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Multi-Resource Allocation: Fairness-Efficiency
Tradeoffs in a Unifying Framework

Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang

Abstract—Quantifying the notion of fairness is under-explored @
when there are multiple types of resources and users request
different ratios of the different resources. A typical exanple ..
is datacenters processing jobs with heterogeneous resoerce-
quirements on CPU, memory, network, bandwidth, etc. This @

paper develops a unifying framework addressing the fairnes-
efficiency tradeoff in light of multiple types of resources We
develop two families of fairness functions that provide diferent

tradeoffs, characterize the effect of user requests’ hetegeneity, ; ; i
and prove conditions under which these fairness measures tisfy have computational jobs requiring more CPU cycles than

the Pareto efficiency, sharing incentive, and envy-free mperties. MEMOrY, while anothe_)r might have_ the opp05|t.e reqwremen.ts
Intuitions behind the analysis are explained in two visualzations The need for multi-resource fairness functions can be il-

of multi-resource allocation. We also investigate people'fairness lustrated with a very simple example, as shown in Fig. 1. In
perceptions through an online survey of allocation preferaces this example, two users require CPUs and memory in order
and provide a brief overview of related work on fairness. to perform some jobs. User 1 requires 2 GB of memory and
3 CPUs per job, while user 2 needs 2 GB of memory and 1
CPU per job. There is a total of 6 GB of memory and 4 CPUs.
. INTRODUCTION Many allocations might be considered “fair” in this exam-
ple: should users be allocated resources in proportiondio th
resource requirements? Or should they be allocated resourc
Comparing fairness of different allocations of sngle so as to process equal numbers of jobs? The fairness measure
type of resource has been extensively studied. Fairness $RBposed recently in [8], calleBlominant Resource Fairness
be quantified with a variety of metrics, such as Jain's iINpRF), allocates resources according to max-min fairness on
dex [1]. Alternatively, different notions of fairness, lnding  gominant resource shares. In this example, DRF would dboca
proportional and max-min fairness, can be achieved througlye jobs to user 1 and 1.71 jobs to user 2, for a total of 2.47
maximization Ofa—fair or isoe|aStiC Ut|||ty funCtionS [2] These jobs processed. But th|s a”ocation brings about a Sigﬁ“ﬂic
approaches, as well as others from economics and sociolog¥s in system efficiency; e.g., a more unequal allocatibn o
have recently been unified as the unique family of functiongq7 jobs to user 1 and 2.83 jobs to user 2 yields a total
satisfying four axioms for fairness metrics, as summarired of 3 jobs. An in-between allocation can be realized if anbthe
[3], [4]. The tradeoff between fairness and efficiency his® a \yell-known fairness metriay-fairness, is adapted for multiple
been studied in [5]-[7]. resources following our methods in Section 1I-B. Foe= 0.5,
When it comes to allocatingnultiple types of resources, yser 1 has 0.57 jobs and user 2 has 2.29 jobs, for a total of
however, there has been much less systematic study, thet repege jobs. Each of these allocations represents one point of
paper [8] being a notable exception. Indeed, it is uncleatwhhe fairness-efficiency tradeoff. This paper developsifyiny
it means to say that a multi-resource allocation is “faidch framework for Studying this tradeoff in ||ght of mu|tip|e ’]?5
user in a network requires a certasombination of different of resources and heterogeneity in users’ resource reqem
resource types to process one job, and this combination maw/ulti-resource allocation problems arise in increasingly
differ from user to user. For example, datacenters allodé#te many applications. Datacenters that selindles of CPUs,
ferent resources (memory, CPUs, storage, bandwidth, tetc.ynemory, storage, and network bandwidth are just one example
competing users with different requirements. One user tigh fact, even the classical problem of bandwidth allocation
a congested network can be viewed as a special case of multi-
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ics at Princeton University (email:cjoe@princeton.edii)Sen and M. Chiang view each link as a separate resource with a distinct capacit
are with the Department of Electrical Engineering, PrionetUniversity
(emails:{soumyas, chiang@princeton.edu). T. Lan is with the DepartmentEach user is represented by a network flow, which uses a pre-

of Elgctrical and Computer Engineering_ at George Was_h'mgmiversity defined subset of links. In this special case, resourceasigu
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Fig. 1. An example of multi-resource requirements in datters.

A. Motivation
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finish 1 unit of job, adding more doew®t reduce the need for functions to numerical examples of datacenters. We examine

5 units of bandwidth. the relationship between the fairness-efficiency traflaof
FDS and GFJ parameterizations. In Section VI, we experiment
B. Unique Challenges of Multi-Resource Fairness with characterizing the parameter values consistent vt r

The following new challenges on fairness arise due to tﬁ)gople’s faimess judgements, analyzing results from dinen

presence of multiple types of resources: survey of 143 participants who were asked to rank different
. . . .Possible resource allocations for an example datacenter. A

« In a single-resource scenario, users' resource requi € ofs can be found in the technical report 3]
ments can be represented with a scalar. With muItipPe P ’

resources, users have vectors of resource requirements, Il. RELATED WORK

which may all look different and must be scalarized yjych of the existing theory on the faimess of resource

before faimess can be evaluated. We present two Wayf,cations is devoted to allocations of a single resoudde |

to visualize user heterogeneity in Section Ill-A and Weg} 1] (e.g. allocating available link bandwidth to nerk

methods _for this ;_calanzatm_n in Sectlon_ 1-B, yleldlngzmwS [12]-[15]). The recent work [4] develops the follovgin

parametrized families of multi-resource fairness measurgymily of faimess functions for a single resource, unifyin

that satisfy the axioms of [4]. o _previously developed fairness measures. It was proven that
« In asingle-resource scenario, the most efficient allocati ;g family, parametrized by two numbers, is tbdy family

will cle_arly use the entire resource. In a muIti—resourcgf functions satisfying four simple axioms of faimess riestr
scenario, however, users’ heterogeneous resource require

1
ments may not allow each resource to be completely used. n . =B\ 2 /o A
Even how to measure efficiency is unclear: should wgs.x(x) = sgn(1—58) | > ( — ) <Z wi) ;
use the total number of jobs allocatéddr the amount i=1 2j=17 i=1
of leftover resource capacity? Section V numerically 1)

examines both of these efficiency metrics, while Prop¥&heres € R and\ € R are parameters. The parametegives
1 and 2 and their corollaries examine the impact of usBi€ “type” of fairness measured by (1), and the paramater
heterogeneity on the number of jobs processed. gives the emphasis on efficiency. A lardat indicates greater
« The extension of max-min fairness to multiple resourc&dnphasis on efficiency over fairness. If we take- = and
is shown in [8] to satisfy such properties as Pareto-eff > 0, We recover-faimess fora: = f. In particular, taking
iciency for certain parameter values. We characterize tH¥€ limit asg — 1 yields proportional fairness. _
parameterizations under which our multi-resource fair- Even multi-resource allocation problems, such as schegluli
ness functions satisfy Pareto-efficiency, sharing invent JOPS in a datacenter, are often simply treated as a single
and envy-freeness (Props. 3-5 and their corollaries). "esource problem (e.g. the Hadoop and Dry_ad s_cheduler)s [16]
. The existence of a fairess-efficiency tradeoff depends'€cent paper [8] generalizes the max-min fairness measure
on both the scalarization of users’ resource requiremefies Multiple resource settings. Our work develops a unified
and the subsequent evaluation of fairness. We sh&nalytical framework for fairness of multi-resource adtions.
that a greater emphasis on equity or fairness need mgtparticular, in contrast to [8], we incorporate the trafleo
always decrease efficiency (Prop. 6) and give analyticg?twee” fairness and efficiency in multi-resource seting

conditions on when the fairess-efficiency tradeoff exist " the technical report [3], we provide a more comprehen-
(Props. 7 and 8 and their corollaries). sive survey of other work on fairness. In addition to further

« When a fairess-efficiency tradeoff exists, the “best” Oﬁj_.iscussior.] on fairn.ess in engineering frame\_/vorks, we summa
erating point along this tradeoff depends on the operatoPé€ theories of fairess from computer science, econgmics
exogenously determined preferences. We characterize fh@itical philosophy, and sociology.
psychological component to fairness by conducting & |||, FaiRNESS EFFICIENCY OF MULTI-RESOURCE
human subject experiment in which participants are asked ALLOCATIONS

to rank possible allocation choices given in an online . ; by o .
- We first present “dual” visualizations of heterogeneity
survey. Our results indicate that people tend to cluster

; ) . - among users’ requirements for multiple resources in Sec-
mFo two different groups—one prefemng efficiency OV€ion 11I-A. Section 11I-B then develops two new families
fairness and one fairness over efficiency. Lo . . )

After further di ) ¢ related K in Secti IIof fairness functions, which scalarize these heterogeneou
er further discussion of rélated work 'In - Seclion Hlyaqqrce requirement vectors and use them to evaluate the

Section Il develops our two new families of fairness funn8, ¢ .- «<s of multi-resource allocations. These two fargitiee

which we call I_:alrness on Dominant Shares (FDS)and Fairness on Dominant Shares (FDS) and Generalized Fairness
Generalized Faimess on Jobs (GFJJFDS includes the max- o, 3ohs (GFJ). FDS measures the fairness of users’ resource
min fairess measure DRF proposed in [8] as a special casf,ations by accounting for both the number of jobs alleda
We investigate key properties of these functions in Sectigf) each yser (a function of the resources available) and the
,IV and characterize condlthns under Wh'Ch, they are ,Sat'ﬁgterogeneity in different resource requirements acresssu
led by FDS and GFJ. Section V then applies our fa'meE;SFJ, on the other hand, assumes that users’ utility depends

1The phrases “jobs allocated” and “jobs processed” are usietchange- solelyl on thg number of jobs they are allocated, irrespectiv
ably throughout the paper. of their differing resource needs.
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A. Visualizing User Heterogeneity 4 gxfgnjzn 3 Users, 2 Resources
2 AR
A major challenge of multi-resource fairness is incorpo- 057Ry5/Rys X : number of jobs of useri
ra_mng the heteroge.nelty of different users’_ reql_Jlremefnts_‘ ’ %Ry ¥Ry KR s €y o
different resources into the assessment of its fairnessial4 c —
ii i i ; inQi : Userd = =T xR, F
izing this heterogeneity can yield useful insights. Moregv AT z5 =
. N . . . } 3013 ]
Section V examines in detail how heterogeneity affects the 2 )Ze’cl s 3
optimal allocation and achieved efficiency. 3 ' i i
Figure 2 provides two ways to visualize user heterogeneity. g 0&,’ xRy %
Each userj requiresR;; of resource typé for each job. J °‘§ ]
The first (top) visualization has as many dimensions asther Ry < >
are different types of resources. The axes correspond to the Rasnuresl. .
resources (two types of resources here for visual simpicit * =Ry/Ry,
with the box representing the resource constraints. Theeslo wRa/Ryy
A% 3=Ry/Ry, 2 Users, 3 Resources

o; of the line corresponding to each uses the ratio of that
user’s requirements for the two resources. The heterotyeofei
users’ resource requirements can be captured with thenearia
of the {;}:2 homogeneity occurs at 0 variance (all users have
the same resource requirements) and the dashed line becomes
straight. Heterogeneity increases with the variance.of

The second (bottom) visualization has as many dimensions
as there are different users. The axes correspond to the
jobs allocated to each user (two users here for simplicity of Number of jobs of user 1, x,
drawing), with feasible allocations shown as shaded regioFig. 2. Two visualizations of user heterogeneity. The liirethe top graph
bounded by linear resource constraints. The slope®f show the ratio of users’ requirements for two different teses, while the

. S . T , lines in the bottom graph show the feasible allocation megithe slopes of

constraint linei reflect the ratio of user 1's and USer 2'Shose lines reflect the ratio of two users’ requirementseach resource.
requirements for resourge Again, the heterogeneity of users’
resource requirements can be captured in the variance of figte that3 = 1 is a trivial case, since (3) then reduces to
;. Homogeneity occurs when the variance is 0; in that cas

A
. " ix; ] , so that each allocation gives equal fairness.
the resource constraints have the same slope and reduce to.¢ Zﬂ:kl Mﬂ]t) dard tion that ”g q 4 all iob
constraint. Heterogeneity increases with the variance. of © Make a standard assumption that all resources and af Jobs
are infinitely divisible, which is typical of many multi-seurce

o , , settings [17], [18]. An illustrative example of FDS is givan
B. Defining Multi-Resource Fairness Section I11-B3.

1) Fairness on Dominant Shares (FDS): As defined in  The fairness function (3) may be divided into two compo-
[8], a user'sdominant share is the maximum share of anynents, one representing fairness and one efficiency. The su
resource allocated to that user. of the dominant shares raised to the powerepresents eff

Let z; denote the number of jobs allocated to each usiiency; thus,\ parametrizes efficiency’s relative importance.
j and C; the capacity of each resouré¢eThen we have the  The remainder of (3) is parametrized Byand represents the
resource constrainty_7 | Ryz; < C; for all resourcesi, fairness of the allocation. It is easily seen that for anyeal
where R;; is the amount of resourcewhich user;j requires of 5 # 1, this component of (3) is maximized at an equal
for one job, and there are users. For ease of notation, weallocation. However, different values @f will yield different
definev;; = R;;/C; as the share of resourgerequired by orderings of unequal allocations. One allocation may beemor

Number of jobs of user 2, x,

userj to process one job. We let fair than another whefd = 3, is used to parametrize fairness,
R;; but the second allocation may be more fair than the first when
pi = miax{ . } (2) B =ps+# piis used.
K3

) . . Though different values of give different types of fairness,
denote the maximum share of a resource required by lisefe can generally say that “larget is more fair” As3 —

to process one job; them;z; is userj's dominant share.  ,, we obtain max-min fairness on the ratio of each user's
We introduce the fairness measurgs;®: dominant share to the sum of all the dominant shares.
3 A As 8 — oo and )\ = %, the fairness functiorfs » ap-
n T 1-5 n proaches max-min fairness on the dominant shares. Dominant
sgu(l - f) Z <m) Z“J’Ij resource fairness (DRF), proposed in [8], is thus a speai# c
j=1 Nl =1 3) of FDS. Again lettingu;z; denote the dominant share of user
These fairness measures extend those developed in [4] Jfer RF can be expressed as
a single resource; details on their derivation are given in min {p121, Ho®o, ..., Unn} - (4)

that work. Heres # 1 and A are pre-specified parameters. ) i ) )
Maximizing this equation subject to the constraints

2We assume that the; are realizations of a random variahte Z?:l Rijz; < C;, Vi, yields the DRF-optimal allocation.
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Matrix Scalarization  Vector Scalar

FDS is therefore a generalization of DRF, in which choosing DS or GF )
the parameterss and A allows one to achieve different

tradeoffs between fairness and efficiency. > 2 * FDS
. . . N ©

FDS also includes the well-known-fairness family of 5 || Resource Requirements f————————| § ORE
> 8
3

functions as a special case. This fact easily follows from : .
the relationship of the single-resource functions in [4] to ' : f,,8%

- D s e . G
a-fairness, which is generally used to measure fairness in —_
bandwidth allocation (see references in Section II). TgkinFi 3 Eera” schemati(:_;f our mult resou'm‘e fairmessraach
a=p>0and) = %, the FDS function (3) becomes g-= prapch.

User n

1 Wheny; = p for all j, FDS and GFJ are equivalent.

" 1-8 ﬂ' Revisiting the example in the Introduction, we have the
Z (pi:) ’ ®)  resource constraintsr; + 2z < 6 and3z; + 22 < 4. Thus,
o _ o _ o the dominant share of user 1 fs;1, since user 1 require$
optimizing this function is equivalent to optimizing the-  of the available CPUs andl of the available memory for each

sgn(l — 3) (

=1

fairness function on dominant shares job. Similarly, the dominant share of user 24is,, since user
(jz;) = 2 requires% of the available memory anél of the available
Z 1o (6) cpus for each job. FDS and GFJ can then be expressed as
Jj=1
2) Generalized Fairness on Jobs (GFJ): Since some users pax flar, a2) (8)

require more resources per job than others, it might be more s.t. 221 + 229 < 6, 371 + 29 < 4,
fair for those who require more resources to be allocateéfew

jobs, thus increasing efficiency across all users. FDSurapt Where the fairness function is

this perspective. However, an individual user often cardg o 30,118 e\ 1-B\ P A
about the number of jobs processed (without accounting fOf =sgn(1— ) (T) + (7) <ﬁ + ﬂ)
heterogeneous resource requirements), and hence ea&h user (3?71 + %2)17[5 4 3

notion of fairness may be based only on the number of jOPoSr FDS and

she is allocated. This motivates us to introduce anotherdas )

measure called Generalized Fairness on Jobs (GFJ), which e oy AN \

uses the number of jobs allocated (instead of dominant share f=sgn(l-p) (17215> (w1 + x2)

in the fairness function. (w1 + 2)

GFJ can be further motivated with bandwidth allocatiofor GFJ.
examples. The utility function used in these scenarios isFigure 3 illustrates the approaches to multi-resource fair
generallya-fairness applied to the bandwidth allocated to eagless. We transpose the matik to capture users’ resource
flow. These functions are therefore a special case of GFJreqjuirements; each row represents one user's requirements
family of functions given by One simplistic approach would assume perfectly subshteta

3 \ resources; in that case, this matrix immediately collajisies

GFJ " T 1-8 n a vector of users’ single resource requirements. Howelisr, t
fan" =sen(1=5) Z (m) Zxk * substitutability often does not hold. For example, CPUs and

k=t k=1 memory are not directly substitutable.

FDS and GFJ represent alternative approaches to the scalar-
ization of each row in Fig. 3's matrix. FDS and its limiting
case DRF choose a dominant entry from the row vector of
users’ requirements. GFJ, on the other hand, scalarizéds eac
row by the number of jobs processed with a bundle of different
resources. These row-by-row scalarizations then yieldhamo
vector of users’ scalars; evaluating fairness wifty® or f5%’
further reduces this vector to a final scalar quantifyingiass.

j=1
(1)
Here g and \ are two parameters (just as in FDS) andis
the number of jobs processed for ugeAs for FDS, we have
the resource constrain}s’_, R;;x; < C; for each resource
1. An illustrative example is given in the next section.
For 8 > 0 and A = =2, GFJ reduces ta-fairness on the
number of jobs allocated to each user.
3) Differences between FDS and GFJ: We can summarize
FDS' and GFJ’s approaches as follows:
. FDS_measures falrnes_s_m terms of _the relative size of the IV. PROPERTIES OFEDS AND GFEJ
dominant shares, explicitly accounting for heterogeneous

resource requirements in both the objective function and!n this section, we prove key properties of the FDS and GFJ
the constraints. As a limiting case of FDS, DRF alsfinctions introduced above. Section IV-A characterizes th

follows this approach. optimal fairness values in certain special cases, whildiGec

« On the other hand, GFJ measures fairness only in terhYsB €xamines the conditions gf andA under which FDS and
of the number of jobs allocated to each user; the h&aFJ satisfy important properties relevant to fairness titian
erogeneity in resource requirements only appears in ti§@tion and fairness-efficiency tradeoffs:
resource constraints. Users requiring more resources are What happens to the optimal allocations when users have
thus treated equally, a result observed in Section V. the same resource requirements?
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o What fairness properties do FDS and GFJ satisfy? Fdhus, users’ asymptotic dominantsharéﬂnisﬁ—j’:l. In contrast,
instance, are their optimal allocations Pareto-effidenthe optimal GFJ value converges in probability as

Sharing incentive compatible? Envy-free? o 9
« Does there always exist a fairness-efficiency tradeoff? nan;O (max fgffl) . =1 (11)
Finally, Section IV-C examines the conditions under which a v (V mn/3 + ”)

fairness-efficiency tradeoff exists.
We considen users andn different resources. Users have Users are asymptotically allocated resources -forjobs.

the same resource requirements when they are homogene®(s,note thatv appears in (11) but not (10), since the

i.e., their heterogeneity is zero. In the special cases 2 dominant shares, not the number of jobs, appear in the FDS

or m = 2, user heterogeneity may be easily visualized as @ibjective function. Scaling the resource requiremeys by

Fig. 2 in Section IlI-A. We use the termser-resource system v is equivalent to scaling the optimal allocations by v~*;

to refer to a given set of resources and users with associatiegse cancel in calculating the dominant shargs;.

resource requirements and capacities. We thus see that in the limit of a large number of hetero-
geneous users, with = oo and A = —1, the optimal FDS
A Values of EDS and GEJ value increases while the optimal GFJ value decreases @& mor

resources are added to the system. This proposition highlig

Heterogeneity is measured by the variance in the slopesine fundamental difference between FDS and GFJ: in the, limit
or r; of Fig. 2. When all users have the same ratios of mu“ﬂhey yield very different allocations.

resource requirements (i.e., the variance of fbg} and {r;}
is zero), the problem reduces to that of a single resource:
B. Three Key Properties of Fairness
We next turn our attention to fairness and its relationship
with efficiency, using three widely-used properties ofifi@iss
ni (a1 + pama + - ..+ pndn) < 1, 9) functions (see e.g., [8] and the many references therein):
Definition 2: A function f is Pareto-efficientif, whenever

= 1,2,...,m. Let fmax = max; ;. Then the problem y pareto-dominates (i.e., z; > y; for each index andz; >
reduces to single-resource fairness on resource 1. Morr,eo% for somej), f(x) > f(y)

Proposition 1 (Reduction to Sngle-Resource Case):
Suppose that the resource constraints may be written as

: o 1 S - I o

FDS and DRF both yield the alllocatlor}j = smmon GFJ Definition 3: Sharing incentive is the property that no
) . w7 user’'s dominant share is less thn%meach user has an incentive

yields the allocation:; = BT not to simply split the resources equally.

n ﬁ
M iy M Definition 4: Envy-freenessholds if and only if no user

Definition 1 (Efficiency): Let X = x;+x2+...+x, denote envies another user’s allocation. Mathematicallyyletdenote
the allocation efficiency. the amount of resourceallocated to usey. User; can then
In this special case, we also have the following corollary: processnax; r;;/R;;. Envy-freenessis defined as the property
: — that max; r;;/R;; > max; r;,/R;; for any j # k. In words,
Corollary 1. For allocations that maximize DRF and FDSy, gther user's allocation would enable a user to process mor

ox 1 1 jobs than her allocation would.
3—u- = (7”7 ) F We investigate if and when these properties are satisfied
J max 7

by FDS and GFJ. Our results show that the answer depends
and the efficiency of these allocations increases the dagite on several factors, e.g. the values of the parameteand .

min; p; is decreased. For allocations that maximize GFJ, Table | summarizes our findings.

We first consider Pareto-efficiency. Evidently, this peoty

_ 148 _1 _1
X —p; 7 (L=B); ">y ” holds for large). Based on [4], we can in fact specify a
o, - JI-ES! + a2 threshold for)A above which Pareto-efficiency holds:
nmaxﬁ Zi:l /’L’L nmaxﬂ (Z?—l xi B > — —
Proposition 3 (Pareto-efficiency of FDS and GFJ): The

In other words, the system’s efficiency will increase if thdimess functions (3) and (7) are Pareto-efficient wihien 0

user with the lowesf:; gives up some resources. if and only if [A| > %‘-

We now consider heterogeneous users, and assume that
their resource requirements;; are uniformly distributed in ~ The absolute value signs are necessary, agifor 1, (3)
[0,0Cy], v a given positive constant. Then, as the numb@nd (7) are negative. For this range 6f a more negative

of usersn goes to infinity, the optimal FDS and GFJ valueg therefore emphasizes efficiency. As Pareto-efficiency is
converge as follows: highly desirable property for fairness functions (bothgén
and multi-resource), the following analysis considersyonl

values of\ satisfying|A| > ‘%‘

Proposition 2 (Optimal FDS and GFJ Values): The opti-
mal FDS value converges in probability as

-1 2m Proposition 4 (Sharing Incentive of FDS): Supposes > 0.

: FDS —
lim (max fo”%;) =L (10) Then we can prove the following:

n—oo n(m + 1)
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(a) Sharing incentive is satisfied by the FDS-optimal aloc ST
tion when) = 122 and 3 > 1. il -
(b) For0 < 8 < 1 and A = =2, there exists a user- I L omeseE

resource system such that the FDS-optimal allocation for
this system does not satisfy the sharing incentive property
(c) For anyp > 0, there exists\ with |)\| sufficiently large

so that for some user-resource system, the FDS-optimal '1’ " "V
allocation need not satisfy the sharing incentive property B R b
(d) If A =0, then the FDS-optimal allocation always satisfies o0 1ds o 2ozs 3 s 4 ds s

the sharing incentive property. (a) FDS.

—--  Counterexamples
= exist for Sl and EF | |

We can further bound the allocation efficiency:

Corollary 2 (Bounds on Allocation Efficiency of FDS): If
8>0and\= % the efficiencyX > —L

T max;

For A = -8 the FDS function becomes equivalent to
the isoelastica-fair utility in economics;3 corresponds to a af ‘.—
measure of constant relative risk-aversion for individisers® O L v
As [ increases, individual risk-averse users find the resource
allocation more equitable and become collectively enegfr
The following corollary establishes that this interestaryy- (b) GFJ.

free behavior emerges (for FDS) attlreshold of 3 > 1: Fig. 4. Conditions under which sharing incentive (Sl) andyefneeness
(EF) can be shown either to hold or not to hold (c.f. Props. d &wand their

corollaries 3 and 4).

Corollary 3 (Envy-Freeness of FDS): For 5 > 0 and A =
%, the envy-freeness property holdsaf > 1; if A = 0,
then envy-freeness hqlds for all user-resource systemsamnd C.. Fairness-Efficiency Tradeoff
(5. Moreover, there exists a user-resource system whose FDS-

optimal allocation does not satisfy envy-freeness under th \n now consider two ways in which a fairness-efficiency

same conditions (b) and (c) in Prop. 4 for which the sharing,jeoff does not exist: first, an increased emphasis an fai
incentive property does not always hdid. ness need not decrease efficiency. Second, the efficiency-

In contrast to FDS, GFJ need not always satisfy sharifg@ximizing allocation may also be the “most fair.”
incentive even fo3 > 1: Traditionally, a larger parameter in «a-fairness functions

— - : is thought to be “more fair” [19], [20]; this statement is nead
Proposition 5 (Sharing Incentive of GFJ): Suppose again mathematically precise in [4]. In [12], however, it is shown

thats > 0. Then under the conditions enumerated below, thefigat when a network allocates bandwidth so as to maximize
exists a user-resource system whose GFJ-optimal allocatj tairness, total throughput in the network will sometimes

does not satisfy the sharing incentive property: increase witha. It may even decrease as capacity increases.
@) A =11-p5)/8] These “counter-intuitive” results hold in the general rault
(b) [Al > [(1—B)/8 and0 < B < 1, resource problem:

(© A <[(1-p)/5 and > 1, Consider the general family of utility function8 (x, a);

(d) [A[ sufficiently large, herea is a parameter indexing the family of utility functions,
() A=0. and the specific functional form of’ is not specified. For

instance, we could use the functions in (3), with= 8 and

A= % so that the utility function usesa*fairness.” We

incorporate the resource capacity constraints in the matri
Corollary 4 (Envy-Freeness of GFJ): Under the conditions inequality Rx < C and assume thaR is a matrix of full

specified in Prop. 5, there exists a user-resource systép rank consisting only of those constraints which arettigh

such that envy-freeness does not hold for the GFJ-optin@lthe optimal allocatiox for the given value ofv.

allocation. We let S be ann x (n — m) dimensional matrix whose

columns form a basis for the nullspace Bf and again let

Figure 4 illustrates Props. 4 and 5’s results on the sharigg _ y—~n _ i i
incegtive roperty, as Welfas Corollaries 3 and 4’s resoitts BQ-_ Zj:l-xj denote_the total_ efﬁmency. The negative of the
property, utility function’s Hessian matrix is denoted iy, and we def

Similarly, GFJ-optimal allocations need not be envy-free f
any value ofg:

envy-freeness. ineb = 2V A =S"DS, v, =s;”bandj3; = —17s;
Ozda’ L] J j — j
3|soelasticity and /r/elative risk-aversion in economics are defined as where th_$j ar_e the C,Olumns of the matr&. Let A; denote
9u(@) @ gng 2 (@) regpectively, where: is the utility function. the matrix A with the ith row replaced by3 = [31 B2 - - - B,].

Oz  u(x) u/(z) . . . .
4Though it may appear so from this proposition, sharing itizenand We useé to denote a direction of perturbation of the capacity

envy-freeness areot equivalent [8]. vector C and DX (9) to denote the derivative oK in the
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Fairess Sharing Incentive Envy-Freeness
FDS A:%,o<6<1 A = oo, any 8 A:%,0<5<1 A = oo, any 8
GFJ A:%,B>O A=o0 or 0, anyg )\:%,B>O A=o0 0r0, anyg
A< >1 >t p<BPss1 n>EPlo<p<n
TABLE |

CONDITIONS UNDER WHICH PROPERTIES DO NOT HOLD FOR ALL USERESOURCE SYSTEMS

direction of 5. From [12], we have

0X v |
— =17sA"'s™» (12) 12
5)a Yiz
Ox i i Yol N
DX((S) — ]_T%(S _ lTD—lRT (RD—I RT)_l(S. (13) Max;:‘imxfjl;',ency 2 7\ Maximum Effi)c(i*ency
Xy + Xy =
. . R
We can further prove the following proposition: Yoo\ Conatraints oo\
. X - N X.
S 1 N 1
Proposition 6 (Efficiency Non-Monotonicity): Efficiency Y Yar Vit Yy
increases withy if and only if Fig. 5. lllustration of Prop. 7.
N-L __ X, X, \\Maxirnum Efficiency
Z videtAZ— Z O (14) Maximum Efficiency B K xe=X
i—1 Xy Xy = XK f
= 7‘ R Resource
Moreover, efficiency may decrease with an increase in the Fesource Constraints
. . . . . onstraints NS
capacity vectorC. If capacity increases proportionally, i.e., S X X4
6 = €C for some smalk, then DX(5) > 0. Fig. 6. lllustration of Prop. 8 in two dimensions. In the toragh, exactly

one resource constraint is tight at the unique efficienaximizing allocation,
As a special case, when only one capacity constraint is tigi!z2 = 0. In the bottom graph, exactly one resource constraint st &g
. . . . . any of the multiple efficiency-maximizing allocations.
(e.g., one resource), efficiency always increases witlaciayp
The technical report [3] contains a numerical example incivhi
efficiency increases witls.

We next examine _the conditions under which an equal Looking back at Fig. 2, we see that the number of jobs
allocation (equal dominant shares for FDS or an equal number

of jobs for GEJ) maximizes efficiency. In these situationg,eriuser is equal at the efficiency-maximizing allocatién i

: . - ) . : d1 = ... = o, for n users and two resources. For two users
there is no fairness-efficiency tradeoff; the most faioedition : .

- : ) andm resources, the number of jobs per user is equal at the eff
maximizes the total number of jobs processed. As this ptgper .. L Cem m
. . P o iciency-maximizing allocation iy ", 7,Rjo = > " | Rjo.
is an ideal case, it will likely be satisfied only under rathe ; J= - J=1""=

. i L Our conclusions are more subtle when< n constraints
stringent conditions. Indeed, our results show that théalid . . S o
) are tight at an efficiency-maximizing allocation:
case occurs only when the resource constraints “line up
exactly. Proposition 8 (Maximizing Fairness and Efficiency (11)):
We again express the resource constraints in matrix folduppose thain < n constraints are tight at an efficiency-

asRz < C, and simplify them toyx < 1,,, wherel,, is a maximizing allocationx*. If this allocation is the unique

vector ofm 1's and~;; = }Z?f. allocation maximizing efficiency, then at least one of the
' x7 = 0 and one user is allocated no jobs. If other allocations
Proposition 7 (Maximizing Fairness and Efficiency (1)): also maximize efficiency, an allocation equalizing eittiee

Suppose thatn = n constraints are tight at the maximum-efddominant shares or number of jobs processed maximizes eff
iciency allocation. Then this allocation equalizes the dmmt iciency if and only if at the equal allocation, the consttain
shares (FDS has no fairness-efficiency tradeoff) if ang @nl set intersects the hyperpla@l?:1 ;= Z};l x; on a set of

no_ dimension at least 1.
Jij _ p (15) Figure 6 shows the two-dimensional illustration of this-the
=1 M orem’s statements. The top graph shows a unique efficiency-

for some constanp and all resources The number of jobs maximizing allocation when exactly one resource constiain

per user is equalized (GFJ has no fairness-efficiency affide tight., a,”‘?' the botto.m graph shows a set of multiple efficjenc
if maximizing allocations.

n

Z%'j =r (16) We can use this proposition to derive a sufficient condi-

J=1 tion for the efficiency-maximizing allocation to equalitfiee
for some constant and all resources dominant shares or number of jobs for each user:
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Corollary 5: Supposen < n resource constraints hold at
the efficiency-maximizing allocation. Then ®;; > R for
some userg and k and all resources, z; = 0 (userj is
allocated no jobs) at any efficiency-maximizing allocatio

If m =1 (the single-resource case), this result implies the
following:

Corollary 6: The maximum efficiency allocation equalizes
the dominant shares (FDS) or jobs per user (GFJ) if and only

Leftover Capacity (CPUs and GB)

I I I I I
0 0.5 1 15 2 25 3

if u; =V usersj. In other words, each user needs the same Variance in T
amount of the single resource to process one job. Fig. 7. Too much or too little variance in = leads to inefficiency from

leftover capacity: Leftover capacity versus variance in user heterogeneity in
datacenter example. Variances below 0.5 have only left@Rids; variances

V. APPLICATIONS AND ILLUSTRATIONS above 0.5 have only leftover RAM.

We consider an illustrative example of a datacenter wifly,ogeneous, and both variances are 0. At the other extreme,

CPU_ and RAM constraints. There are two users, each_of Wh_‘?ﬂ% users do not share any resource requirements; they becom
requires a fixed amount of each resource to accomplish a Jﬁ%coupled with infinite variances

Jobs are assumed to be infinitely divisible [17], [18]. Inler — \\\. oiculate the optimal FDS, GFJ and DRF allocations
to benchmark performance, we use the same parameterq.o?sﬁ — 2, A = —0.5. First, Fig. 7 examines the leftover

[8]: user 1 requires 1 CPU and 4 GB of RAM for each J.Obcapacity as a function of the variancesinThe heterogeneity

and user 2 requires 3 CPUs and 1 GB of RAM for each jo{R/as varied by changing the RAM requirement of user 2 from
There are 9 CPUs and 18 GB of RAM at first. We then vary g5 1y 13 GB. Thus. the RAM constraint line in Fig. 2's

these constraint values to observe their impact on fairness
Suppose that the fairness function is given pye.g. FDS
(3), DRF (4), GFJ (7)). Then the allocation problem is

representation tilts from very steep to very flat. Thisinit
geometrically explains the overall “vV” trend in Figs. 7 and 8
When the RAM requirement is below 3 GB (a steep constraint

max f(z,y) (17) line), the variance of- is over 0.5 and the variance of is
Y over 4.5: only RAM is leftover. When the RAM requirement
st.x+3y <9, dr+y<18 (18) is above 3 GB (a flatter line), the varianceofs less than 0.5

wherez andy are the number of jobs allocated to users 1 arﬂrﬂd the variance of less than 4.5: only CPUs are leftover.

2 respectively. e change in the leftover resource is due to the changing

We use DRF as the benchmark fairness to compare pe _Of the feasible region. e
performance of our FDS and GFJ functions. We defiee- In this exam_ple, we see that for low heterogeneity in l_Jsers’
cent faimessas the percentage difference between the optinf@SCurce requirements, FDS, GFJ, and DRF have similar eff
DRF fairness value (i.e., the minimum dominant share) aff€ncy values. In fact, Prop. 1 states that at zero hetereige
the DRF faimess value of the allocation obtained from FDSRF and FDS are optimized at the same allocation, predicting
or GFJ. Thepercent efficiencyis defined as the percentagd®@'t Of the observed behavior. As the heterogeneity ineas
difference between the total number of jobs processed in tH&F has a lot of leftover capacity compared to GFJ and
given allocation and the maximum number of jobs that carP>: especially for a variance larger than 1 in Fig. 7 and
be processed, given the same capacity constraints. We afgge’ than 5 in Fig. 8. DRF trades off efficiency signif
introduce another efficiency measure, tegtover capacity icantly to preserve users’ minimum dominant share with

(i.e., the amount of unused resources). increasingly heterogeneous resource requirements. E¥gn G
We investigate the outcomes of the proposed fairness m@§!forms worse than FDS, which yields the lowest leftover
sures along two dimensions: capacity. As FDS includes resource requirements in itaéais

« Comparing the achieved efficiency when user heteroger%pcuon’ we intuitively expect such a result

. . . We next examine the percent efficiency in jobs processed
ity and resource capacity are varied.

« Examining the range of attainable faimness-efficiency> 2 fu_nct|on of t_he variances m and o in Figs. 9 and
: 0. As in the previous figures, for low heterogeneity across
tradeoffs for different values of the parametérand \. ) X
users’ resource requirements, FDS, GFJ, and DRF perform at

o similar efficiency levels. All three achieve full efficien for

A. Efficiency a T variance near 0.5 and variance near 4.5. Again, the eff

We first use our two efficiency measures—leftover capateiency attained is also much higher (about 15%) for FDS and
ity and percent efficiency—to investigate user heteroifgse GFJ than for DRF as the variance increases.
effect on achieved efficiency. Heterogeneity is measungd b In summary, enforcing DRF can significantly reduce eff
the variance in the slopes and in the slopes; of users’ iciency as measured by either leftover capacity or percent
resource requirements, as introduced in Fig. 2 in SectieA.ll efficiency. This is also the case when the number of users
If two users have identical resource requests, they becogrews; Fig. 11 shows the leftover capacity versus the number
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6 T T T T T T T 12 T T T
— —FDS —FDS PR
S sf|---ocr = - --GFJ P
o - - DRF (FDS, a - «) . 10{ - = DRF (FDS,a=w) |,~~_ __-=" === ]
c ‘ — 7 "S-
IS ) otz
3 QS g 0 g
o > s
\Q’ % /‘, II
= S 6f s J
= S
S o | Ry ]
[ 1) R/
= Q Y
2 2k Y 1
[} %y
- 4
1 . . . . . . .
0 1 2 3 4 5 6 7 8 o . . . .
Variance in o 0 2 4 6 8 10

. . . . . - Number of Users
Fig. 8. Too much or too little variance in o leads to inefficiency from

|eftover capacity: Leftover capacity versus variance in user heterogeneity inFig- 11. ~ Even with a large number of users, DRF uses less available
datacenter example. Variances below 4.5 have only left@®ids; variances Ccapacity than FDSand GFJ: Leftover capacity versus the number of users in
above 4.5 have only leftover RAM. a datacenter example.

8

.
I FDS and GFJ
Il GFJ Only

~
T

)

——DRF (FDS, a = «)

&

N

85+ —FDS
80 ---GFJ
- - DRF (FDS, a = «)

w

N

Efficiency (Total Jobs Allocated)
[

o

Efficiency (Total Jobs Allocated, %)

5 10 15 20 25
55 L L . . . Cost (RAM Capacity, GB)
0 0.5 1 15 2 25 3 . . . . .
Variance in T Fig. 12. Capacity expansion can increase the range of operating eff

Fig. 9. Greater variance in 7 leads to DRF inefficiency in the number of '2?;%@ L(gngt?asin?ngiv(g? di;f.\gen?Ffri:p@tﬁa;ggﬁlz;ge)fg?lgng(i05r g/arayrl]r:jg
jobs processed: Percentage efficiency versus variance in user heterdgene? ! B o)
in a datacenter example. A € (0.01,1.91) for B < 0, X € (0.005 (5 —2),0.955 (5 — 2) for

B > 0 values. The region labels refer to the fairness functiors #itain
of users in the system. Only RAM capacity was leftover; in alfose efficiencies.
scenarios, all of the CPUs were used. For a large num_ber tind ) can be chosen to achieve higher efficiency in FDS
USErs, we see that FDS and GFJ both use more capacity 198 GFJ. The DRF function serves as a “lower bound” to the
DRF. Users’ CPU requirements were fixed at 2 CPUs; thelkiciency values attainable with the FDS functions.

RAM requirements were drawn frpm a unif(_)rm d_ist_ribution. The impact of capacity expansion also highlights an interes
Other randomly chosen RAM requirements yield similar plot§ng dimension of thesconomy of scale in large networks. The
Finally, we examine the impact of changing RAM capacit¥iandard view is that a large scale helps smooth out temporal
on the attainable efficiency levels. Figure 12 shows hOw,cations of demands through statistical multiplexiegy.,
varying this capacity affects the efficiency attained a& thy oy aggregation point in a broadband access network. In
optimal allocation. We see that when the domlna_nt shares ‘:'Ridition to temporal “heterogeneity” (bursting at diffete
both users are equal, at 12 GB of RAM capacity, GFJ affhes) network users may havesource type heterogeneity:
FDS have the same range of achievable efficiency. Moreovgg,,,o applications need more CPU processing while others

need more storage or bandwidth. Can this heterogeneity be

exploited to utilize different types of resources more eff
— oS iciently? The answer depends on how these different ressurc
---GR ‘ are allocated among the users. If DRF is used, for example,
efficiency can be quite low. However, by using the appropri-
ate FDS parametrization, resource request heterogereaaity c
indeed be leveraged along with increases in resource dgpaci
and turned into another type of economy of scale.

- - DRF (FDS, o = «)

1 B. Fairness-Efficiency Tradeoffs

Efficiency (Total Jobs Allocated, %)

o5k ‘ ‘ ‘ ‘ ‘ ‘ ‘ The previous section established that when users are very
0

! 2 *Varianee in o 6 7 8 heterogeneous, FDS and GFJ outperform DRF, achieving a

Fig. 10. Greater variance in o leads to DRF inefficiency in the number of MUch greater efficiency. However, we expect that this large

jobs processed: Percentage efficiency versus variance in user heterageneefficiency comes at a cost of decreased fairness. Thisosecti
in a datacenter example.
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45 ‘ ‘ —User L, FDS I 100 ~T <
User 2, FDS ’\5 ‘\,\ o ‘\/4
4 - - -User1, GFJ i < o5 oy, _ -RAM Capacity /~
User 2, GFJ B ‘\\ - 15 GB J
\ -~ User 1, DRF (FDS, o = ) T L / )
 35f \ User 2, DRF (FDS, a = ) 8 w ~ <. RAM Capacity ,© RAM Capacity
= R < RAM Capacity ~.256B 6V3.GB
9 N @ 4GB DN
O @ Almimi;mimimi— - K S | o ‘~7
S 3 < %
b= < - rg) 85 ,/ ~.
8 25 ST g 8 N
>
2F 2
57
Q
15 ‘ ‘ ‘ ‘ i 70
0 2 4 6 8 10 50 55 60 65 70 75 80 8 90 95
B Fairness (DRF Metric, %)

Fig. 13. Larger 3 values lead to more equitable allocations: Optimal  Fig 15, Capacity expansion allows different FDS fairness-efficiency tradeoff
allocations for various faimess measures in a datacexenggle, usingxr = 8 contours: Attainable efficiency vs. fairness tradeoffs from diffetémplicit
faimess for FDS and GFJ. realizations of 3 € (—5,5) and A\ € (0.01,1.91) for B < 0, A €
(0.005 % —2),0.955 % — 2)) for B > 0 values. DRF is used as the
fairness benchmark and metric.

[N
(=]
o
1
)
|
|

he] B \

8g * | Finally, we show the interaction between capacity con-

f g =l /  Fimess Egr;f)) I straints and the range of fairness-efficiency tradeoffseaed.

£< /- e The shaded region in Fig. 15 shows the attained tradeoffs for

2o [/ N T ] a large range ofs and X\ values; each point corresponds to

&% some S and A values in the FDS function that achieve the

8 es ] shown operating tradeoff. This achieved tradeoff depemds o

£g the available capacity, with contour lines for various RAM

LL% g0 . : : . S capacities shown in the figure. As RAM capacity increases
B from 4 GB to6+/3 GB, the tradeoff stops: one can increase

Fig. 14. The fairness-efficiency tradeoff can be tuned by changing 5: both fairness and efficiency. At a RAM capacity 6%/3
Percentage of fairness and efficiency achieved for varfairaess measures GB, the conditions of Prop. 7 are satisfied, and efficiency
in a datacenter example, usiag= 3 fairness for FDS and GFJ. Notice that. . .
an increased emphasis on fairness (i.e. lafaneed not always decrease the'S maX|m|zeq when the dominant shares are equal. When the
efficiency of the allocation, as seen f6r< 2.6 for GFJ measure. RAM capacity goes abovéy/3 GB up to 25 GB, user 1’s
dominant sharefmfjm decreases. Thus, an increase in
examines the general behavior of fairness when a larger ®firness requires an increasezinand user 1's CPU allocation.
iciency is achieved. Here we measure fairness as percbiger 2 is then allocated fewer jobs, decreasing efficiefrey.
fairness with the DRF metric and efficiency as percent efffiis figure, one can achieve 100% efficiency and fairnesswh
iciency on the number of jobs processed. RAM capacity is6/3 GB, but such an ideal operating point
Figure 13 shows the optimal allocations of jobs for dif'felrer@'oelS not always exist. . .
values of 3, A = =2, Both FDS and GFJ become-fair Figure 16 shows the analogue of Fig. 15 for GFJ functions.

on the dominant shares of and jobs allocated to each udgrthis case, the range of attainable efficiency at the marim
respectively, fora = 3. As /3 increases,\ decreases, so allocation decreases as the fairness value increases, dimelis
that fairness is emphasized more than efficiency and FI8h increase both fairess and efficiency as RAM capacity
asymptotes to DRF. For Smaﬂ (i_e_, more relative empha- goes from 4 GB to 25 GB. Moreover, the contour lines “bend
sis on efficiency than fairness), the optimal FDS alloaatid®ack” on themselves, indicating that for differefitand A
maximizes efficiency. In the case of GFJ, which emphasizBgrameters, the same fairness value can result in many eff
the fairness on jobs allocated, largeéwalues produce a moreiciency values at the optimal allocation. When RAM capacity
fair allocation of jobs across users than FDS, as expect€fuals 11.25 GB, the conditions of Prop. 7 are satisfied and
Consequently, the total number of jobs processed (i.e., &tere is no tradeoff between fairness and efficiency.
iciency) is lower for GFJ than for FDS.

Figure 14 gives a representative plot of how this tradeoff VI. SURVEY ON FAIRNESS PARAMETERS
varies withg and \ = %. As 3 grows larger, the percent In this section, we provide results from a simple survey
efficiency from the FDS measure drops, approaching DRF ia complement the proposed theoretical framework with a
the limit 5 — oco. The GFJ fairness increases urti= 2.6, at demonstration of how the typical values of fairness functio
which point the GFJ-optimal allocation is also DRF-optimaparameters can be estimated from large scale consumer sur-
(We see in Fig. 13 that the GFJ allocation “crosses” the DRieys. We note that our survey methodology and results should
allocation line at this value of). For larger values o, GFJ be considered as a demonstration of one out of many feasible
quickly converges to an allocation with a more equal nhumbapproaches rather than a prescription of what exact paeamet
of jobs per user; thus, its efficiency decreases. But efficy values to choose in a given real world scenario. In particula
in FDS decreases more slowly since FDS attempts to makés survey provides a systematic way of inferring an ihitia
the dominant shares, not the number of jobs, more equitaldstimate for(3,)\) values, visualizes participant clusters in
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Now consider a similar scenario as before, that is:

* Both clients want to complete as many jobs as possible (including fractional pletion of jobs)
Client A needs ! CPL and 4 T8 per job, while Client B needs 3 CFL and 1 T# per job.

* Both clients would like to be treated more or less fairly in the amount of resources allocated to
them

* Both clients pay you the same amount of § per jobs completed. Thus, your revenue depends only
on the “Total number of jobs completed”

=}
S

©
=]

©
=]

RAM Capacity o
156’8,—"’RAMCapacily _.-
- 25GB .-

70 But now you have a total of 108 CPLUs and 180 TH (Terabytes) of storage available to allocate.

* The following table shows five “Allocation™ options at your disposal to distribute your available
resources among these two clients, and the corresponding in number of jobs completed for each
client and a sum total number of jobs completed from that allocation.

60| =~

50 o

Efficiency (Total Jobs Allocated, %)

RAM Capacity
4GB Allocated to Client A Allocated to Client B
40 Allscath Total no. of
ocation | cpyy | TB | No.ofdobs | CPU | TB | No.ofJobs Jobs
30 Options Completed for Completed for | Completed
Client A Client B
20 Allocation1 | 24 | 96 24 84 | 28 28 52
10 Allocation2 | 12 | 48 12 9% | 32 32 44
0
T h T wm w e o m w Allocation3 | 36 | 144 36 72 | 24 24 60
Fairness (DRF Metric, %) Allocationd | 45 | 180 45 0 0 0 45
Fig. 16. Capacity expansion allows different GFJ fairness-efficiency tradeoff Allocation 5 | 27 | 108 27 81 | 27 27 54

contours. Attainable efficiency vs. fairness tradeoffs from diffetamplicit

realizations of 3 € (—5,5) and A € (0.01,1.91) for 8 < 0, A € Fig. 17. Question 2 of line fai Client Auieed 1 CPU
1 1 . ig. 17. Question 2 of our online fairness survey. Client 4uiee

(0_'005 B8 2),0.955 B 2)) for 5 > 0 values. DRF is used as the and 4 TB per job, while client B required 3 CPU and 1 TB per jobeT

fairness benchmark and metric. datacenter had a total of 108 CPUs and 180 TB to allocation.

the fairness-efficiency space, and connects the FDS and Gégorted in different metrics (‘total number of jobs conipt#

functions with participants’ responses. and ‘leftover resources’) or were scaled by a constant facto
To avoid influencing the participant’s decisions, we did no
A. Survey Methodology explicitly inform them of the survey’s purpose, i.e., ewating

. . eir fairness-efficiency tradeoff.
We conducted an online survey in January-February 20£BrI'hefuII survey is available in Appendix C of [3]. The results

which received 143 responses, mostly from the U.S. Out of , . : .
. tained from analyzing the survey responses are reparted i
these responses, 110 were complete and were used m& €

; O . L e next subsection.

subsequent analysis. The participants were given six ipnsst
each with a simplified ‘toy’ scenario of resource allocatio
a datacenter, where jobs from two different clients hadroete B. Results
geneous resource requirements over multiple resourced (CP
and storage). Our online survey participants were faculty,
students, and staff primarily from the EE and CS departments®
of Princeton and George Washington University. They allever
familiar with everyday computer use, and hence intuitively
derstood the two resources considered (processing power an
storage capacity). The survey questionnaire further éaxgda - - _
the context to ensure participants’ understanding. « Determine the different andA heat maps of compatible

We limited our question scenarios to only two types of parameter values for participants in each cluster.
resources in order to ease participants’ understandingpeof We address these sequentially below.
questions, although more sophisticated methods usingicnj 1) Axiom Validation: We first use the survey results to
analysis can be used on data with more resources [21]. In th&mine our construction of the fairness functions, evalga
last question, we increase the number of resources to thride consistency of the results with three of the four axioms
clients’ jobs required CPU, storage, and bandwidth. Each fwbm which these functions are constructed (see Appendix A
the six questions offered five different options of distiting of [3] for a full list of the axioms). To keep the survey simple
resources among the two clients, with each option resuitingwe were unable to evaluate the Axiom of Continuity, which,
a particular outcome. For each question, the survey paatics however, is quite intuitive.
were asked to rank the five allocation options in decreasingFigure 18 shows the number of participants ranking each
order of preference, as shown in Fig. 17. allocation first, second third, etc. in each question of the

In four of the questions, the five options that the survesurvey. We see that a clear consensus emerges across the
participants were asked to rank were reported in terms of tharticipant pool: for instance, for questidh most people
number of jobs completed for each datacenter client undank the allocations from best to worst as 3, 5, 1, 2, 4. It is
that option’s resource allocation. In the other questidhs, interesting to note that the fourth allocation, under wialiént
options were reported in terms of the leftover (unused @& had no jobs done, has the lowest rank. In fact, allocaion
wasted) capacity resulting from that resource allocatjption. which is less efficient than allocatiofy was more preferred.
The questions had either the same set of allocation choicesTais result is thus consistent with the Axiom of Starvation:
a scalar multiple, thus permitting a sanity check on whethparticipants generally dislike starvation allocationsere if
participants made consistent choices when the outcomes wibiey are more efficient.

Our analysis of the survey results focuses on three goals:

Evaluate consistency of the results across users with the
fairness axioms in [3], [4].

« Cluster participants based on the fairness and efficiency
values inferred from their preferences in their rankings
of resource allocations.
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SRR EEEER LT LT S ppe— 3) Parameter Choices: We next determings and A values
uestion s compatible with the answers in Fig. 19's clusters. The tesul
P PO R SRR <+ | o Questions for participants in both clusters were the same for all qaast
® Question4 thus, we only show th@ and A values for question 2.
® Questions We use exhaustive search for discretizednd \ values to
® Questions determine whether a given person’s allocation ranking e-co
patible with that obtained using thgs, \) fairness function.
Figure 20 shows the heat map of compatiblend A values for
a person in each of the two dominant clusters; the intensity
of the color corresponds to the number of times an answer
is compatible with the giver(3,A) value. A darker color
Fig. 18. Allocation rankings for each survey question. Theponses to indicates a larger number of compatible answers across.user
each question are shown in a row at each allocation, e.g.itbtesfx dots | thijs figure, we assume that participants use a GFJ farnes
correspond to rank_lngs of allocat_lon 1 in questions 1-6,stbeonq six dots function. Though no singl(aﬂ /\) value is compatible with all
correspond to rankings of allocation 2 in questions 1-6, €he size of the )
bubble is proportional to the number of people choosing &iqudar rank for  participants (the single black squares represent a maximum
a particular allocation. number of compatible answers), a majority of responses were
compatible with somés, ) value: 50% of cluster 1 and 60%

We implicitly evaluate the remaining two axioms (those(z)f cluster 2 participants agreed on at least 6fe\) pair®

of S.aFuration and Partition) by examining the consistenty o As expected, the compatibl values for cluster 1 (Fig.
participants responses vyhen the gllocatlons are S,Caled L.ijOa) are higher in absolute value than those in cluster 2 (Fig
dow_n. Our falrnes§ functions predict that a persons ragjﬁk_anOb) as is consistent with cluster 2 participants’ preferr

Of different allocations should not cha_nge with this seglin fairness over efficiency (Fig. 19). The reference linesha t
Figure 18 shows that for each question, a clear consen WS o show the Pareto-efficient frontier. Fét > 1, most

ranking emerges; moreover, this ordering of allocations the compatible(3, \) values are below the Pareto-eff

consistent across all questiGnghis observation is especiallyiCient frontier, i.e., not Pareto-efficient. This does iappen

significant since questiorisand5 report the leftover capacity for cluster 1 participants, as might be expected since they

as a metric instead of the total number of jobs IQrocessea’_thélmphasize efficiency. However, gsncreases, more Pareto-eff
even when the efficiency metric changes, participantshans

stent the diff ¢ i icient (3, A) values are compatible with at least some answers.
are consistent across - e. merent survey questions. Figure 21 shows thég, \) heat graphs for both participant
2) Participant Clustering: We now evaluate the CONSISteNCy, sters when FDS-fairness is used. Only the heat graphs for

of different people’s responses by calculating #herage pre- ¢ etion 2 are shown: the other questions give similar f@sul
ferred fairness and efficiency values for each person and eac e see that all of thé3,)\) values tested in Fig. 21a are

question. These are calculated by taking a weighted average, atiple with the cluster 1 responses (50% of responses
of the efficiency and fairness values for each allocatitwe t

Rank
8
[ ]
o
®
[ ]
B
.

2000000 A R XY X T %)

o, geesse, - sscece
Allocation Choice (Ordered as in Question 2)

of the difference between the numbers of jobs processed {01 see that allocation 5 actually gives cliehess equitable

clients A and B, while the efficiency metric is taken from thedominant shares. and that the sum of dominant shares for
Survey as the total number OT Jobs processed (or the Ieﬁo‘éﬁfocation 3 is also larger than that for allocation 5. Thus,
capacity). The leftover capacity is measured by the negatly, matter whichg and A are considered, allocation 3 will

of Fhe percentage of leftover capacity f?” each resource, B8 ranked above allocation 5. AlB, \) pairs are therefore
facilitate comparison of leftover CPUs with leftover GB. Wy, qistent with this ranking. Most participants rank thieot
use negatives for the faimess value and leftover capa@i g ocations in a manner consistent with ranking 3 above 5;

so that an increase in the faimess or leftover capacityevalif,,qe participants whose additional rankings are inctersis
indicates a more fair or more efficient allocation. do not show any compatibigs, \) values

We see from Fig. 19 that for all questions, participants | contrast to cluster lall of the (8, )\) values tested are
tend to fall into two distinct groups, one of which puts morg,qnsistent with cluster 2's allocation preferences. Vi@ ¢

emphasis on efficiency, and one which puts more emphasis Qiyount for this result by noting that all cluster 2 partisifs

fairess. The two groups have approximately equal numtierspefer allocation 5 (processing an equal number of jobs for
participants (e.g., 52 in each for questiopn Moreover, these g4ch client) over allocation 3. However, allocation 3 istbot

groups are consistent across questions. While the nurherigg, e more efficient (under FDS) than allocation 5, and hence
fairess and efficiency values vary depending on the ailaga s jnconsistent with cluster 2's answers if they used FDS.
scalarization and efficiency metric used in a question, ee s

that both clusters lie in approximately the same positiothen ~ °This result may be due to our discretization; for instanceingi a A
graph for each question. closer to zero may improve the c_:o_mpatlblllty with cluster art;_n:lpants,
who emphasize fairness over efficiency. Using a largemay improve
compatibility with cluster 1 participants. It is also pdssithat a minority of
5This ranking consensus is simply in terms of majority agreetron the participants provided inconsistent responses compatiltkeno (3, \) values,
rank of the allocations, but does not mean that the indivighasticipants’ e.g. preferring efficiency to fairness in ranking two alitions, and fairness
(B, \) values agree. over efficiency in another two allocations.
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Fig. 19. Average preferred fairness and efficiency valugsefich survey question. The size of the circle is propaatiom the number of people with those
particular fairness-efficiency values. Participantsdtén fall into two distinct groups, with some other extraneqoints.

likely to hold when FDS is used instead of GFJ. Participants

. thus pay more attention to the number of jobs allocated th eac
; client, rather than each client’s share of the resourcesatiéd;
< more generally, we can say that in making allocation decssio
" many participants did not fully internalize the heteroggne
% S T

in the clients’ different resource requirements. Intwhy this

might be expected, since the number of jobs allocated is a
() Cluster 1 participants. (b) Cluster 2 participants. more “natural” measure of fairness than the proportion of

Fig. 20. Heat map of compatiblé3, \) values for clusters 1 and 2 dlff_erent resources allocated. Howe\_/er, this obs_ervgtlbn

participants in Fig. 19, GFJ faimess. The reference lintésParero-efficient validated in a larger survey, can provide useful guidelifoes

boundary|A| = |(1 — 8)/8], and the black dot a8, A) = (2, 2) represents datacenter operators in that they need to educate theitslie

a?saex'fngr“gln;ﬂqebreaSésct(i’ggzagrb;es?‘r?j;ers' Only question Zteeste Shown; - o1t the externality imposed on others by each clientguai

heterogeneous resource requirements.

s 10 -5 o 5 10

VIl. FUTURE WORK
Initial exploration suggests that both FDS and GFJ can

Lh bbbk oy e o
A

be unified into a single framework. Thelidea is to use a p-
ﬁ norm functiong(y1,j,- .-, v.;) = (32;77,) 7 to scalarize the
t g Fowo o= g s woow resource requirement vector of usgrand then evaluate the
() Cluster 1 participants. (b) Cluster 2 participants. resulting fairness by ». This method leads to a new family

Fig. 21. Heat map of compatibl¢3, \) values for clusters 1 and 2 of fairness measures, parametenfpedi, and), ie.,

participants in Fig. 19, FDS fairness. The reference linthésParero-efficient s 1
boundary|\| = |(1 — B8)/8|, and the black dot a3, \) = (2, 2) represents m n - B
a maximum number of compatible answers. Only question 2tsegre shown; _ _ P 1-8
results for the other questions are similar. fpBx = sgn(l — f) Z Rkj L

j=1 \k=1
We thus conjecture that inconsistency arises because GFJ is m /o 1 A+1-%

“more natural” fairness function: for certaijft and \ values, p .
- d- <> RV = : (19)
most of cluster 1 and cluster 2 participants exhibit prefees <
consistent with GFJ fairness. While it is intuitive that mos _ _ .
people find it natural to understand fairness in terms ofsjolEalmeSSfp,ﬂl,k includes many g‘;?;ness measures aﬁszeCW
completed rather than dominant share, this is an integestgAses. For instancesn = f5y” and foopn = f3 37,
direction to explore through repeated and controlled biemaly While f1 s\ gives the total resource usage in the system.
experiments. This function again satisfies the four axioms of [4], as
The fact that participants generally seem to follow GF40 FD? and GFJ. Moreover, Pareto-efficiency is safisfied fo
rather than FDS fairness has interesting implicationsyap® |Al > ‘%5’ B > 0. We expect that, in analogy with Props. 4
4 and 5 show that sharing incentive and envy-freeness are mand 5 and their corollaries, threshold valuegp@ndjs can be

j=1 \k=
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found, above which sharing incentive and envy-freeness dhan two clusters, and whether these have any demographic
correlations.

satisfied if 3 > 0 and A = %.
In addition to the functional unification proposed in (18),
number of extensions to the current framework are possible.

First, we have assumed that both resources and jobs aréhe authors wish to thank Augustin Chaintreau and Chee-
infinitely divisible. However, in practice a job may reqair Wei Tan for their comments and assistance with recruiting
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a minimum, indivisible bundle of resources, e.g., 2 GB dfurvey participants.

memory and 1 CPUs, to run one instance of the job, whereas
allocating 1 GB of memory and 1/2 CPUs offers no more benef

its than allocating nothing at all. Second, our fairnesssuess [
are assumed to be irrelevant to the feasible region of ressur
Adding a feasible region and indivisible resources wouétike

to a fairness version of the knapsack problem, which has
known solution. Some approaches to the knapsack problgm
are summarized in Appendix D of [3].

Another interesting direction to explore is to extend our[4]
multi-resource fairness theory to account for job deadline
scheduling, and user utility from allocated resourcesaliymn
our fairness analysis is based on a model of static jobs who&3
resource demands follow a constant pattern. Many appicsti (g
not only have time elasticity of demand, but also allow jabs t
dynamically change the composition of a bundle of differen[7]
types of resources. These are all challenging problemsémat
be explored as future work.

(2]

(8]
VIIl. CONCLUDING REMARKS

In this paper, we introduce FDS and GFJ, two families
of fairness functions for multi-resource allocations. F&ISo
includes as a special case the recently-proposed geragiatiz
of the max-min fairness measure for multiple resources. DIf0]
ferent parameterizations of these functions generate geram,
of fairness-efficiency tradeoffs, thus allowing for diféat de-
grees of emphasis on fairness and efficiency that suitreiffie
network operation needs. [12]

We consider three key properties of fairness functions:
Pareto-efficiency, sharing incentive, and envy-freen&S [13]
and GFJ are both Pareto-efficient|X| > %, 8 > 0. FDS
satisfies the sharing incentive property and is envy-fiae f
B>1and\ = %; if 0 < B <1land)= %, then sharing [14]
incentive and envy-freeness are only sometimes satigBéd.
may or may not be sharing-incentive compatible or envy-frees)
for any 8 > 0, A = 152

We also explore the estimation of the and A\ values
which correspond to people’s preferences. Preliminaryltes [16]
along these lines are given in Section VI, though one can
easily imagine extensions of both the results analysis and
the questions asked to participants. Given the limited det]
of allocations ranked by the participants, reverse-ergging
unique (5, A) values compatible with each response was nAlg,
feasible, but it would be interesting to determine if suckgue
parameters exist given the rankings of more allocationgeMo
over, our current sample size consists primarily of sthier{iLgl
and others in the academic community who are familiar with
computers; with a more diverse demographic of particigant3®l
we could examine the impact of various demographic factors
on participants’ responses. In particular, we could irigas¢ [21]
whether participants naturally group themselves into more
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