resource constraints

∑n
j=1 Rijxj ≤ Ci for each resource

i. An illustrative example is given in the next section.
For β > 0 andλ = 1−β

β
, GFJ reduces toα-fairness on the

number of jobs allocated to each user.
3) Differences between FDS and GFJ: We can summarize

FDS’ and GFJ’s approaches as follows:

• FDS measures fairness in terms of the relative size of the
dominant shares, explicitly accounting for heterogeneous
resource requirements in both the objective function and
the constraints. As a limiting case of FDS, DRF also
follows this approach.

• On the other hand, GFJ measures fairness only in terms
of the number of jobs allocated to each user; the het-
erogeneity in resource requirements only appears in the
resource constraints. Users requiring more resources are
thus treated equally, a result observed in Section V.
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Fig. 3. Overall schematic of our multi-resource fairness approach.

Whenµj = µ for all j, FDS and GFJ are equivalent.
Revisiting the example in the Introduction, we have the

resource constraints2x1 + 2x2 ≤ 6 and3x1 + x2 ≤ 4. Thus,
the dominant share of user 1 is3

4
x1, since user 1 requires3

4

of the available CPUs and1
3

of the available memory for each
job. Similarly, the dominant share of user 2 is1

3
x2, since user

2 requires1
3

of the available memory and1
4

of the available
CPUs for each job. FDS and GFJ can then be expressed as

max
x1,x2

f(x1, x2) (8)

s.t. 2x1 + 2x2 ≤ 6, 3x1 + x2 ≤ 4,

where the fairness function is

f = sgn(1− β)

(

(

3x1

4

)1−β
+
(

x2

3

)1−β

(

3x1

4
+ x2

3

)1−β

)

1
β (

3x1

4
+

x2

3

)λ

for FDS and

f = sgn(1− β)

(

x1−β
1 + x1−β

2

(x1 + x2)
1−β

)
1
β

(x1 + x2)
λ

for GFJ.
Figure 3 illustrates the approaches to multi-resource fair-

ness. We transpose the matrixR to capture users’ resource
requirements; each row represents one user’s requirements.
One simplistic approach would assume perfectly substitutable
resources; in that case, this matrix immediately collapsesinto
a vector of users’ single resource requirements. However, this
substitutability often does not hold. For example, CPUs and
memory are not directly substitutable.

FDS and GFJ represent alternative approaches to the scalar-
ization of each row in Fig. 3’s matrix. FDS and its limiting
case DRF choose a dominant entry from the row vector of
users’ requirements. GFJ, on the other hand, scalarizes each
row by the number of jobs processed with a bundle of different
resources. These row-by-row scalarizations then yield another
vector of users’ scalars; evaluating fairness withfFDS

β,λ or fGFJ
β,λ

further reduces this vector to a final scalar quantifying fairness.

IV. PROPERTIES OFFDS AND GFJ

In this section, we prove key properties of the FDS and GFJ
functions introduced above. Section IV-A characterizes the
optimal fairness values in certain special cases, while Section
IV-B examines the conditions ofβ andλ under which FDS and
GFJ satisfy important properties relevant to fairness quantif
ication and fairness-efficiency tradeoffs:

• What happens to the optimal allocations when users have
the same resource requirements?
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• What fairness properties do FDS and GFJ satisfy? For
instance, are their optimal allocations Pareto-efficient?
Sharing incentive compatible? Envy-free?

• Does there always exist a fairness-efficiency tradeoff?

Finally, Section IV-C examines the conditions under which a
fairness-efficiency tradeoff exists.

We considern users andm different resources. Users have
the same resource requirements when they are homogeneous,
i.e., their heterogeneity is zero. In the special casesn = 2
or m = 2, user heterogeneity may be easily visualized as in
Fig. 2 in Section III-A. We use the termuser-resource system
to refer to a given set of resources and users with associated
resource requirements and capacities.

A. Values of FDS and GFJ

Heterogeneity is measured by the variance in the slopesσi

or τi of Fig. 2. When all users have the same ratios of multi-
resource requirements (i.e., the variance of the{σi} and{τi}
is zero), the problem reduces to that of a single resource:

Proposition 1 (Reduction to Single-Resource Case):
Suppose that the resource constraints may be written as

ηi (µ1x1 + µ2x2 + . . .+ µnxn) ≤ 1, (9)

i = 1, 2, . . . ,m. Let ηmax = maxi ηi. Then the problem
reduces to single-resource fairness on resource 1. Moreover,
FDS and DRF both yield the allocationxj = 1

ηmaxµjn
. GFJ

yields the allocationxj =
µ
−

1
β

j

ηmax

∑
n
i=1

µ

β−1

β
i

.

Definition 1 (Efficiency): LetX = x1+x2+. . .+xn denote
the allocation efficiency.
In this special case, we also have the following corollary:

Corollary 1: For allocations that maximize DRF and FDS,

∂X

∂µj

=

( −1

nηmax

)

(

1

µ2
j

)

and the efficiency of these allocations increases the fastest if
minj µj is decreased. For allocations that maximize GFJ,

∂X

∂µj

=
−µ

−
1+β
β

j

ηmaxβ
∑n

i=1 µ
β−1

β

i

+
(1− β)µ

−
1
β

j

∑n
i=1 µ

−
1
β

i

ηmaxβ

(

∑n
i=1 x

β−1

β

i

)2
.

In other words, the system’s efficiency will increase if the
user with the lowestµj gives up some resources.

We now consider heterogeneous users, and assume that
their resource requirementsRij are uniformly distributed in
[0, νCi], ν a given positive constant. Then, as the number
of usersn goes to infinity, the optimal FDS and GFJ values
converge as follows:

Proposition 2 (Optimal FDS and GFJ Values): The opti-
mal FDS value converges in probability as

lim
n→∞

(

max fFDS
∞,−1

)−1 · 2m

n(m+ 1)
= 1. (10)

Thus, users’ asymptotic dominant share is1
n
· 2m
m+1

. In contrast,
the optimal GFJ value converges in probability as

lim
n→∞

(

max fGFJ
∞,−1

)−1 · 2

ν
(

√

mn/3 + n
) = 1. (11)

Users are asymptotically allocated resources for2
νn

jobs.
We note thatν appears in (11) but not (10), since the
dominant shares, not the number of jobs, appear in the FDS
objective function. Scaling the resource requirementsRij by
ν is equivalent to scaling the optimal allocationsxj by ν−1;
these cancel in calculating the dominant sharesµjxj .

We thus see that in the limit of a large number of hetero-
geneous users, withβ = ∞ and λ = −1, the optimal FDS
value increases while the optimal GFJ value decreases as more
resources are added to the system. This proposition highlights
the fundamental difference between FDS and GFJ: in the limit,
they yield very different allocations.

B. Three Key Properties of Fairness

We next turn our attention to fairness and its relationship
with efficiency, using three widely-used properties of fairness
functions (see e.g., [8] and the many references therein):

Definition 2: A function f is Pareto-efficient if, whenever
x Pareto-dominatesy (i.e.,xi ≥ yi for each indexi andxj >
yj for somej), f(x) > f(y).

Definition 3: Sharing incentive is the property that no
user’s dominant share is less than1

n
; each user has an incentive

not to simply split the resources equally.
Definition 4: Envy-freenessholds if and only if no user

envies another user’s allocation. Mathematically, letrij denote
the amount of resourcei allocated to userj. Userj can then
processmaxi rij/Rij . Envy-freeness is defined as the property
that maxi rij/Rij > maxi rik/Rij for any j 6= k. In words,
no other user’s allocation would enable a user to process more
jobs than her allocation would.

We investigate if and when these properties are satisfied
by FDS and GFJ. Our results show that the answer depends
on several factors, e.g. the values of the parametersβ andλ.
Table I summarizes our findings.

We first consider Pareto-efficiency. Evidently, this property
holds for largeλ. Based on [4], we can in fact specify a
threshold forλ above which Pareto-efficiency holds:

Proposition 3 (Pareto-efficiency of FDS and GFJ): The
fairness functions (3) and (7) are Pareto-efficient whenβ > 0

if and only if |λ| ≥
∣

∣

∣

1−β
β

∣

∣

∣.

The absolute value signs are necessary, as forβ > 1, (3)
and (7) are negative. For this range ofβ, a more negative
λ therefore emphasizes efficiency. As Pareto-efficiency isa
highly desirable property for fairness functions (both single
and multi-resource), the following analysis considers only
values ofλ satisfying|λ| ≥

∣

∣

∣

1−β
β

∣

∣

∣.

Proposition 4 (Sharing Incentive of FDS): Supposeβ > 0.
Then we can prove the following:
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(a) Sharing incentive is satisfied by the FDS-optimal alloca-
tion whenλ = 1−β

β
andβ > 1.

(b) For 0 < β < 1 and λ = 1−β
β

, there exists a user-
resource system such that the FDS-optimal allocation for
this system does not satisfy the sharing incentive property.

(c) For anyβ > 0, there existsλ with |λ| sufficiently large
so that for some user-resource system, the FDS-optimal
allocation need not satisfy the sharing incentive property.

(d) If λ = 0, then the FDS-optimal allocation always satisfies
the sharing incentive property.

We can further bound the allocation efficiency:

Corollary 2 (Bounds on Allocation Efficiency of FDS): If
β > 0 andλ = 1−β

β
, the efficiencyX ≥ 1

maxj µj
.

For λ = 1−β
β

, the FDS function becomes equivalent to
the isoelasticα-fair utility in economics;β corresponds to a
measure of constant relative risk-aversion for individualusers.3

As β increases, individual risk-averse users find the resource
allocation more equitable and become collectively envy-free.
The following corollary establishes that this interestingenvy-
free behavior emerges (for FDS) at athreshold of β > 1:

Corollary 3 (Envy-Freeness of FDS): For β > 0 and λ =
1−β
β

, the envy-freeness property holds ifβ > 1; if λ = 0,
then envy-freeness holds for all user-resource systems andany
β. Moreover, there exists a user-resource system whose FDS-
optimal allocation does not satisfy envy-freeness under the
same conditions (b) and (c) in Prop. 4 for which the sharing
incentive property does not always hold.4

In contrast to FDS, GFJ need not always satisfy sharing
incentive even forβ > 1:

Proposition 5 (Sharing Incentive of GFJ): Suppose again
thatβ > 0. Then under the conditions enumerated below, there
exists a user-resource system whose GFJ-optimal allocation
does not satisfy the sharing incentive property:

(a) |λ| = |(1− β)/β|,
(b) |λ| > |(1− β)/β| and0 < β < 1,
(c) |λ| < |(1− β)/β| andβ > 1,
(d) |λ| sufficiently large,
(e) λ = 0.

Similarly, GFJ-optimal allocations need not be envy-free for
any value ofβ:

Corollary 4 (Envy-Freeness of GFJ): Under the conditions
specified in Prop. 5, there exists a user-resource system
such that envy-freeness does not hold for the GFJ-optimal
allocation.

Figure 4 illustrates Props. 4 and 5’s results on the sharing
incentive property, as well as Corollaries 3 and 4’s resultson
envy-freeness.

3Isoelasticity and relative risk-aversion in economics are defined as
∂u(x)
∂x

x
u(x)

and−xu′′(x)
u′(x)

respectively, whereu is the utility function.
4Though it may appear so from this proposition, sharing incentive and

envy-freeness arenot equivalent [8].
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Fig. 4. Conditions under which sharing incentive (SI) and envy-freeness
(EF) can be shown either to hold or not to hold (c.f. Props. 4 and 5 and their
corollaries 3 and 4).

C. Fairness-Efficiency Tradeoff

We now consider two ways in which a fairness-efficiency
tradeoff does not exist: first, an increased emphasis on fair-
ness need not decrease efficiency. Second, the efficiency-
maximizing allocation may also be the “most fair.”

Traditionally, a larger parameterα in α-fairness functions
is thought to be “more fair” [19], [20]; this statement is made
mathematically precise in [4]. In [12], however, it is shown
that when a network allocates bandwidth so as to maximize
α-fairness, total throughput in the network will sometimes
increase withα. It may even decrease as capacity increases.
These “counter-intuitive” results hold in the general multi-
resource problem:

Consider the general family of utility functionsU(x, α);
hereα is a parameter indexing the family of utility functions,
and the specific functional form ofU is not specified. For
instance, we could use the functions in (3), withα = β and
λ = 1−β

β
, so that the utility function uses “α-fairness.” We

incorporate the resource capacity constraints in the matrix
inequality Rx ≤ C and assume thatR is a matrix of full
row rank consisting only of those constraints which are tight
at the optimal allocationx for the given value ofα.

We let S be ann × (n − m) dimensional matrix whose
columns form a basis for the nullspace ofR, and again let
X =

∑n
j=1 xj denote the total efficiency. The negative of the

utility function’s Hessian matrix is denoted byD, and we def
ine b = ∂2U

∂x∂α
, A = STDS, vj = sj

Tb and βj = −1T sj,
where thesj are the columns of the matrixS. Let Ai denote
the matrixA with the ith row replaced byβ = [β1 β2 · · ·βn].
We useδ to denote a direction of perturbation of the capacity
vector C and DX(δ) to denote the derivative ofX in the
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Fairness Sharing Incentive Envy-Freeness

FDS λ = 1−β

β
, 0 < β < 1 λ = ∞, anyβ λ = 1−β

β
, 0 < β < 1 λ = ∞, anyβ

GFJ λ = 1−β

β
, β > 0 λ = ∞ or 0, anyβ λ = 1−β

β
, β > 0 λ = ∞ or 0, anyβ

|λ| < |1−β|
β

, β > 1 |λ| > |1−β|
β

, 0 < β < 1 |λ| < |1−β|
β

, β > 1 |λ| > |1−β|
β

, 0 < β < 1

TABLE I
CONDITIONS UNDER WHICH PROPERTIES DO NOT HOLD FOR ALL USER-RESOURCE SYSTEMS.

direction ofδ. From [12], we have

∂X

∂α
= 1TSA−1STb (12)

DX(δ) = 1T ∂x

∂C
δ = 1TD−1RT (RD−1RT )−1δ. (13)

We can further prove the following proposition:

Proposition 6 (Efficiency Non-Monotonicity): Efficiency
increases withα if and only if

N−L
∑

i=1

videtAi ≥ 0. (14)

Moreover, efficiency may decrease with an increase in the
capacity vectorC. If capacity increases proportionally, i.e.,
δ = ǫC for some smallǫ, thenDX(δ) ≥ 0.

As a special case, when only one capacity constraint is tight
(e.g., one resource), efficiency always increases with capacity.
The technical report [3] contains a numerical example in which
efficiency increases withβ.

We next examine the conditions under which an equal
allocation (equal dominant shares for FDS or an equal number
of jobs for GFJ) maximizes efficiency. In these situations,
there is no fairness-efficiency tradeoff; the most fair allocation
maximizes the total number of jobs processed. As this property
is an ideal case, it will likely be satisfied only under rather
stringent conditions. Indeed, our results show that this ideal
case occurs only when the resource constraints “line up”
exactly.

We again express the resource constraints in matrix form
asRx ≤ C, and simplify them toγx ≤ 1m, where1m is a
vector ofm 1’s andγij =

Rij

Ci
.

Proposition 7 (Maximizing Fairness and Efficiency (I)):
Suppose thatm = n constraints are tight at the maximum-eff
iciency allocation. Then this allocation equalizes the dominant
shares (FDS has no fairness-efficiency tradeoff) if and only if

n
∑

j=1

γij
µj

= ρ (15)

for some constantρ and all resourcesi. The number of jobs
per user is equalized (GFJ has no fairness-efficiency tradeoff)
if

n
∑

j=1

γij = r (16)

for some constantr and all resourcesi.
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Fig. 5. Illustration of Prop. 7.
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Fig. 6. Illustration of Prop. 8 in two dimensions. In the top graph, exactly
one resource constraint is tight at the unique efficiency-maximizing allocation,
andx2 = 0. In the bottom graph, exactly one resource constraint is tight at
any of the multiple efficiency-maximizing allocations.

Looking back at Fig. 2, we see that the number of jobs
per user is equal at the efficiency-maximizing allocation if
σ1 = . . . = σn for n users and two resources. For two users
andm resources, the number of jobs per user is equal at the eff
iciency-maximizing allocation if

∑m
j=1 τjRj2 =

∑m
j=1 Rj2.

Our conclusions are more subtle whenm < n constraints
are tight at an efficiency-maximizing allocation:

Proposition 8 (Maximizing Fairness and Efficiency (II)):
Suppose thatm < n constraints are tight at an efficiency-
maximizing allocationx∗. If this allocation is the unique
allocation maximizing efficiency, then at least one of the
x∗

j = 0 and one user is allocated no jobs. If other allocations
also maximize efficiency, an allocation equalizing eitherthe
dominant shares or number of jobs processed maximizes eff
iciency if and only if at the equal allocation, the constraint
set intersects the hyperplane

∑n
j=1 xj =

∑n
j=1 x

∗

j on a set of
dimension at least 1.

Figure 6 shows the two-dimensional illustration of this the-
orem’s statements. The top graph shows a unique efficiency-
maximizing allocation when exactly one resource constraint is
tight, and the bottom graph shows a set of multiple efficiency-
maximizing allocations.

We can use this proposition to derive a sufficient condi-
tion for the efficiency-maximizing allocation to equalizethe
dominant shares or number of jobs for each user:
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Corollary 5: Supposem < n resource constraints hold at
the efficiency-maximizing allocation. Then ifRij > Rik for
some usersj and k and all resourcesi, xj = 0 (user j is
allocated no jobs) at any efficiency-maximizing allocation.

If m = 1 (the single-resource case), this result implies the
following:

Corollary 6: The maximum efficiency allocation equalizes
the dominant shares (FDS) or jobs per user (GFJ) if and only
if µj = µ ∀ usersj. In other words, each user needs the same
amount of the single resource to process one job.

V. A PPLICATIONS AND ILLUSTRATIONS

We consider an illustrative example of a datacenter with
CPU and RAM constraints. There are two users, each of whom
requires a fixed amount of each resource to accomplish a job.
Jobs are assumed to be infinitely divisible [17], [18]. In order
to benchmark performance, we use the same parameters as
[8]: user 1 requires 1 CPU and 4 GB of RAM for each job,
and user 2 requires 3 CPUs and 1 GB of RAM for each job.
There are 9 CPUs and 18 GB of RAM at first. We then vary
these constraint values to observe their impact on fairness.

Suppose that the fairness function is given byf (e.g. FDS
(3), DRF (4), GFJ (7)). Then the allocation problem is

max
x,y

f(x, y) (17)

s.t. x+ 3y ≤ 9, 4x+ y ≤ 18 (18)

wherex andy are the number of jobs allocated to users 1 and
2 respectively.

We use DRF as the benchmark fairness to compare the
performance of our FDS and GFJ functions. We defineper-
cent fairnessas the percentage difference between the optimal
DRF fairness value (i.e., the minimum dominant share) and
the DRF fairness value of the allocation obtained from FDS
or GFJ. Thepercent efficiency is defined as the percentage
difference between the total number of jobs processed in the
given allocation and the maximum number of jobs that can
be processed, given the same capacity constraints. We also
introduce another efficiency measure, theleftover capacity
(i.e., the amount of unused resources).

We investigate the outcomes of the proposed fairness mea-
sures along two dimensions:

• Comparing the achieved efficiency when user heterogene-
ity and resource capacity are varied.

• Examining the range of attainable fairness-efficiency
tradeoffs for different values of the parametersβ andλ.

A. Efficiency

We first use our two efficiency measures–leftover capac-
ity and percent efficiency–to investigate user heterogeneity’s
effect on achieved efficiency. Heterogeneity is measured by
the variance in the slopesτi and in the slopesσi of users’
resource requirements, as introduced in Fig. 2 in Section III-A.
If two users have identical resource requests, they become
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Fig. 7. Too much or too little variance in τ leads to inefficiency from
leftover capacity: Leftover capacity versus variance in user heterogeneity ina
datacenter example. Variances below 0.5 have only leftoverCPUs; variances
above 0.5 have only leftover RAM.

homogeneous, and both variances are 0. At the other extreme,
the users do not share any resource requirements; they become
decoupled, with infinite variances.

We calculate the optimal FDS, GFJ and DRF allocations
for β = 2, λ = −0.5. First, Fig. 7 examines the leftover
capacity as a function of the variance inτ . The heterogeneity
was varied by changing the RAM requirement of user 2 from
1 GB to 13 GB. Thus, the RAM constraint line in Fig. 2’s
representation tilts from very steep to very flat. This tilting
geometrically explains the overall “V” trend in Figs. 7 and 8.
When the RAM requirement is below 3 GB (a steep constraint
line), the variance ofτ is over 0.5 and the variance ofσ is
over 4.5: only RAM is leftover. When the RAM requirement
is above 3 GB (a flatter line), the variance ofτ is less than 0.5
and the variance ofσ less than 4.5: only CPUs are leftover.
The change in the leftover resource is due to the changing
shape of the feasible region.

In this example, we see that for low heterogeneity in users’
resource requirements, FDS, GFJ, and DRF have similar eff
iciency values. In fact, Prop. 1 states that at zero heterogeneity,
DRF and FDS are optimized at the same allocation, predicting
part of the observed behavior. As the heterogeneity increases,
DRF has a lot of leftover capacity compared to GFJ and
FDS, especially for a variance larger than 1 in Fig. 7 and
larger than 5 in Fig. 8. DRF trades off efficiency signif
icantly to preserve users’ minimum dominant share with
increasingly heterogeneous resource requirements. Even GFJ
performs worse than FDS, which yields the lowest leftover
capacity. As FDS includes resource requirements in its fairness
function, we intuitively expect such a result.

We next examine the percent efficiency in jobs processed
as a function of the variances inτ and σ in Figs. 9 and
10. As in the previous figures, for low heterogeneity across
users’ resource requirements, FDS, GFJ, and DRF perform at
similar efficiency levels. All three achieve full efficiency for
a τ variance near 0.5 andσ variance near 4.5. Again, the eff
iciency attained is also much higher (about 15%) for FDS and
GFJ than for DRF as the variance increases.

In summary, enforcing DRF can significantly reduce eff
iciency as measured by either leftover capacity or percent
efficiency. This is also the case when the number of users
grows; Fig. 11 shows the leftover capacity versus the number
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Fig. 8. Too much or too little variance in σ leads to inefficiency from
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Fig. 9. Greater variance in τ leads to DRF inefficiency in the number of
jobs processed: Percentage efficiency versus variance in user heterogeneity
in a datacenter example.

of users in the system. Only RAM capacity was leftover; in all
scenarios, all of the CPUs were used. For a large number of
users, we see that FDS and GFJ both use more capacity than
DRF. Users’ CPU requirements were fixed at 2 CPUs; their
RAM requirements were drawn from a uniform distribution.
Other randomly chosen RAM requirements yield similar plots.

Finally, we examine the impact of changing RAM capacity
on the attainable efficiency levels. Figure 12 shows how
varying this capacity affects the efficiency attained at the
optimal allocation. We see that when the dominant shares for
both users are equal, at 12 GB of RAM capacity, GFJ and
FDS have the same range of achievable efficiency. Moreover,
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Fig. 10. Greater variance in σ leads to DRF inefficiency in the number of
jobs processed: Percentage efficiency versus variance in user heterogeneity
in a datacenter example.
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Fig. 11. Even with a large number of users, DRF uses less available
capacity than FDS and GFJ: Leftover capacity versus the number of users in
a datacenter example.
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Fig. 12. Capacity expansion can increase the range of operating eff
iciencies for FDS and GFJ over DRF: Attainable efficiency for varying
capacity constraint, given different implicit realizations of β ∈ (−5, 5) and

λ ∈ (0.01, 1.91) for β < 0, λ ∈
(

0.005
(

1
β
− 2

)

, 0.955
(

1
β
− 2

))

for
β > 0 values. The region labels refer to the fairness functions that attain
those efficiencies.

β and λ can be chosen to achieve higher efficiency in FDS
and GFJ. The DRF function serves as a “lower bound” to the
efficiency values attainable with the FDS functions.

The impact of capacity expansion also highlights an interest-
ing dimension of theeconomy of scale in large networks. The
standard view is that a large scale helps smooth out temporal
fluctuations of demands through statistical multiplexing, e.g.,
at any aggregation point in a broadband access network. In
addition to temporal “heterogeneity” (bursting at different
times), network users may haveresource type heterogeneity:
some applications need more CPU processing while others
need more storage or bandwidth. Can this heterogeneity be
exploited to utilize different types of resources more eff
iciently? The answer depends on how these different resources
are allocated among the users. If DRF is used, for example,
efficiency can be quite low. However, by using the appropri-
ate FDS parametrization, resource request heterogeneity can
indeed be leveraged along with increases in resource capacity
and turned into another type of economy of scale.

B. Fairness-Efficiency Tradeoffs

The previous section established that when users are very
heterogeneous, FDS and GFJ outperform DRF, achieving a
much greater efficiency. However, we expect that this larger
efficiency comes at a cost of decreased fairness. This section
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in a datacenter example, usingα = β fairness for FDS and GFJ. Notice that
an increased emphasis on fairness (i.e. largerβ) need not always decrease the
efficiency of the allocation, as seen forβ < 2.6 for GFJ measure.

examines the general behavior of fairness when a larger eff
iciency is achieved. Here we measure fairness as percent
fairness with the DRF metric and efficiency as percent eff
iciency on the number of jobs processed.

Figure 13 shows the optimal allocations of jobs for different
values ofβ, λ = 1−β

β
. Both FDS and GFJ becomeα-fair

on the dominant shares of and jobs allocated to each user,
respectively, forα = β. As β increases,λ decreases, so
that fairness is emphasized more than efficiency and FDS
asymptotes to DRF. For smallβ (i.e., more relative empha-
sis on efficiency than fairness), the optimal FDS allocation
maximizes efficiency. In the case of GFJ, which emphasizes
the fairness on jobs allocated, largerβ values produce a more
fair allocation of jobs across users than FDS, as expected.
Consequently, the total number of jobs processed (i.e., eff
iciency) is lower for GFJ than for FDS.

Figure 14 gives a representative plot of how this tradeoff
varies withβ andλ = 1−β

β
. As β grows larger, the percent

efficiency from the FDS measure drops, approaching DRF in
the limit β → ∞. The GFJ fairness increases untilβ = 2.6, at
which point the GFJ-optimal allocation is also DRF-optimal.
(We see in Fig. 13 that the GFJ allocation “crosses” the DRF
allocation line at this value ofβ). For larger values ofβ, GFJ
quickly converges to an allocation with a more equal number
of jobs per user; thus, its efficiency decreases. But efficiency
in FDS decreases more slowly since FDS attempts to make
the dominant shares, not the number of jobs, more equitable.
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contours: Attainable efficiency vs. fairness tradeoffs from different implicit
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for β > 0 values. DRF is used as the
fairness benchmark and metric.

Finally, we show the interaction between capacity con-
straints and the range of fairness-efficiency tradeoffs achieved.
The shaded region in Fig. 15 shows the attained tradeoffs for
a large range ofβ and λ values; each point corresponds to
someβ and λ values in the FDS function that achieve the
shown operating tradeoff. This achieved tradeoff depends on
the available capacity, with contour lines for various RAM
capacities shown in the figure. As RAM capacity increases
from 4 GB to 6

√
3 GB, the tradeoff stops: one can increase

both fairness and efficiency. At a RAM capacity of6
√
3

GB, the conditions of Prop. 7 are satisfied, and efficiency
is maximized when the dominant shares are equal. When the
RAM capacity goes above6

√
3 GB up to 25 GB, user 1’s

dominant share 4x1

RAM capacity
decreases. Thus, an increase in

fairness requires an increase inx1 and user 1’s CPU allocation.
User 2 is then allocated fewer jobs, decreasing efficiency.In
this figure, one can achieve 100% efficiency and fairness when
RAM capacity is6

√
3 GB, but such an ideal operating point

does not always exist.
Figure 16 shows the analogue of Fig. 15 for GFJ functions.

In this case, the range of attainable efficiency at the maximum
allocation decreases as the fairness value increases. Thus, one
can increase both fairness and efficiency as RAM capacity
goes from 4 GB to 25 GB. Moreover, the contour lines “bend
back” on themselves, indicating that for differentβ and λ
parameters, the same fairness value can result in many eff
iciency values at the optimal allocation. When RAM capacity
equals 11.25 GB, the conditions of Prop. 7 are satisfied and
there is no tradeoff between fairness and efficiency.

VI. SURVEY ON FAIRNESSPARAMETERS

In this section, we provide results from a simple survey
to complement the proposed theoretical framework with a
demonstration of how the typical values of fairness function
parameters can be estimated from large scale consumer sur-
veys. We note that our survey methodology and results should
be considered as a demonstration of one out of many feasible
approaches rather than a prescription of what exact parameter
values to choose in a given real world scenario. In particular,
this survey provides a systematic way of inferring an initial
estimate for(β, λ) values, visualizes participant clusters in



TRANSACTIONS ON NETWORKING, VOL. A, NO. B, MONTH 2012 11

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Fairness (DRF Metric, %)

E
ff

ic
ie

n
c
y
 (

T
o

ta
l 

J
o

b
s
 A

ll
o

c
a
te

d
, 

%
)

RAM Capacity


4 GB


RAM Capacity


25 GB


RAM Capacity


15 GB


Fig. 16. Capacity expansion allows different GFJ fairness-efficiency tradeoff
contours: Attainable efficiency vs. fairness tradeoffs from different implicit
realizations ofβ ∈ (−5, 5) and λ ∈ (0.01, 1.91) for β < 0, λ ∈
(

0.005
(

1
β
− 2

)

, 0.955
(

1
β
− 2

))

for β > 0 values. DRF is used as the
fairness benchmark and metric.

the fairness-efficiency space, and connects the FDS and GFJ
functions with participants’ responses.

A. Survey Methodology

We conducted an online survey in January-February 2012,
which received 143 responses, mostly from the U.S. Out of
these responses, 110 were complete and were used in the
subsequent analysis. The participants were given six questions,
each with a simplified ‘toy’ scenario of resource allocation in
a datacenter, where jobs from two different clients had hetero-
geneous resource requirements over multiple resources (CPU
and storage). Our online survey participants were faculty,
students, and staff primarily from the EE and CS departments
of Princeton and George Washington University. They all were
familiar with everyday computer use, and hence intuitivelyun-
derstood the two resources considered (processing power and
storage capacity). The survey questionnaire further explained
the context to ensure participants’ understanding.

We limited our question scenarios to only two types of
resources in order to ease participants’ understanding of the
questions, although more sophisticated methods using conjoint
analysis can be used on data with more resources [21]. In the
last question, we increase the number of resources to three:
clients’ jobs required CPU, storage, and bandwidth. Each of
the six questions offered five different options of distributing
resources among the two clients, with each option resultingin
a particular outcome. For each question, the survey participants
were asked to rank the five allocation options in decreasing
order of preference, as shown in Fig. 17.

In four of the questions, the five options that the survey
participants were asked to rank were reported in terms of the
number of jobs completed for each datacenter client under
that option’s resource allocation. In the other questions,the
options were reported in terms of the leftover (unused or
wasted) capacity resulting from that resource allocation option.
The questions had either the same set of allocation choices or
a scalar multiple, thus permitting a sanity check on whether
participants made consistent choices when the outcomes were

Fig. 17. Question 2 of our online fairness survey. Client A required 1 CPU
and 4 TB per job, while client B required 3 CPU and 1 TB per job. The
datacenter had a total of 108 CPUs and 180 TB to allocation.

reported in different metrics (‘total number of jobs completed’
and ‘leftover resources’) or were scaled by a constant factor.
To avoid influencing the participant’s decisions, we did not
explicitly inform them of the survey’s purpose, i.e., evaluating
their fairness-efficiency tradeoff.

The full survey is available in Appendix C of [3]. The results
obtained from analyzing the survey responses are reported in
the next subsection.

B. Results

Our analysis of the survey results focuses on three goals:

• Evaluate consistency of the results across users with the
fairness axioms in [3], [4].

• Cluster participants based on the fairness and efficiency
values inferred from their preferences in their rankings
of resource allocations.

• Determine the differentβ andλ heat maps of compatible
parameter values for participants in each cluster.

We address these sequentially below.
1) Axiom Validation: We first use the survey results to

examine our construction of the fairness functions, evaluating
the consistency of the results with three of the four axioms
from which these functions are constructed (see Appendix A
of [3] for a full list of the axioms). To keep the survey simple,
we were unable to evaluate the Axiom of Continuity, which,
however, is quite intuitive.

Figure 18 shows the number of participants ranking each
allocation first, second third, etc. in each question of the
survey. We see that a clear consensus emerges across the
participant pool: for instance, for question2 most people
rank the allocations from best to worst as 3, 5, 1, 2, 4. It is
interesting to note that the fourth allocation, under whichclient
B had no jobs done, has the lowest rank. In fact, allocation2,
which is less efficient than allocation4, was more preferred.
This result is thus consistent with the Axiom of Starvation:
participants generally dislike starvation allocations, even if
they are more efficient.
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Fig. 18. Allocation rankings for each survey question. The responses to
each question are shown in a row at each allocation, e.g. the first six dots
correspond to rankings of allocation 1 in questions 1-6, thesecond six dots
correspond to rankings of allocation 2 in questions 1-6, etc. The size of the
bubble is proportional to the number of people choosing a particular rank for
a particular allocation.

We implicitly evaluate the remaining two axioms (those
of Saturation and Partition) by examining the consistency of
participants’ responses when the allocations are scaled upor
down. Our fairness functions predict that a person’s rankings
of different allocations should not change with this scaling.
Figure 18 shows that for each question, a clear consensus
ranking emerges; moreover, this ordering of allocations is
consistent across all questions5. This observation is especially
significant since questions3 and5 report the leftover capacity
as a metric instead of the total number of jobs processed–thus,
even when the efficiency metric changes, participants’ answers
are consistent across the different survey questions.

2) Participant Clustering: We now evaluate the consistency
of different people’s responses by calculating theaverage pre-
ferred fairness and efficiency values for each person and each
question. These are calculated by taking a weighted average
of the efficiency and fairness values for each allocation; the
weights are determined by the participant’s ranking of that
allocation. The fairness metric is defined to be the negative
of the difference between the numbers of jobs processed for
clientsA andB, while the efficiency metric is taken from the
survey as the total number of jobs processed (or the leftover
capacity). The leftover capacity is measured by the negative
of the percentage of leftover capacity for each resource, to
facilitate comparison of leftover CPUs with leftover GB. We
use negatives for the fairness value and leftover capacity metric
so that an increase in the fairness or leftover capacity value
indicates a more fair or more efficient allocation.

We see from Fig. 19 that for all questions, participants
tend to fall into two distinct groups, one of which puts more
emphasis on efficiency, and one which puts more emphasis on
fairness. The two groups have approximately equal numbers of
participants (e.g., 52 in each for question1). Moreover, these
groups are consistent across questions. While the numerical
fairness and efficiency values vary depending on the allocation
scalarization and efficiency metric used in a question, we see
that both clusters lie in approximately the same position inthe
graph for each question.

5This ranking consensus is simply in terms of majority agreement on the
rank of the allocations, but does not mean that the individual participants’
(β, λ) values agree.

3) Parameter Choices: We next determineβ andλ values
compatible with the answers in Fig. 19’s clusters. The results
for participants in both clusters were the same for all questions;
thus, we only show theβ andλ values for question 2.

We use exhaustive search for discretizedβ andλ values to
determine whether a given person’s allocation ranking is com-
patible with that obtained using the(β, λ) fairness function.
Figure 20 shows the heat map of compatibleβ andλ values for
a person in each of the two dominant clusters; the intensity
of the color corresponds to the number of times an answer
is compatible with the given(β, λ) value. A darker color
indicates a larger number of compatible answers across users.
In this figure, we assume that participants use a GFJ fairness
function. Though no single(β, λ) value is compatible with all
participants (the single black squares represent a maximum
number of compatible answers), a majority of responses were
compatible with some(β, λ) value: 50% of cluster 1 and 60%
of cluster 2 participants agreed on at least one(β, λ) pair.6

As expected, the compatibleλ values for cluster 1 (Fig.
20a) are higher in absolute value than those in cluster 2 (Fig.
20b), as is consistent with cluster 2 participants’ preferring
fairness over efficiency (Fig. 19). The reference lines in the
figure show the Pareto-efficient frontier. Forβ > 1, most
of the compatible(β, λ) values are below the Pareto-eff
icient frontier, i.e., not Pareto-efficient. This does nothappen
for cluster 1 participants, as might be expected since they
emphasize efficiency. However, asβ increases, more Pareto-eff
icient (β, λ) values are compatible with at least some answers.

Figure 21 shows the(β, λ) heat graphs for both participant
clusters when FDS-fairness is used. Only the heat graphs for
question 2 are shown; the other questions give similar results.
We see that all of the(β, λ) values tested in Fig. 21a are
compatible with the cluster 1 responses (50% of responses
agree on these values). We may partially explain these results
by the fact that cluster 1 participants all favor allocation3 over
allocation 5: calculating the dominant shares of each client,
we see that allocation 5 actually gives clientsless equitable
dominant shares, and that the sum of dominant shares for
allocation 3 is also larger than that for allocation 5. Thus,
no matter whichβ and λ are considered, allocation 3 will
be ranked above allocation 5. All(β, λ) pairs are therefore
consistent with this ranking. Most participants rank the other
allocations in a manner consistent with ranking 3 above 5;
those participants whose additional rankings are inconsistent
do not show any compatible(β, λ) values.

In contrast to cluster 1,all of the (β, λ) values tested are
inconsistent with cluster 2’s allocation preferences. We can
account for this result by noting that all cluster 2 participants
prefer allocation 5 (processing an equal number of jobs for
each client) over allocation 3. However, allocation 3 is both
more more efficient (under FDS) than allocation 5, and hence
is inconsistent with cluster 2’s answers if they used FDS.

6This result may be due to our discretization; for instance, using a λ
closer to zero may improve the compatibility with cluster 2 participants,
who emphasize fairness over efficiency. Using a largerλ may improve
compatibility with cluster 1 participants. It is also possible that a minority of
participants provided inconsistent responses compatiblewith no (β, λ) values,
e.g. preferring efficiency to fairness in ranking two allocations, and fairness
over efficiency in another two allocations.
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Fig. 20. Heat map of compatible(β, λ) values for clusters 1 and 2
participants in Fig. 19, GFJ fairness. The reference line isthe Parero-efficient
boundary|λ| = |(1− β)/β|, and the black dot at(β, λ) = (2, 2) represents
a maximum number of compatible answers. Only question 2 results are shown;
those for all other questions are similar.
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Fig. 21. Heat map of compatible(β, λ) values for clusters 1 and 2
participants in Fig. 19, FDS fairness. The reference line isthe Parero-efficient
boundary|λ| = |(1− β)/β|, and the black dot at(β, λ) = (2, 2) represents
a maximum number of compatible answers. Only question 2 results are shown;
results for the other questions are similar.

We thus conjecture that inconsistency arises because GFJ isa
“more natural” fairness function: for certainβ andλ values,
most of cluster 1 and cluster 2 participants exhibit preferences
consistent with GFJ fairness. While it is intuitive that most
people find it natural to understand fairness in terms of jobs
completed rather than dominant share, this is an interesting
direction to explore through repeated and controlled behavioral
experiments.

The fact that participants generally seem to follow GFJ
rather than FDS fairness has interesting implications, as Props.
4 and 5 show that sharing incentive and envy-freeness are more

likely to hold when FDS is used instead of GFJ. Participants
thus pay more attention to the number of jobs allocated to each
client, rather than each client’s share of the resources allocated;
more generally, we can say that in making allocation decisions,
many participants did not fully internalize the heterogeneity
in the clients’ different resource requirements. Intuitively, this
might be expected, since the number of jobs allocated is a
more “natural” measure of fairness than the proportion of
different resources allocated. However, this observation, if
validated in a larger survey, can provide useful guidelinesfor
datacenter operators in that they need to educate their clients
about the externality imposed on others by each client’s unique
heterogeneous resource requirements.

VII. F UTURE WORK

Initial exploration suggests that both FDS and GFJ can
be unified into a single framework. The idea is to use a p-

norm functiong(γ1,j , . . . , γn,j) =
(
∑

i γ
p
i,j

)
1
p to scalarize the

resource requirement vector of userj, and then evaluate the
resulting fairness byfβ,λ. This method leads to a new family
of fairness measures, parameterizedp, β, andλ, i.e.,

fp,β,λ = sgn(1− β)





m
∑

j=1

(

n
∑

k=1

Rp
kj

)
1−β
p

x1−β
j





1
β

×





m
∑

j=1

(

n
∑

k=1

Rp
kj

)
1
p

xj





λ+1− 1
β

. (19)

Fairnessfp,β,λ includes many fairness measures as special
cases. For instance,f0,β,λ = fGFJ

β,λ and f∞,β,λ = fFDS
β,λ ,

while f1,β,λ gives the total resource usage in the system.
This function again satisfies the four axioms of [4], as

do FDS and GFJ. Moreover, Pareto-efficiency is satisfied for
|λ| ≥

∣

∣

∣

1−β
β

∣

∣

∣, β > 0. We expect that, in analogy with Props. 4
and 5 and their corollaries, threshold values ofp andβ can be
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found, above which sharing incentive and envy-freeness are
satisfied ifβ > 0 andλ = 1−β

β
.

In addition to the functional unification proposed in (19),a
number of extensions to the current framework are possible.
First, we have assumed that both resources and jobs are
infinitely divisible. However, in practice a job may require
a minimum, indivisible bundle of resources, e.g., 2 GB of
memory and 1 CPUs, to run one instance of the job, whereas
allocating 1 GB of memory and 1/2 CPUs offers no more benef
its than allocating nothing at all. Second, our fairness measures
are assumed to be irrelevant to the feasible region of resources.
Adding a feasible region and indivisible resources would leads
to a fairness version of the knapsack problem, which has no
known solution. Some approaches to the knapsack problem
are summarized in Appendix D of [3].

Another interesting direction to explore is to extend our
multi-resource fairness theory to account for job deadlines,
scheduling, and user utility from allocated resources. Finally,
our fairness analysis is based on a model of static jobs whose
resource demands follow a constant pattern. Many applications
not only have time elasticity of demand, but also allow jobs to
dynamically change the composition of a bundle of different
types of resources. These are all challenging problems thatcan
be explored as future work.

VIII. C ONCLUDING REMARKS

In this paper, we introduce FDS and GFJ, two families
of fairness functions for multi-resource allocations. FDSalso
includes as a special case the recently-proposed generalization
of the max-min fairness measure for multiple resources. Dif-
ferent parameterizations of these functions generate a range
of fairness-efficiency tradeoffs, thus allowing for different de-
grees of emphasis on fairness and efficiency that suit different
network operation needs.

We consider three key properties of fairness functions:
Pareto-efficiency, sharing incentive, and envy-freeness. FDS
and GFJ are both Pareto-efficient if|λ| ≥ 1−β

β
, β > 0. FDS

satisfies the sharing incentive property and is envy-free for
β > 1 andλ = 1−β

β
; if 0 < β < 1 andλ = 1−β

β
, then sharing

incentive and envy-freeness are only sometimes satisfied.GFJ
may or may not be sharing-incentive compatible or envy-free
for any β > 0, λ = 1−β

β
.

We also explore the estimation of theβ and λ values
which correspond to people’s preferences. Preliminary results
along these lines are given in Section VI, though one can
easily imagine extensions of both the results analysis and
the questions asked to participants. Given the limited set
of allocations ranked by the participants, reverse-engineering
unique (β, λ) values compatible with each response was not
feasible, but it would be interesting to determine if such unique
parameters exist given the rankings of more allocations. More-
over, our current sample size consists primarily of students
and others in the academic community who are familiar with
computers; with a more diverse demographic of participants,
we could examine the impact of various demographic factors
on participants’ responses. In particular, we could investigate
whether participants naturally group themselves into more

than two clusters, and whether these have any demographic
correlations.
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