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ABSTRACT
Network-based models are increasingly adopted to deliver key soft-
ware service and utilities (e.g., data storage, search, and processing)
to end users. The need to satisfy diverse user requirements and to
fit different application environment often leads to continual ex-
pansion and addition of new (and in many cases excessive) features,
known as the feature creep problem. Existing work mitigating fea-
ture bloat often either debloats programs at source code level (which
may not always be available, in particular for legacy systems) or
customize binary only with respect to very limited scope of inputs.
In this paper, we propose a new approach, TOSS , for automated
customization of online servers and software systems, which are
implemented using a client-server architecture based on the un-
derlying network protocols. Specifically, TOSS harnesses program
tracing and tainting-guided symbolic execution to identify desired
(feature-related) code from the original program binary, and apply
static binary rewriting to remove redundant features and directly
create customized program binary with only desired features. We
implement a prototype of TOSS and evaluate its feasibility using
real-world executables including Mosquitto, which relies on the
Message Queuing Telemetry Transport (MQTT) protocol for light-
weight Internet of Things (IoT) communications. The results show
that TOSS is able to create a functional program binary with only
desired features and significantly reduce potential attack surface
by eliminating undesired protocol/program features.
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1 INTRODUCTION
Due to the need to satisfy diverse end user requirements and to suit
different application environments, network-based protocols that
are designed to deliver key service capabilities and utilities (e.g.,
data storage, search and processing) often lead to continual expan-
sion and addition of new (and in many cases excessive) features,
known as the feature creep problem [5]. Feature creep in online
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server systems not only results in larger installation footprint, but
also causes an increased attack surface with higher possibility of
vulnerabilities and exploitation. Real-world examples of protocol
feature creep include the trap communication feature in the Simple
Network Management Protocol (SNMP) and the heartbeat feature
in the Open Secure Sockets Layer (OpenSSL), both of which may
be unnecessary under most practical scenarios, but unfortunately
cause serious security threats such as denial of service attack and
leakage of sensitive information.

An effective approach to mitigate feature creep is debloating,
e.g., creating customized software systems that contain just-enough
features and yet satisfy specific user needs, in order to minimize
the software complexity and resulting attack surface. Prior work
on static software debloating [4, 5] is often conducted on source
code (where redundant functions and features are relatively easier
to identify) to remove unused code. However, source code may
not always be available especially for commercial off-the-shelf
(COTS) or legacy programs. With only program binaries available,
even correctly recognizing function body itself is a challenging
task [1]. It may be impossible to provide “seed functions” that are
usually required by existing feature removal techniques to use as the
source of slicing and to bootstrap the analysis process. On the other
hand, new program binaries directly constructed (or extracted) from
runtime traces (sometimes with additional static analysis) through
the binary reuse technique [2, 6, 18, 23, 25] can only achieve correct
execution with very limited scope of user inputs.

Main problem and challenges. In this paper, we propose a
new approach, TOSS , for automated customization of online servers
and software systems, which are often implemented using a client-
server architecture based on the underlying network protocols,
e.g., Message Queuing Telemetry Transport (MQTT) protocol for
lightweight Internet of Things (IoT) communications. We define
automated feature customization as the process of identifying and
rewriting different software and service features from a binary exe-
cutable. In many COTS and legacy software, source code may no
longer be available. Hence customization of binary considered in
this paper is more relevant. Without requiring any knowledge of
potential exploits, the customized programs contain just-enough
software features to support only the required services, thus sig-
nificantly reducing the attack surface and the exposure to future
exploitation through features (e.g., zero-day attacks). Our approach
goes beyond existing work on feature separation [12], reduction [5]
and code de-bloating [4, 19, 20], which focus on removing unused or
unnecessary code. We argue that vigilantly managing and customiz-
ing permitted features is crucial for achieving improved software
security [5], especially for online servers and software systems that
are frequently targeted by attackers because of the value of their
data and services.
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At the core of automated customization, a key problem is to iden-
tify software features directly from a program’s binary, without
access to source code or debug symbol information. We define a
feature as a collection of basic blocks, which uniquely represent an
independent, well-contained and stateless service or capability of
the program. First, since features in an online server or a software
system are often accessed via the network and triggered upon user
requests, we employ dynamic tainting to monitor and track the
execution of a target feature, utilizing the user request packets or
relevant fields as taint sources. Second, since feature executions
in dynamic analysis depends upon specific input values, a pure
dynamic tainting approach may be difficult to achieve sufficient
code coverage, and in other words, the identified program code can
only handle very limited scope of user inputs related to the target
features. To this end, we harness dynamic tracing and symbolic ex-
ecution - while dynamic tracing can reveal the basic blocks that are
required in specific feature executions, we utilize dynamic tainting
to guide an symbolic execution engine to effectively discover more
program code and execution paths related to the target features. As
a result, TOSS delivers a customized program that has the unique
ability to correctly execute desired features with a wide range of
feasible user inputs.

Identifying feature-related code segments enables us to rewrite
program features, in accordance with user needs. We leverage bi-
nary rewriting tools such as DynInst to obtain a customized binary
that only retains the desired program features while removing the
other redundant ones. In particular, we replace undesired basic
blocks with “NOP”s to eliminate unwanted features, and in case
such features/basic blocks are still invoked during program execu-
tion, we further redirect their invoking instruction such as function
call or jump to a designated function exit point. We successfully ap-
ply TOSS to customize Mosquitto, which relies on MQTT protocol
for lightweight IoT communications

The main contributions of our work are as follows:

• We propose TOSS , an automated framework for customiz-
ing online servers and software systems using only binaries.
Given a list of desired features, TOSS automatically identifies
feature-related program code and customizes it to provide
just-enough features to support desired services in accor-
dance with user needs.

• For effective feature identification, TOSS leverages dynamic
tainting to track feature execution by tainting relevant user
request packets/fields. It harnesses dynamic tracing and sym-
bolic execution to improve code coverage and efficiently dis-
cover more execution paths relevant to the desired features.

• Evaluation using real-world applications such as Mosquitto
shows that TOSS can efficiently customize software binaries,
generating debloated program binaries, and eliminate poten-
tial vulenrable code without requiring any knowledge of the
exploits.

2 MOTIVATION
In this section we present a statement of our feature customization
problem, formally define it, and outline an overview of our TOSS
approach.

Background: Excessive program features/code often result in
increased amount of vulnerabilities. It has been shown that there are
on average 15 to 50 errors per 1000 lines of industry-level code [9].
Feature customization creates customized software systems that
contain just-enough features to support only desired services/utili-
ties and can considerably reduce the software’s attack surface, as
unnecessary and unwanted features are eliminated even before
zero-day exploits.

As mentioned in section 1, the main challenges of TOSS is to
customize online servers and software systems with only program
binaries available, e.g., in legacy systems. Previous work on binary
reuse can also be considered as a form of customization, even-
though binaries extracted and reconstructed from execution traces
are only guaranteed to accept the inputs used to generate the ex-
ecution traces. As a result, the reconstructed program often can
only run with extremely limited inputs with exactly replicating
the program behaviors. While multiple traces can be merged to
increase the adaptability, it is very difficult to achieve sufficient
code coverage and provide a customized binary that works with all
the reasonable inputs [6].

Instead of extracting reusable parts of the binary, TOSS rewrites
the static binary by keeping the necessary features while erasing
others. It comprises two tasks: (i) identifying program features
from a binary executable by analyzing dynamic traces that invoke
different features, and (ii) rewriting the binary, in accordance with
user needs, to create customized, self-contained programs.

To introduce our problem of software customization, we first
need a definition of what a feature is in binary code.

Definition 1. Feature. A program feature is defined as a set of
basic blocks – denoted by Fi = { f 1i , f

2
i , ..., f

n
i } ⊆ F – which

uniquely represent an independent, well-contained operation, util-
ity, or capability of the program. A feature at the binary level may
not always correspond to a software module at the source level. We
use T = {Fi , ∀i} to denote the set of all available features in the
program.

Problem Statement: The goal of TOSS is that, given a program
binary, test cases invoking different program features, and user’s
customization requirement (i.e., a set of desire features T̂ ⊆ T ), it
will produce a modified binary that contains the minimum set of
functions to satisfy the user’s customization requirement and to
support all desired features in T̂ .

Scope: We focus on the customization of online servers and
software systems, which are often implemented using a client-
server architecture based on the underlying network protocols,
such as MQTT [7]. In this paper, we assume that only program
binary is available for customization. If some specific inputs are
needed to execute a feature, we assume we are provided with such
test-cases to execute the program with the desired feature.
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Figure 1: TOSS System Diagram

3 SYSTEM DESIGN
TOSS consists of two major modules: feature identification and
feature rewriting. Its system architecture is illustrated in Figure 1.
Users provide customization requirement (i.e., a list of features that
are needed) as well as test-cases to reach different features. TOSS
takes the program binary and customization requirement as inputs
and generate a customized binary consisting of only the desired
features.

The feature identification module is explained in 3.1. Through
program tracing and tainting-based symbolic execution(TSE), TOSS
is able to find the basic blocks that are necessary to perform the
desired features. Feature identification module will output the in-
struction addresses that are related to the target feature to the next
module, feature rewriting.

The feature rewriting module is explained in section 3.2. It mod-
ifies the program binary in accordance with user’s customization
requirements. The instructions remaining in the customized pro-
gram can be viewed as a subset of that of the original program (only
exception is the handling of function exit), which is able to retain
the behavior of only the desired features. Finally, to evaluate and
improve the soundness of our customization, We perform fuzzing
to check the feasibility and code coverage of the customized pro-
gram. We separate the fuzzing inputs into two categories: 1) benign
inputs that belong to the desired features and should be processed
exactly as they are handled by the original program; 2) malicious
inputs that do not belong to the desired features and should not
be processed. Once benign inputs cause the program to malfunc-
tion, this input will be taken to the previous feature identification
module and generate a new execution trace, from which more code
segments related to the desired features are discovered and added
to the customized binary.

3.1 Feature Identification
As a feature-oriented customization framework, TOSS needs to
discover basic blocks that are related to the target features. Previ-
ous work for feature customization, e.g., [5], often requires seed
functions to bootstrap the feature identification process. Each seed
function uniquely defines a feature and can be used as a source of
slicing techniques that will find other functions belonging to the
same feature. However, such seed functions are hard to obtain in
practice. Users and even administrators often do not have detailed
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mov %eax,-0x10(%ebp)
xor %eax,%eax 
cmpl $0x2,(%ecx)
je 80488aa

mov 0x804a04c,%eax
mov %eax,0xc(%esp)
movl $0x17,0x8(%esp)
movl $0x1,0x4(%esp)
movl $0x8048cb8,(%es
p)
jne 80488fd

movl $0x0,0x4(%esp)
lea -0x20(%ebp),%eax
mov %eax,(%esp)
call 08048618

mov 0x804a04c,%eax
mov %eax,0xc(%esp)
call 8048628

mov $0x8048d00,(%esp)
call 8048648

movl $0x0,0x8(%esp)
movl $0x1,0x4(%esp)
movl $0x2,(%esp)
call 8048959

mov $0x8048d38,(%esp)
call 8048959
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Figure 2: Feature identification by combining instruction tracing
and tainting-based symbolic execution

information regarding the implementation of various program func-
tions.

In TOSS , we focus on online servers that are implemented using
a client-server architecture. It is natural to consider network packets
as the starting point of feature identification. In particular, TOSS ’s
feature identification module performs program execution tracing,
tainting and symbolic execution to extract the code that is necessary
for the desired features. The traffic among target hosts usually
consists of packets that have different formats. We distinguish
packets according to their formats and select the packets that need
to targeted for customization. (Different packet formats can be
generated by user-defined options, protocol states or environment
configurations).When the program is executed in a system emulator
and target packets that fit specific formats are detected, the related
basic blocks will be tainted and logged.

TOSS employs two approaches to collect the feature-related basic
blocks: (1) Logging the execution traces when the program starts on
the emulated system; (2) Tainting the execution intructions based
on the target packets/fields and performing symbolic execution to
discover more branches.

Take the control flow in figure 2 as an example, where a packet
is received and processed. First the format of the packet is checked.
Based on what type of packet it is, basic block 2 or 6 will be invoked.
The solid arrow indicates the actual execution path during the pro-
gram execution, which is 1->2->3->4. Without symbolic execution,
only this single path is considered as the code related to this packet.
After customization, the new binary will not be able to process the
packets that will lead to node 6. The execution paths marked with
dashed arrows are discovered by symbolic execution.

On the other hand, if symbolic execution is applied without
the tainting information, redundant paths will be explored other
than those starting from node 1. The gray nodes contain tainted
instructions can help guide the symbolic execution to improve the
effectness of path exploration.

The details will be explained later.

3.1.1 Instruction Tracing. TOSS obtains runtime information
through a whole system emulator TEMU [15]. We dump register
values, instructions and their memory addresses while the program
executes on the guest OS in TEMU. When the program is launched,
every instruction gets executed will be logged. The instructions



Figure 3: Select packet fields to symbolize

get and propagate the values from the memory location (where the
networ packets are stored) will be tainted.

3.1.2 Tainting-based Symbolic Execution. Since instruction trac-
ing can only discover the code that gets executed in specific program
runs, the code coverage of target features is relatively low. To this
end, TOSS uses symbolic execution to further explore the code
that are related to the same type of packets (packets with the same
format).

Symbolic execution is usually resource-intensive in terms of
memory and CPU circles. In TOSS , we use tainting-based symbolic
execution (TSE) to limit the number of memory locations/variables
that need to be made symbolic, and apply extra conditions to limit
the value range of certain packet fields.

• TOSS performs concolic execution in TSE module. It snap-
shots the value of registers at the point of tainting started,
only symbolizes the variables that are related to the target
packets or fileds, and keeps other concrete values.

• based on the packet format information which we know in
advance, there may exist fields that have limited range of
value, in which case we can apply this range constraints to
the symbolic variables while performing symbolic execution.
In particular, such constraints could include the option/flag
of a program, packet field length, packet field maximum/min-
imum range, etc.

As shown in figure 3, where a connect request/packet from
MQTT [7] subscriber to broker is captured during (monitored)
execution, then certain fields are selected and cast into symbolic
values. In general, we assume that the packet format information is
available to us so that we can identify the fields whose values have
meaningful variations and can lead to different execution paths of
the target features.

3.1.3 Merging. Instruction tracing and TSE are complementary
and together provide a faster and more efficient design for fea-
ture discovery and code coverage. On one hand, dynamic tracing
can precisely locate the basic blocks that get executed. With taint-
ing enabled, it is also able to mark the places that are related to
registers/memory locations of interest. Nonetheless, it is obvious
that one iteration of tracing can only get the code that processes
specific packets. There are potential branches also related to the
same feature but not chosen in the particular executions. To this
end, symbolic execution is able to explore more branches that are
not selected in specific program runs. However, without properly
trimming the searching space, it will easily dive into the path explo-
sion problem. This is where the tainted locations from instruction

tracing can serve as indicators to guide and accelerate symbolic
execution.

TOSS combines the addresses obtained from runtime instruction
tracing and TSE to build a library of addresses that will be kept when
performing binary rewriting to customize the program binary. As
shown in figure 2, all basic blocks from 1 to 7 can be discovered by
feature identification module, with 1 to 4 being discovered through
program tracing and the rest from TSE.

If multiple types of packets that cannot be generated in one run
are given as the inputs to feature identification module, TOSS will
perform the above operations one by one and then merge the basic
blocks discovered from multiple iterations.

3.2 Feature Rewriting
Feature rewriting creates a customized binary that consists of the
desired, feature-related code segments discovered through feature
identification. This section describes the three main steps that TOSS
performs for feature rewriting.

Address Processing
Since a single execution trace and symbolic execution may not

reach all desired program features, it requires us to first merge
multiple outputs from feature identification.

TOSS will collect traces from different program executions to
identify and compute the union of the related feature-constituent
functions. Let F̂ be a set of target program features for rewriting. If
the constituent basic blocks of each feature Fi ∈ F̂ can be success-
fully identified, we can simply create a superset of their constituent
basic blocks, i.e., F̂ = ∪Fi . Binary rewriting techniques are devel-
oped next to create a customized program by retaining only the
features in F̂ .

In order to rewrite the binary, we need to obtain the static ad-
dresses of instructions. We locate the static instructions based on
their offsets from the entry point (starting address of “.text” section).
The offsets can be calculated by subtracting the actual runtime seg-
ment address of “.text” from the runtime instruction address. The
static addresses are then passed to binary rewriter as inputs to
customize the instructions.

Binary Rewriting
We adopt basic block level binary rewriting in TOSS . In particu-

lar, we use DynInst, a static binary rewriter to modify the program
binary. The PatchAPI in DynInst abstracts the program basic blocks
in the form of CFG, which is compatible with our framework. In the
case of feature removal, the goals of binary rewriting are twofold:

• The basic blocks to be eliminated should not be called. The
call site of the eliminated code will be replaced to redirect
the program to exit point;

• In case the undesired code get called through malicious oper-
ations/attacks such as Return-Oriented Programming (ROP),
we replace the rest of the undesired basic blocks with “NOP”
(except for the shared code and data segments).

The solution is illustrated in Figure 4. The original control flow is
from basic block B1 to B2 via a “call” instruction as arrow 2 indicates.
If B2 is the target to be removed, TOSS will change the call site
in B1 and redirect it to B3(an exit point) as Arrow 1 indicates. In



...
lea rsi, ptr[rip+0x6c7]
shl rdx, 0x20
mov eax, eax
or rdx, rax
mov rdi, rbx
mov ptr[rip+0x2212b4], rbp
mov ptr[rip+0x221e15], rdx
call 0x7f7a9426c550

...
;store current state
mov ax,0x4c01;
int 0x21 ;

NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP
NOP

lea r8d, ptr [rdx-0x30]
movsx edx,ptr [rdi+0x1]
lea ecx, ptr [rax-0x30]
lea r10, ptr [rdi+0x1]
lea r9, ptr [rsi+0x1]
mov rdi, r10
lea eax, ptr [rdx-0x30]
cmp al, 0x9
jnbe 0x7f7a9426be47

B1 B3

B4B2

1

2

3

Figure 4: An illustrative example of implementing feature rewriting
on OpenSSL.

addition to the change of control flow, TOSS will also replace B2
with “NOP”s to prevent invoking the removed features at runtime,
e.g., through ROP [13].

Verification
After binary rewriting, standard program fuzzing techniques

[22] can be employed by TOSS to validate the correctness of feature
rewriting. A fuzzing engine generates test cases that can be catego-
rized into two sets:D that invoke the desired features in customized
program, and E that involve at least one of the eliminated features.
In particular, TOSS uses D to confirm the integrity of necessary
program functionalities, while E helps verify the successful removal
and handling of eliminated features. We note that this validation
procedure can also be performed using user/admin provided test
cases. If a benign input (belong to the features remaining in the
binary and should be processed) causes the program to crash, we
will take this input to generate the corresponding execution trace,
and discover the instructions in the execution trace to complement
the current binary. This step of verification serves as a feedback to
the feature identification module.

4 IMPLEMENTATION
We implement a prototype of TOSS using several binary analysis
tools.

Tracing and tainting: We implement our tracing and tainting
module in TEMU. To enable finer-grained tainting such as field
tainting, we instrument the plugin “tracecap” in TEMU to add filters
when setting the taint bitmap, e.g., to enable tainting for packets
with certain formats or for certain fields in the packets.

Symbolic execution: We use Angr [14] to perform symbolic
execution on static binary. The symbolic execution starts from the
places where packets are stored, which can be identified by the
tainting information. Through the symbolic execution, we dump
the addresses of basic blocks that have been explored.

Binary rewriting:WeuseDynInst for static binary rewriting. In
particular, the PatchAPI is used to instrument andmodify the binary.
PatchAPI abstracts the program into CFG and most of the rewriting
operations are performed upon it. The CFG abstraction includes
functions, basic blocks and control flows. Our implementation (i)

Table 1: Number of instructions discovered by tracing and TSE on
Mosquitto_pub

Instructions Mosquitto_pub CO_server
original binary 3305 509
from tracing 1124 332
from TSE 188 37
customized binary 1312 369
Features removed insecure, publish file computation except

addition

removes target features by removing the corresponding basic blocks
from the CFG list and replacing the basic block body with NOPs;
(ii) redirects the jumps to removed basic blocks toward program
exit point.

5 EVALUATION
In this section, we evaluate the performance of TOSS and the effect
of feature customization.

Experiment Setup: Our experiments are conducted on a 2.80
GHz Intel Xeon(R) CPU E5-2680 20-core server with 16 GByte
of main memory. The operating system is Ubuntu 14.04 LTS. We
perform feature identification and rewriting on Mosquitto [7]. The
features we choose to keep in the customized binary are “topic” and
“message” in the Mosquitto_pub.

As shown in table 1, we collect the number of instructions that
are in the original program binary, discovered by program tracing
and by Tainting-based Symbolic Execution.

Case Study: MQTT Message Queuing Telemetry Transport
(MQTT) is a protocol using a list of topics to subscribe and publish
messages, widely used in Internet of Things (IoT) applications.
There are three basic entities in MQTT protocol, e.g., a broker, a
publisher and a subscriber. The subscriber signs up for topics via the
broker, who receives updates/messages from the publisher and then
delivers them to subscribers according to the selected topics. MQTT
packets typically contain three fields, i.e., fix header, variable length
header, and payload. The fix header consists of control header and
packet length fields. The variable length header is used to enable
extra features. In this paper, we perform feature customization on
Msoquitto 1.5, a lightweight implementation of MQTT.

We analyze the protocol functionalities and select the desired
features to keep for a customized version, which maintains basic
MQTT communications among publisher and subscriber, while
eliminating other unnecessary features. For Mosquitto publisher,
we identify hostname, port number, topic and message as features
necessary to publish messages in MQTT protocol. For Mosquitto
subscriber, we identify hostname, port number and topic as features
necessary to subscribe or receive messages/updates.

By keeping only the necessary features mentioned above, the
customized binary have the following benefits:

• The program binary is lighter-weight and has better perfor-
mance (as “NOP”s will be optimized by the system during
execution at runtime).



• The program binary eliminates many redundant features
and significantly reduces the corresponding attack surface.

Among those removed features, some are particularly security-
related. For example, the option “insecure” is a feature for subscriber
and publisher to establish unencrypted and unauthenticated con-
nection. When it is enabled, authentication of server hostname will
be skipped, meaning that a malicious third party could gain the
access to the MQTT communication. Another feature “publish file”
allows a publisher to send files through an MQTT connection. This
often results high risks due to potential buffer overflow or malicious
code injection, as evidenced by the vulnerabilities found in Apache
Struts, leading to the Equifax data breach. The feature “will” can
enable broker to cache/save a message with certain payload, QoS,
retain and topic. When the client disconnects unexpectedly, the
message will be automatic sent from either subscriber or publisher.
This may cause information leakage or other unexpected behaviors
especially when a “will” request comes from the publisher.

As shown in table 1, the customized Mosquitto publisher pro-
gram binary only contains 1124+188=1312 instructions and can
still fully support the desired feature, whereas the original program
binary in comparison contains 3305 instructions.

Case Study: Computation Offloading (CO) server. This is a
light-weight server and client module that implements the com-
putation offloading functionality, a popular computing paradigm
for mobile devices. A client can send task parameters (as input)
to a server, who performs the required computation and deliver
the results to the client. Performing the computation at the server
side enables energy/latency reduction for the client device. In our
CO implementation, the packets sent from the client to the server
contain a header which specify the request type and packet length,
while the payload includes the value of an operator and correspond-
ing operands. When the server receives the request, a packet format
checker will verify the validity of the payload. Suppose only one
operation, “Addition”, is needed, we can remove the other types of
computations (i.e., unnecessary features) in the server, while pre-
serving format checking and addition features. Amaximum number
of operands of “Addition” is defined within the security policy as
“Addition_Operand_Max”. In specific executions, the packets may
not exceed this limitation. However, the code at server side that
handles this exception will have to be kept in the customized prob-
lem, which is achieved by our proposed TSE that has the ability to
explore different branches that are not taken in specific executions.

6 DISCUSSION
As a work-in-progress, TOSS has the following limitations which
will be considered as future work:

Lack of backward tainting: The tainting module in feature
identification phase currently can only deal with forward tainting
but not backward tainting, e.g., only the instructions that process
inbound packets can be tainted, with the fields in inbound packets
properly marked (as the source of tainting). If the taint source is
available in the outbound packet, then to taint the instructions that
generated such packets requires backward tainting. We consider it
as a future work to add backward tainting capability in our TOSS
framework.

Lack of support for obfuscated binary: As our rewriting
module performs rewriting on static binary, it requires the precise
instruction addresses for rewriting. Obfuscated binary cannot be
supported in this work.

7 RELATEDWORK
De-bloating: De-bloating has been studied to analyze and mit-
igate program bloat caused by feature creep [3, 3–5, 11, 20]. At
source code level, Yufei Jiang et al. perform program slicing and
data analysis to remove code segments that are related to the target
feature [5]. In particular, they discover and delete code that has
dependencies with its return value, parameter and call site. Some
knowledge of feature-related function (seed function) are required
to bootstrap the slicing. Jred [4] aims to remove unused methods in
JAVA program and libraries by analyzing the program call graph.
It operates at IR level, i.e., the JAVA bytecode is lifted into Soot IR.
After trimming, IR is transformed into Java bytecode to produce a
light-weight program. While the goal of above works is to remove
redundant code from program, we offer more flexible ways to cus-
tomize the (combination of) program features. Moreover, most of
the previous de-bloating techniques can only work with object ori-
ented programming languages while TOSS can be directly applied
to binaries.

Binary reuse: Binary reuse has been addressed by several works
[18, 23, 25]. The reuse of binary code, different from source code, car-
ries great difficulty. Methods proposed in [2] identify self-contained
code fragment from binary with the help of both static disassem-
bling and dynamic execution monitoring. There are also research
works that focus on reconstructing program binary from dynamic
traces, by utilizing instruction trace and memory dump [6]. How-
ever, neither of the above twomethods fits in the context of program
feature customization due to limited degree of flexible modification,
as it only focuses on segment reuse and high level assembly code.
Moreover, even if the code can be customized, the newly compiled
binary may fail to fulfill the purpose of feature customization.

Symbolic execution and fuzzing: In this paper we leverage
the tainting information to guide the symbolic execution. Existing
works have studied multiple methods on a more effective symbolic
execution. Driller [17] interactively applied fuzzing and symbolic
execution to explore code based on the observation that fuzzer-
generated inputs often fail to pass the input checking (while sym-
bolic execution can easily generate the such conditions) and sym-
bolic execution can easily dive into the issue of path explosion
(while fuzzing is a relatively light-weight technique to explore
code within certain scope). Directed greybox fuzzing leverages
annealing-based heuristic to generate inputs that can reach a cer-
tain point in the program, archieving a better performance over
directed white-box fuzzing and undirected gray-box fuzzing. Hang
Zhang et al. [24]try to verify the presence of program patches in
program binary. They adopt symbolic execution to extract semantic
formulas from the binary which are then compared against the code
signature discovered from patches in source code. StraightTaint [10]
also combine tainting (“incomplete” taint propogation) and sym-
bolic execution to improve the runtime tainting performance (by



lightweight logging) while still keep necessary information for of-
fline analysis. StatSym [21] employs runtime predicates to guide the
symbolic execution. It collects and analyzes certain program states
from the sampling execution (benign and buggy) then use them
to guide symbolic execution engine to explore the most possible
places where a bug could happen.

Binary analysis tools: A chain of binary tools have beenwidely
used to analyze binary code for different purposes, such as binary
CFG analysis, vulnerability detection and binary rewriting. Specifi-
cally, binary rewriting tools such as DynInst [16] and Pin [8] are
able to perform binary modification either statically or dynamically.
In this paper, we employ DynInst to perform basic-block modifica-
tion of program features. In feature identification module, we use
TEMU [15] to emulate a system where the web servers are launched
then monitored. TEMU also contains a tainting plugin (“tracecap”)
that can taint the instructions from network packets. Angr [14]
is used to perform symbolic execution together with the tainting
information obtained through tracecap.

8 CONCLUSION
We design and evaluate a binary customization framework TOSS for
online server systems. TOSS aims to generate customized program
binaries with just-enough features and can satisfy a broad array of
customization demands. Feature identification and feature rewriting
are two major modules in TOSS , with the former discovering target
features and related code using program tracing and tainting-based
symbolic execution, and the latter modifying the program binary to
reconstruct a customized program with only desired features. Our
experiment results demonstrate that TOSS is able to effectively keep
code segments related to the target features and erase undesired
code, e.g., keep the necessary functionalities and reduce the attack
surface.
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