
Timely Probabilistic Data Preprocessing in Mobile
Edge Computing

Peng Zou1, Xianglin Wei2, Omur Ozel1, Tian Lan1 and Suresh Subramaniam1

1ECE Department, George Washington University, Washington DC, 20052, USA
2The 63rd Research Institute, National University of Defense Technology, Nanjing 210007, China

pzou94, xianglinwei, ozel, tlan, suresh@gwu.edu

Abstract—A combination of mobile edge computing (MEC)
and cloud computing paradigms has the potential to greatly
alleviate the challenges facing Internet of Things (IoT). We
consider a tiered IoT infrastructure in which data generated by
an IoT sensor/device is delivered to a data center for processing
through an intermediate MEC server. The MEC server can either
directly transmit the data to the data center or pre-process the
data and then transmit it to the data center over a shared channel.
The goal is to maintain the freshness of the data delivered to the
data center. In this paper, we assume a probabilistic model for
pre-processing by the MEC server. Sensor data is assumed to
be generated as a Poisson process and the transmission times
over the two paths are assumed to have general distributions.
We use Age of Information (AoI) as a measure of data freshness
at the data center. We perform stationary distribution analysis
in this system and obtain closed form expressions for average
AoI and average peak AoI. We focus on selecting the offloading
probabilities in conjunction with the mean service times for each
server for optimal operation determined by average AoI and peak
AoI. Our numerical results show the effect of path diversity in
the selection of best offloading probability and service times.

I. INTRODUCTION
As a burgeoning research area, Mobile Edge Computing

(MEC) is known to alleviate the long latency caused by cloud
computing. However, an MEC server is usually much less
powerful than the servers in the cloud data center. More-
over, the energy budget at a MEC server is usually limited.
Therefore, a combination of MEC and cloud computing is a
much more promising computing paradigm in a tiered IoT
infrastructure. In such a hybrid architecture, an IoT sensor
(e.g., a camera) generates data that must be delivered to the
data center for timely processing. The data may be either
transmitted by the MEC server directly to the data center or
pre-processed by the MEC server (which typically reduces the
size of the data) and then sent to the data center. In this paper,
we analyze the timeliness of such an application using Age
of Information (AoI) metric. AoI is a new metric that has
been found useful in and related to various Internet of Things
(IoT) and cyber-physical system applications which require
timely availability of information at the receiving end of a
communication system. In the context of our system model, we
use AoI to measure the time elapsed for sensor data delivered
to the data center starting from its generation.

We provide a typical scenario shown in Fig. 1. In this
scenario, an IoT sensor connects to an MEC server (e.g.,
through a wireless access point not represented in the figure),
which also maintains a connection to the data center through

S
l

Comp

Rx

(1-p)l

pl

qW

(1-q)W

Tx1

Tx2

 Server 1

 Server 2

IoT Sensor

MEC Server

Data Center

c

Fig. 1. System model for data pre-processing and offloading in Mobile Edge
Computing.
the core network. The IoT sensor generates data and it sends
them to the MEC server. Once the server gets the data, it
can split them into two paths: With probability p, it can
compute locally and send the outcome to the cloud as shown in
server 1 (this path involves a combination of computation and
transmission operations); with probability (1−p), it can offload
them to the cloud directly as shown in server 2 (this path
involves directly transmitting). The channel between MEC
server and data center has total resource W (thought as the
bandwidth) and is shared by servers 1 and 2.

We investigate average AoI and average peak AoI for the
system in Fig. 1 with Poisson arrivals of rate λ and generally
distributed service times. In line with many recent papers on
AoI such as [1]–[4], we assume that there are no data buffers
before servers 1 and 2, and therefore data is dropped if it
finds the server in busy state. As a result, the servers form
two independent M/GI/1/1 queues. The transmission channel
of bandwidth W is shared by the two queues with ratio q;
hence, servers 1 and 2 have average service rate of qW
and (1 − q)W , respectively. Our goal is to utilize the path
diversity in timely transfer of the data from IoT sensor to
the data center and determine the probability p and ratio q
judiciously for this purpose. We evaluate average AoI and
average peak AoI in this system model. In particular, we
find integral expressions and calculate the outcome based on
service distributions. Numerical results show the effects of
path diversity due to different service distributions in selecting
best offloading probability in conjunction with mean service
times for optimizing average AoI and average peak AoI.
A. Related Work

Age of information (AoI) has found considerable atten-
tion in the recent literature as a measure of timeliness of



update information in IoT and edge computing applications.
The pioneering work [5] analyzes AoI in queuing models
motivated from vehicular networks and it motivated the use
of AoI metric in the literature. Among others, [6] considers
a general AoI analysis in preemptive and non-preemptive
queuing disciplines. See also previous works such as [1]–
[3]. The papers [7]–[9] consider AoI in energy harvesting
communications. AoI analysis in multi-hop networks have
been considered in [4], [10]–[13]. In particular, [4] considers
multiple servers with preemption if there is no idle server.
[14] considers scheduling data flows in vehicular communi-
cation networks. References [15], [16] consider AoI analysis
with computing and communication queues. Our work [17],
[18] address various computation-communication queues with
single transmit server motivated by edge computing. Most
recently, [19] considers AoI minimization for MEC under a
given deadline. Our previous work in [20] and other works
focusing on MEC without AoI metric such as those in [21]
constitute motivation for our current work. With respect to
existing literature, our study on general service distributions
with non-preemptive parallel servers and our focus on peak
AoI in relation to average AoI makes the current work unique.

II. SYSTEM MODEL

We consider a tiered IoT infrastructure as shown in Figure 1.
In this system, there is one IoT sensor representing the source,
one MEC server represented by two parallel servers, and one
data center at the receiving end. The IoT sensor transmits data
to the MEC server through a short-range wireless link with
negligible transmission time. At the MEC server, there are no
data buffers available and data that finds any server in busy
state is dropped.1 Arriving data can be pre-processed locally at
the MEC server and then transmitted to the data center (these
two operations are together represented as server 1) or can
be offloaded to the data center directly without pre-processing
(represented as server 2). We model this system as two servers
with different general service distributions and a single source
split into two streams probabilistically. Additionally, we view
the sum of average service rates of these servers constrained
due to a common resource such as bandwidth. Our goal is
to understand how to determine the splitting ratio judiciously
with the service times of servers with general distribution with
an objective to feed the receiving end with timely information.
To this end, we will use Age of Information (AoI) metric.
A. Data Generation Model

In the IoT sensor, data are generated as a Poisson process
with rate λ. This stream is split into two with probability
p. The two parallel servers have no buffers. Consequently,
we obtain independent M/GI/1/1 systems. Note that since the
transmit channel is shared, when q = 0 or 1, the system
becomes a single server M/GI/1/1 system. The data generated
at the IoT sensor has the number of input bits s. Each packet
will be pre-processed for a time period c in the MEC server.

1We focus on a zero-buffer system because previous research has shown
that excessive queuing in large buffer systems can adversely impact AoI, while
limited-buffer systems with packet management can improve AoI [1], [3].

After computation, each input bit generates o output bits where
o = g(c) is a function of the computation time c. We use queue
a to denote the queue system with server 1 and queue b to
denote the queue system with server 2. Queue a has the arrival
rate pλ and bandwidth qW bps. Since server 1 is the combina-
tion of processor and transmitter, we assume the service time
for packets in queue a will be identical, independent, generally
distributed random variables with mean E[Sa] = c + so

qW .
Note that when c = 0, o = 1, data entering queue a will be
transmitted to the data center without any processing. At the
same time, we assume the service time for packets in queue
b are identical, independent, exponentially distributed random
variables with mean E[Sb] = s

(1−q)W . Corresponding to the
general distribution, we have MSa(γ) , E[e−γS

a

] to denote
the moment generating function of the datasize distribution at
−γ for γ ≥ 0 and M(Sa,1)(γ) denotes its first derivative at
−γ, M(Sa,2)(γ) denotes its second derivative at −γ. The main
notations used in this paper are listed in Table I.

TABLE I NOTATIONS

Notation Description
s The number of input bits in an update
c The pre-processing time for the update at server 1
o Number of output bits in update after pre-

processing at server 1
W Bandwidth of the transmission channel
λ Update generation rate at the IoT device sensor
p The probability that the updates are pre-processed

at MEC server
q The fraction of transmission rate assigned to server

1.

We let ti denote the time stamp of the event that packet i
enters the system, and t′i the time stamp of the event that the
packet i is delivered to the data center. We index only those
packets that enter either one of the servers and not count those
that are discarded. The instantaneous AoI is the difference of
current time and the time stamp of the packet at the data center:

∆(t) = t− u(t) (1)

where u(t) is the time stamp of the latest packet at the data
center at time t.

Each arriving packet is routed probabilistically to either
server a with probability p or server b with probability (1−p).
An arriving packet may find the server in Idle (Id) or Busy
(B) state. If a packet finds the server in (Id), it is dropped;
otherwise, its service starts right away. The service times for
these queues are independent and they have different distribu-
tions. Therefore, a packet that is generated after a packet in
service may reach the receiving end earlier and this will make
the packet in service non-informative (i.e., will not decrease
the age at the receiver). The packets are generated at sensor
according to a Poisson process, and the intergeneration times
have memoryless exponential distribution. We also define Ti as
the effective system time for packet i starting from its entrance
to the system until the time it is delivered to the receiver or
when it becomes non-informative (whichever happens earlier).



A
o
I

time

t1 t2 t3 t4

t'2
 t'1

t'4

t5 t6t'3
 

t'6

t7 t'5
X3 T3

X4 T4

Q3

Q4
Q2

Q5

Peak2

Peak3

Peak4

Fig. 2. The evolution of AoI in the system.

Fig. 2 shows a sample path of the AoI evolution. The first
packet is generated at t1 and enters queue a. The second packet
is generated at t2 and enters queue b. The service of first packet
and second packet finish at t′1 and t′2, respectively. The third
packet is generated at t3 and enters queue a finding it idle.
Even though its service finishes between t′4 and t5 shown as
◦ and any packet that comes in this interval is dropped; its
effective service is finished at t′4 as it becomes non-informative
afterwards. Hence, corresponding effective service time is
T3 = t′4 − t3. Next effective packet is generated at t5 and
enters queue a. Similarly, packet 5 is a non-informative packet
and its effective service time is T5 = t′6 − t5. This approach
is reminiscent of equivalent queues in earlier work [17], [18].

We define the areas Qi under the triangular regions of the
AoI curve as shown in Fig. 2. We then have average AoI:

E[∆] = λeE[Q] = λe

(
E[XeT ] +

E[X2
e ]

2

)
, (2)

where λe is the effective arrival rate and Xe is the correspond-
ing interarrival time. Here T is the effective system time.

III. AVERAGE AOI ANALYSIS
Let us define the state of the MEC server as Ki = (qa, qb),

where qa, qb ∈ {(Id), (B)} represent the state of queues a and
b, respectively. We have the following stationary probabilities
for each queue:

Pr[qa = (Id)] =
1

pλDa
cycle

,Pr[qa = (B)] =
E[Sa]

Da
cycle

, (3)

Pr[qb = (Id)] =
1

(1− p)λDb
cycle

,Pr[qb = (B)] =
E[Sb]

Db
cycle

, (4)

where Da
cycle = 1

pλ + E[Sa] and Db
cycle = 1

(1−p)λ + E[Sb]
are the expected lengths of one renewal cycle in queue a
and queue b, respectively. For convenience, we also denote
Xa and Xb as the interarrival times for queues a and b,
respectively. Note that Xa and Xb are independent Poisson
with rates pλ and (1 − p)λ. We additionally denote with Ra
and Rb the residual service time a packet observes for a packet
in service for queues a and b. Ra and Rb are independent
with probability density functions fa(r) = Pr(Sa>r)

E[Sa] and

fb(r) = Pr(Sb>r)
E[Sb]

for r ∈ [0,∞). Additionally,

MRa(γ) =
1−MSa(γ)

γE[Sa]
. (5)

More generally, the states of queues a and b are independent
in this setting and we have:

Pr[Ki = (x, y)] = Pr[qa = x]Pr[qb = y],

where x, y ∈ {(Id), (B)}. A packet enters the queue with
probability p if x = (Id) and with probability (1 − p) if
y = (Id). In this case, we have

λe = λpPr[qa = (Id)] + λ(1− p)Pr[qb = (Id)]

To get an expression for average AoI, we next evaluate E[Q]
and put it in (2). For this purpose, we carefully consider
conditions over which system variables take different values.
A. Conditioning on Ki−1 = ((Id), (Id))

In this case, packet i− 1 finds both queues in idle state. To
evaluate E[Q|Ki−1 = ((Id), (Id))], we evaluate the E[XeT ]
and E[X2

e ] for the packet i−1 entered queue a with probability
p. We calculate E[XeT ] and E[X2

e ] conditioned on various
cases.

1) Xb < Sa +Xa: In this case, Xe = Xb, packet i enters
server b and it spends T = min{S̃b, Sa+Xa−Xb+S̃a} where
where S̃b is the service time spent in server b, Xa represents
the next interarrival time to server a. S̃a is the independent
service time in server a.

2) Xb > Sa + Xa: In this case, Xe = Xa + Sa, packet i
enters server a, and it spends T = min{S̃a, Xb−Xa−Sa+S̃b}
where S̃a is the independent service time spent in server a and
S̃b is the independent service time spent in server b.

With probability (1 − p), Xe = min{Xa, Sb + Xb} and
we just swap indices for queues a and b in the analysis
above to get the other half of the expression. Hence, we
have E[Q|Ki−1 = ((Id), (Id))] = pE(a, b) + (1 − p)E(b, a)
where E(a, b) is the corresponding expectation when packet i
enters a first. For completeness, the expression for E(a, b) is
provided in (6) where integrations with respect to Xa, Xb and
Sa are with respect to their probability density functions and
the expectations are taken with respect to random variables
represented as capital letters. To illustrate how we can use
E(a, b), we show the closed form expression for E[X2

e ] in
Appendix A. The computation for the other parts is complex.
Therefore, we evaluate the integrals numerically in other cases.
B. Conditioning on Ki−1 = ((Id), (B))

In this case, packet i − 1 finds the first queue in idle
state and the second queue in busy state. We note that the
effective packet is the packet entering queue a with probability
p. Hence, we calculate E[Q] conditionally. In this case, the
effective inter-arrival time Xe and the system time T behaves
under different conditions as follows:

1) Rb+Xb < Sa+Xa: In this case, Xe = Rb+Xb, packet
i enters server b and it spends T = min{Sb, Sa +Xa −Rb −
Xb + S̃a} where Xa is the next independent interarrival time
to server a after the service for packet i − 1 and S̃a is the
corresponding independent service time.



E(a, b) ,
∫ ∞

0

∫ ∞
0

∫ sa+xa

0

E[xb min{S̃b, sa + xa − xb + S̃a}] + E[
x2
b

2
]d(xb)d(sa)d(xa)

+

∫ ∞
0

∫ ∞
0

∫ ∞
sa+xa

E[(xa + sa) min{S̃a, xb − sa − xa + S̃b}] + E[
(xa + sa)2

2
]d(xb)d(sa)d(xa) (6)

2) Rb+Xb > Sa+Xa: In this case, Xe = Xa+Sa, packet
i enters server a and it spends T = min{S̃a, Rb +Xb−Sa−
Xa + S̃b} where S̃a is the independent service time spent in
server a, Xb represents the next interarrival time to server b
and S̃b is the corresponding independent service time.

Finally, we have E[Q|Ki−1 = ((Id), (B))] = pK(a, b)
where K(a, b) represents the queue entering queue a first
and queue b is busy. For completeness, the expression for
K(a, b) is provided in (7) where integrations with respect
to Xa, Xb, Sa and Rb are with respect to their probability
density functions and the expectations are taken with respect
to random variables represented as capital letters.

C. Conditioning on Ki−1 = ((B), (Id))
In this case, packet i− 1 finds the first queue in busy state

and the second queue in idle state. We just swap the roles of
queues a and b and p with (1−p) to get the final expressions.
To illustrate, we have E[Q] = (1 − p)K(b, a). We finally
combine all three cases to get
E[Q](pPr[qa = (Id)] + (1− p)Pr[qb = (Id)])

= E[Q|Ki−1 = ((Id), (Id))]Pr[qa = (Id)]Pr[qb = (Id)]

+ E[Q|Ki−1 = ((Id), (B))]Pr[qa = (Id)]Pr[qb = (B)]

+ E[Q|Ki−1 = ((B), (Id))]Pr[qa = (B)]Pr[qb = (Id)],

where we acknowledge that the incoming packets are dropped
in all cases of Ki−1 that remain unaccounted.

IV. AVERAGE PEAK AOI ANALYSIS
Peak AoI is the peak value of age at the instant right before

the status is updated. Compared to the average AoI which
represents the timeliness of status updates in the system, the
average Peak AoI captures the key events when the status is
successfully updated in the system. For the average peak AoI,
we depart from the earlier definitions of interarrival and system
times. In this case, we account for whether a packet that enters
the system is informative or obsolete. We have

E[∆p] = E[X(i)] + E[T (i)], (8)

where X(i) is the interarrival between two informative packets
and T (i) is the system time for an informative packet. The rate
of informative packets is

λ(i) =λP (i),

where P (i) is the probability that a task is informative in the
system. Let the event E1 denote Sa < Xb + Sb, E2 denote
Sa < Rb +Xb +Sb, E3 denote Sb < Xa +Sa and E4 denote
Sb < Ra +Xa + Sa. We have:

P (i) = pPr[qa = (Id)]Pr[qb = (Id)]Pr[E1]

+ pPr[qa = (Id)]Pr[qb = (B)]Pr[E2]

+ (1− p)Pr[qb = (Id)]Pr[qa = (Id)]Pr[E3]

+ (1− p)Pr[qb = (Id)]Pr[qa = (B)]Pr[E4]. (9)

We therefore get E[X(i)] = 1
λ(i) . Similarly, we have

E[T (i)]P (i) = pPr[qa = (Id)]Pr[qb = (Id)]E[Sa|E1]Pr[E1]

+ pPr[qa = (Id)]Pr[qb = (B)E[Sa|E2]Pr[E2]

+ (1− p)Pr[qb = (Id)]Pr[qa = (Id)]E[Sb|E3]Pr[E3]

+ (1− p)Pr[qb = (Id)]Pr[qa = (B)]E[Sb|E4]Pr[E4]. (10)

We therefore reach E[X(i)] and E[T (i)] to evaluate average
peak AoI in (8).

V. NUMERICAL RESULTS

In this section, we provide numerical results for average
AoI and average peak AoI. We performed packet-based queue
simulations for 106 packets as verification of all numerical
results. Our goal is to show how splitting probability and
bandwidth are assigned to optimize the average AoI and
average peak AoI in different settings. For simplicity, we
use d = s

W to denote the normalized transmission time and
o = e−c relates computation time and datasize.

We use Gamma distributed service time for queue a with
mean E[Sa]. In particular, we use the probability density
function fSa(sa) = kα

Γ(α)s
α−1
a e−ksa for sa ≥ 0 where k =

α
E[Sa] and α > 0 determines the variance. The variance gets
larger as α gets smaller. Indeed, this distribution converges
to an impulse at E[Sa] as α grows large. We have the fol-
lowing closed form expressions for this Gamma distribution:
MSa(µ) =

(
1 + µ

k

)−α
, MSa,1(µ) = E[Sa]

(
1 + µ

k

)−α−1
.

We start with Fig. 3 where we compare the average AoI with
respect to p under different bandwidth assignment. We assume
c = 0.2 which means pre-processing is introduced in server
a. We observe that optimal order of splitting probabilities
matches with the order of bandwidth assignment. Note that

K(a, b) ,
∫ ∞

0

∫ ∞
0

∫ sa+xa

0

∫ sa+xa−xb

0

E[(xb + rb) min{S̃b, sa + xa − xb − rb + S̃a}+
(xb + rb)

2

2
]d(rb)d(xb)d(sa)d(xa)

+

∫ ∞
0

∫ ∞
0

∫ rb+xb

0

∫ rb+xb−xa

0

E[(xa + sa) min{S̃a, xb + rb − sa − xa + S̃b}+
(xa + sa)2

2
]d(sa)d(xa)d(rb)d(xb)

(7)



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

1.4

1.6

1.8

2

2.2

2.4

2.6
A

v
er

ag
e 

A
o
I

 q=0.3

 q=0.5

 q=0.7

Fig. 3. Average AoI with respect to p for fixed λ = 2, d = 0.5, c = 0.2,
α = 2.

1 1.5 2 2.5 3
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

A
v
er

ag
e 

A
o
I 

an
d
 P

ea
k
 A

o
I

Average AoI, =1

Average Peak, =1

Average AoI, =2

Average Peak, =2

Average AoI, =5

Average Peak, =5

Fig. 4. Average AoI and Peak AoI with respect to λ for fixed p = 0.5, q = 0.3,
d = 0.5, c = 0.2.

when q = 0.5, we observe that the curve of average AoI is
asymmetric since the pre-processing makes the service rates
be different between the two queues.

Next, in Fig. 4, we compare the average AoI and average
Peak AoI with respect to λ under different α. We set p = 0.5,
q = 0.3 and c = 0.2 here which means the two servers
have identical arrival rates but different service rates. We
observe that with arrival rate λ increasing, both average AoI
and average Peak AoI are monotonic decreasing. Note that
with α increasing, both average AoI and average Peak AoI are
increasing due to the fact that with α increasing, the variance
of service time in queue a is decreasing.

Then we compare the average AoI and average Peak AoI
with respect to p under different α in Fig. 5. We set q = 0.5
and c = 0 here makes the mean service time to be identical
for the two servers. Note when α = 1, the service time of
queue a will be exponentially distributed and we can see the
optimal p is around p = 0.5 in this case which means when
the two servers are identical, sending packets equally will be
the optimal assignment for the packets. With α increasing, we

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

A
v
e
ra

g
e
 A

o
I 
a
n
d
 P

e
a
k
 A

o
I

Average AoI, =1

Average Peak, =1

Average AoI, =2

Average Peak, =2

Average AoI, =5

Average Peak, =5

Fig. 5. Average AoI and Peak AoI with respect to p for fixed λ = 2, q = 0.5,
d = 0.5, c = 0.

can observe that the optimal p increases, which means with
same mean service time, the optimal strategy is to assign more
packets to server a when the variance of service time in queue
a decreases. On the other hand, we observe that the optimal
point for Peak AoI does not change significantly due to the fact
that the Peak AoI has high correspondence with mean service
time. We also observe that with p increasing, more packets
will be assigned to server a and α = 1 will become the worst
case for the value while it is optimal when p is small.

We observe that the optimal values of p could be quite
different for average AoI and average peak AoI under fixed
q. In general, a decrease in average AoI comes at the cost
of increased average peak AoI. To understand the tradeoff
between average AoI and average peak AoI, we optimize
weighted sum of AoI and average peak AoI:

min
p≥0

ω1E[∆] + ω2E[PAoI] (11)

In Fig 6, we plot the optimal tradeoff obtained by solving
the weighted optimization in (11) with fixed q = 0.5 for
differing service time variances. In particular, for each α, we
solve (11) for all possible ω1 and ω2 and plot all possible
operating points as tuples of average AoI and average peak
AoI. This characterizes the optimal tradeoff between average
AoI and average peak AoI. Note that when α is increasing,
the variance of service time in server a is decreasing and we
observe that this tradeoff becomes more apparent for smaller
service time variances in queue a.

Finally, we show the average AoI with respect to c under
different q in Fig. 7. We observe that when q = 0.3 or q = 0.5,
with little bandwidth assigned to server a, we can optimize
average AoI by pre-processing the data and decreasing the
transmission time. Interestingly, when q = 0.7, the average
AoI is a monotonic increasing function of computation time
c. This is because if the bandwidth resource is plentiful, pre-
processing becomes unnecessary and results in increased AoI.

VI. CONCLUSION
In this paper, we consider a tiered IoT infrastructure in

which data generated by an IoT sensor is delivered to a data



2.015 2.02 2.025 2.03 2.035

Average Peak AoI

1.622

1.623

1.624

1.625

1.626

1.627

1.628

1.629

1.63

1.631

1.632

A
v
er

ag
e 

A
o
I 

=3

=4

=5

Fig. 6. Optimal tradeoff curves for average AoI vs. average peak AoI with
differing variances and fixed λ = 2, q = 0.5, d = 0.5, c = 0.

0 0.2 0.4 0.6 0.8 1

c

1.6

1.7

1.8

1.9

2

2.1

2.2

A
v
er

ag
e 

A
o
I 

q=0.3

q=0.5

q=0.7

Fig. 7. Average AoI with respect to c for fixed λ = 2, p = 0.5, α = 2,
d = 0.5.

center for processing through an intermediate MEC server.
The MEC server can either transmit the data to the data
center or pre-process the data and then transmit it to the data
center over a shared channel. The goal is to maintain the
freshness of the data delivered to the data center. We assume
a probabilistic model for pre-processing by the MEC server
and perform stationary distribution analysis in this system to
obtain closed form expressions for average AoI and average
peak AoI. We focus on selecting the offloading probabilities
for optimal operation determined by average AoI and peak
AoI. Our numerical results show the effect of path diversity in
the selection of best offloading probability and service times.
Our future goal is to analyze and optimize the average AoI
and average peak AoI in multi-hop and multi-server systems.

APPENDIX

A. E[X2
e ] in E(a, b)

We assume λa = pλ, λb = (1 − p)λ and µb = 1
E[Sb]

for
these exponential random variables Xa, Xb and Sb separately.
Then we have Rb as an exponential random variable with µb.
We have:

E[X2
e ] ,

2

λ2
b

− λa
λb + λa

(
(

2

(λa + λb)2
+

2

λb(λa + λb)

+
2

λb
)MSa(λb) + 2(

1

λa + λb
+

1

λb
)M(Sa,1)(λb)

+M(Sa,2)(λb)

)
+

λa
λa + λb

(
2

(λa + λb)2
MSa(λb)

+
2

λa + λb
M(Sa,1)(λb) +M(Sa,2)(λb)).

REFERENCES

[1] M. Costa, M. Codreanu, and A. Ephremides. On the age of information
in status update systems with packet management. IEEE Transactions
on Information Theory, 62(4):1897–1910, 2016.

[2] C. Kam, S. Kompella, G.D. Nguyen, J.E. Wieselthier, and
A. Ephremides. On the age of information with packet deadlines. IEEE
Transactions on Information Theory, 2018.

[3] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides. Controlling the age of information: Buffer size, deadline,
and packet replacement. In IEEE MILCOM, pages 301–306, 2016.

[4] R.D. Yates. Status updates through networks of parallel servers. In 2018
IEEE International Symposium on Information Theory (ISIT), pages
2281–2285. IEEE, 2018.

[5] S. Kaul, R. Yates, and M. Gruteser. Real-time status: How often should
one update ? In INFOCOM, pages 2731–2735. IEEE, 2012.

[6] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka. A general formula for
the stationary distribution of the age of information and its application
to single-server queues. arXiv preprint arXiv:1804.06139, 2018.

[7] R. Yates. Lazy is timely: Status updates by an energy harvesting source.
In IEEE ISIT, June 2015.

[8] S. Farazi, A.G. Klein, and D.R. Brown. Average age of information
for status update systems with an energy harvesting server. In IEEE
INFOCOM WORKSHPS, pages 112–117, 2018.

[9] A. Baknina, O. Ozel, J. Yang, S. Ulukus, and A. Yener. Sending
information through status updates. In IEEE ISIT, 2018.

[10] A. M. Bedewy, Y. Sun, and N. B. Shroff. Age-optimal information
updates in multihop networks. Available at arXiv:1701.05711, 2017.

[11] R. Talak, S. Karaman, and E. Modiano. Minimizing age-of-information
in multi-hop wireless networks. In Communication, Control, and
Computing (Allerton), 2017 55th Annual Allerton Conference on, pages
486–493. IEEE, 2017.

[12] R.D. Yates. The age of information in networks: Moments, distributions,
and sampling. arXiv preprint arXiv:1806.03487, 2018.

[13] A. Maatouk, M. Assaad, and A. Ephremides. The age of updates in a
simple relay network. arXiv preprint arXiv:1805.11720, 2018.

[14] A. Alabbasi and V. Aggarwal. Joint information freshness and comple-
tion time optimization for vehicular networks. CoRR, abs/1811.12924,
2018.

[15] C. Xu, H. H. Yang, X. Wang, and T.Q.S Quek. On peak age of
information in data preprocessing enabled iot networks. arXiv preprint
arXiv:1901.09376, 2019.

[16] A. Arafa, R.D. Yates, and H.V. Poor. Timely cloud computing:
Preemption and waiting. In Allerton Conference, pages 528–535, 2019.

[17] P. Zou, O. Ozel, and S. Subramaniam. Trading off computation with
transmission in status update systems. In IEEE PIMRC 2019, pages
1–6, 2019.

[18] P. Zou, O. Ozel, and S. Subramaniam. Optimizing information freshness
through computation-transmission tradeoff and queue management in
edge computing. arXiv preprint arXiv:1912.02692, 2019.

[19] J. Gong, Q. Kuang, and X. Chen. Joint transmission and computing
scheduling for status update with mobile edge computing. arXiv preprint
arXiv:2002.09719, 2020.

[20] X. Wei, C. Tang, J. Fan, and S. Subramaniam. Joint optimization
of energy consumption and delay in cloud-to-thing continuum. IEEE
Internet of Things Journal, 6(2):2325–2337, 2019.

[21] Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han. Joint radio and com-
putational resource allocation in iot fog computing. IEEE Transactions
on Vehicular Technology, 67(8):7475–7484, 2018.


