
Shed: Optimal Dynamic Cloning to Meet
Application Deadlines in Cloud

Sultan Alamro, Maotong Xu, Tian Lan, and Suresh Subramaniam
Department of Electrical and Computer Engineering

The George Washington University
{alamro, htfy8927, tlan, suresh}@gwu.edu

Abstract—As cloud applications are becoming increas-
ingly deadline-sensitive, meeting desired deadlines is more
critical, especially in shared clusters. It has been shown
that a few slow tasks, called stragglers, could significantly
adversely impact job execution times. Moreover, poor
scheduling of data analytics applications can lead to
inefficient resource usage, and eventually hurt system per-
formance. One way to mitigate stragglers is by launching
extra attempts (clones) for each task upon job submission.
In this paper, we propose Shed, an optimization framework
that leverages dynamic cloning to jointly maximize jobs’
Probability of Completion before Deadline (PoCD) by
fully utilizing the available resources. Our work includes
a novel online scheduler that dynamically recomputes
and reallocates resources during a job’s execution for
PoCD maximization. The results show that Shed is able
to leverage cloud resources and maximize the percentage
of jobs that meet their deadlines – up to 100% in our
experiments compared to typically around 60% and 40%
for another cloning approach called Dolly, and Hadoop
with speculation enabled, respectively.

I. INTRODUCTION

Modern applications such as enterprise IT, financial
services, social networks, and data analytics are in-
creasingly dependent on distributed cloud computing
frameworks, such as MapReduce [1], to meet criti-
cal performance objectives. Massive amounts of data
are split into blocks and stored distributedly in an
underlying file system, to support parallel processing
of computation jobs across clusters and nodes in the
cloud. For instance, Hadoop, a popular open-source
software framework for analyzing big data [2], uses the
MapReduce programming model.

However, the performance of these parallel cloud
processing frameworks when processing data are often
negatively affected by stragglers, i.e., slow running tasks
that lead to a long job execution time, which make them
unsuitable to latency-sensitive applications that requires
job completion time guarantees. Previous research has
shown that stragglers can be 8 times slower than the
median task [3–5]. Thus, just a few stragglers could
have a large impact on the overall performance of job
completion times and result in the violation of Service

Level Agreements (SLAs). There are a number of rea-
sons that lead to stragglers in cloud. First, the nodes in
cloud are mostly made up of commodity components,
with varying degrees of heterogeneity. This causes nodes
to process tasks at varying speed. Second, the large-scale
nature of datacenters is associated with errors both in
software and hardware, leading to failures of machines
and interruptions of task execution. Third, resource
sharing and virtualization mandates co-scheduling of
tasks, which especially if done on the same machines,
result in resource interference and stragglers [4, 6].
Previous research also shows that congested links in
datacenter networks can last for very long periods, and
is another cause of stragglers [7].

In this paper, we propose Shed, an optimization
framework that leverages dynamic cloning to maximize
the probability of meeting individual job deadlines.
Recently, reactive and proactive approaches to mitigat-
ing the effect of stragglers have been suggested by
researchers. Reactive strategies are intended to detect
stragglers after they occur and then launch extra or
speculative copies of slow tasks [3, 4], while proactive
strategies launch clones which are replicas of the orig-
inal tasks [5]. They avoid waiting for stragglers to be
detected, and launch speculative tasks preemptively. Our
dynamic cloning approach differs from these solutions
in the sense that it considers individual job deadlines
and optimizes the number of task clones (and there-
fore, available cloud resources) assigned to each job,
to jointly maximize the total probability of meeting
job deadlines. Moreover, the number of task clones is
adjusted on the fly with respect to both cloud load
and current job progress. We develop and implement a
new clone launching mechanism that preserves the work
already completed by the original task before cloning,
to enable seamless task execution and progress transfer
to task clones. The proposed framework allows us to
jointly maximize all jobs’ probability to meet deadlines
by optimizing and leveraging the underutilized cloud
resources.

The ability to meet deadlines is crucial for latency-
sensitive and mission-critical applications [8]. However,
none of the existing techniques (both reactive and
proactive) can provide formal performance guarantees in
terms of meeting application deadlines, since these ap-
proaches are deadline-oblivious. Not only does our dy-
namic cloning approach react to concurrent job demands
and progress on the fly, it also presents a novel scheduler
that employs a new metric, Probability of Completion
before Deadlines (PoCD), to quantify the probability
that a MapReduce job meets its desired deadline. By
analyzing PoCD based on cloud processing models, we
formulate an optimization problem to jointly maximize
the total PoCD of all active jobs, by determining the
optimal number of clones (i.e., extra attempts) with
respect to job progress and cloud resource constraints.
Unlike Dolly [5] that relies on a fixed number of
clones for each job/task, Shed dynamically optimizes
the number of clones assigned to each job and enables
an optimization of total PoCD in the cloud. Upon
job arrivals and departures, Shed readjusts the number
of clones, depending on current system load and the
collective job progress with respect to deadlines.

The proposed solution is prototyped on Hadoop and
evaluated using realistic workload in an Amazon EC2
testbed consisting of 121 nodes. In particular, Shed is
implemented as a plug-in scheduler in Hadoop, and it is
evaluated with both I/O- and CPU-bound benchmarks.
We compare our solution through intensive experiments
with Dolly and Hadoop’s default strategy for specu-
lative execution. In this work, we focus on meeting
application deadlines, while other objectives such as
energy are left for future consideration. The results
validate that our proposed dynamic cloning strategy is
able to leverage underutilized cloud resources and to
maximize the percentage of jobs meeting their deadlines
– improving from 60% and 40% under Dolly and
Hadoop’s default speculative and straggler mitigation
strategy, respectively, to up to 100% under our optimized
dynamic cloning strategy.

II. RELATED WORK

A lot of research has gone into improving
MapReduce-like systems’ execution time, in order to
guarantee that the Quality of Service (QoS) will be
met [9, 10]. Some of the focus is directed on static re-
source provisioning, so that a given deadline in MapRe-
duce could be met, while others present proposals for
scaling resources in response to resource demand and
cluster use as a way to reduce the total cost. Further-
more, frameworks are proposed to improve MapReduce
jobs’ performance [8, 11]. These works are similar to
the work we propose, due to the need to optimize

resources in order to reduce both energy consumption
and operating cost. Nonetheless, unlike our work, these
works do not consider optimizing job execution time in
the presence of stragglers.

There are studies that have shown interest in im-
proving MapReduce performance by proposing new
scheduling techniques [12]. The proposed schedulers
aim to improve the resource allocation and execution
time of jobs while meeting the QoS. In addition to
these works’ goals, our proposed scheduler also tries to
mitigate stragglers and maximize the cluster utilization
using a probabilistic approach.

Other researchers have developed an interest in mit-
igating stragglers and enhancing the mechanism of the
default Hadoop speculation. They proposed new mech-
anisms for detecting stragglers, reactively and proac-
tively and launch speculative tasks accordingly [3–5].
In particular, reactive approaches typically launch new
copies of all slow-running tasks (i.e., stragglers) once
they are detected, while proactive approaches launch
multiple copies for each task at the beginning of task
execution without waiting for stragglers to occur. These
mechanisms are essential in order to ensure a high level
of reliability to satisfy a given QoS. Different from
these existing works, this paper presents an optimization
framework that jointly maximizes the probabilities that
all jobs meet their deadlines, by intelligently optimizing
the number of clones based on job’s size and progress.

III. BACKGROUND AND SYSTEM MODEL

We consider a parallel computation framework, such
as MapReduce, that splits computation jobs into small
tasks to run in parallel cross multiple nodes. Each node
is capable of executing a number of tasks based on its
capacity. The framework consists of map and reduce
tasks; the output of the map tasks are passed as input to
the reduce tasks. In this paper, we consider a system
with limited resource capacity m Virtual Machines
(VMs), and a fraction λ of this capacity, as determined
by the cloud provider, is available for allocation to jobs.
Similar to [11, 13], we focus on map-only jobs/tasks that
are executed in one wave in homogeneous nodes.

Consider J jobs submitted to the MapReduce pro-
cessing framework. Each job j is associated with a
deadline Dj that is determined by application latency
requirements. Each job j consists of Nj tasks, and it is
considered successful if all its Nj tasks are executed and
completed before the job deadline Dj . Let Tj denote job
j’s completion time, and Tj,i for i = 1, . . . , Nj be the
(random) completion times of tasks belonging to job j.

Based on our system model, job j meets its deadline if
Tj ≤ Dj , and its completion time is given by:

Tj = max
i=1,...,Nj

Tj,i, ∀j (1)

Any task whose execution time exceeds the deadline
is considered a straggler. Our dynamic cloning approach
mitigates the effect of stragglers by proactively launch-
ing rj extra attempts for each task. Thus, for each task,
there are rj + 1 attempts/copies that start execution at
the same time and process data independently of each
other. A task is finished once any one of the rj + 1
attempts finishes execution, and then the other copies
are killed. Due to various sources of uncertainty causing
stragglers, we model the completion time of attempt k
(for k = 1, . . . , rj + 1) of task i and job j as a random
variable Tj,i,k, with known distribution. Thus, task i’s
completion time Tj,i is determined by the completion
time of the fastest attempt, i.e.,

Tj,i = min
k=1,...,rj+1

Tj,i,k, ∀i, j. (2)

We assume that execution times Tj,i,k of different
attempts are independent because of resource virtuliza-
tion, and that Tj,i,k follows a Pareto distribution, pa-
rameterized by tmin and β, where tmin is the minimum
execution time and β is a shape parameter, according
to existing work characterizing task execution time in
MapReduce [14]. Unlike default Hadoop scheduling,
our new dynamic cloning mechanism is able to proac-
tively launch an extra rj copies for each task on the
fly. When a new job arrives, all jobs in the system are
jointly optimized to determine their optimal replication
factors rj for j = 1, . . . , J , under system capacity
constraints. In this way, the optimization is able to con-
tinuously re-adjust task cloning with respect to system
dynamics. This strategy not only avoids time overhead
for detecting stragglers (required by default Hadoop
speculative execution), it also ensures that each active
task receives at least one attempt before the otherwise
under-utilized system resources are apportioned among
all active jobs/tasks.

IV. JOINT POCD AND RESOURCE OPTIMIZATION

A. PoCD Analysis

We define PoCD as the probability that a job finishes
before its deadline, when launching rj extra attempts.
For newly-arrived jobs (that are yet to start) and ex-
isting jobs (that may already have multiple attempts
per task), we derive their PoCDs in Theorems 1 and
2, respectively. For simplicity, we temporarily drop the
subscript for task, and let Tj,k denote the completion
time of an attempt in job j. Recall that β and tmin are

the shape parameter and the minimum execution time,
respectively, of the Pareto distribution characterizing
Tj,k.

Theorem 1. The PoCD of a newly-arrived job is given
by

Rsu =

[
1−

(
tmin

Dj

)β·(rj+1)
]Nj

(3)

Proof. First, we find the probability of an attempt be-
longing to a newly submitted job will miss its deadline
as follows:

Psu = P (Tj,k > Dj) =

∫ ∞
Dj

βtβmin

tβ+1
dt =

(
tmin

Dj

)β
(4)

Therefore, the probability that a job finishes before
its deadline, PoCD, is given by

Rsu =

[
1−

(
tmin

Dj

)β·(rj+1)
]Nj

(5)

where Nj is the number of tasks. This shows that as we
increase rj , a high PoCD can be obtained.

In our proposed dynamic cloning, when cloning an
existing job that may already have multiple active at-
tempts for each task, we clone the fastest attempt (i.e.,
having maximum progress) of each task to optimize the
efficiency of our strategy. Let φi be the largest progress
(i.e., the percentage of data processed) of all task i’s
attempts, and τj be the elapsed time of job j. Under
this strategy, we quantify the PoCD of an existing task
as follows:

Theorem 2. The PoCD of an existing job

Rru =

[
1−

(
(1− φi)tmin

Dj − τj

)β·(rj+1)
]Nj

(6)

Proof. To compute the probability that a running at-
tempt finishes before its deadline, we need to find how
much progress it has made. We denote the progress as
ϕk. Note that, upon a new job submission, we keep that
fastest attempt of each task for a running job. We denote
the execution time of the fastest attempt of task i as Ti,f .
It can be determined by:

Ti,f = min
k=1,...,rj+1

Ti,k, ∀i. (7)

Once Ti,f is determined, we launch r extra attempts
for each task; these extra attempts start executing from
the last key-value pair processed by the fastest attempt.
Now, the probability that a running attempt will fail to
finish before the deadline, can be computed as follows:

Pru = P ((1−ϕk)Tj,k > Dj−τj) =
(
(1− ϕk)tmin

Dj − τj

)β
(8)

where Dj − τj and 1 − ϕk are the remaining time
before deadline and the remaining fraction of data to
be processed, respectively. Note that when we calculate
the PoCD of a running job, we use the progress of the
slowest task (where the task progress is given by the
progress of its fastest attempt). We denote the progress
as φi.

Therefore, the probability that a running job finishes
before its deadline is given by

Rru =

[
1−

(
(1− φi)tmin

Dj − τj

)β·(rj+1)
]Nj

(9)

B. Joint PoCD Optimization

We formulate the problem of joint PoCD maximiza-
tion under system capacity constraints. Under dynamic
cloning, each task of job j has rj+1 attempts, including
one original attempt and rj cloned attempts. Then, the
total number of attempts of job i is Nj ·(rj+1)+1, where
an extra VM is required to run its job tracker/master.
Recall that m is the total number of VMs available in
the system, and λ is the fraction of these VMs that
are allowed for task cloning. Thus, by adjusting λ, a
cloud provider can balance the resource allocation for
clones and task execution. A system capacity constraint∑
j Nj · (rj + 1)+ |J | ≤ λ ·m must be satisfied at any

given time. Let Rj(rj) (i.e., Rsu for a newly-arrived
job or Rru for an existing job) be the PoCD function
for rj extra attempts. We have the following PoCD
optimization:

maximize

J∑
j=1

U(pj), (10)

s.t.

J∑
j=1

Nj · (rj + 1) + |J | ≤ λ ·m (11)

pj = Rj(rj), ∀j (12)
rj ≥ 0, ∀j (13)

where pj is the PoCD achieved by job j, and Rj(rj) is
a PoCD function that is monotonically increasing since
larger rj results in higher PoCD. The capacity constraint
λ ·m ensures that dynamic cloning can only utilize the
fraction of cloud resources assigned for this purpose.

Here, U(·) is a utility function to guarantee fairness
of our strategy. For example, we can choose a family
of well-known α-fair utility functions parameterized by
α [15]. Then, the solution to this PoCD optimization
is able to achieve maximum total PoCD (for α = 0),
proportional fairness (for α = 1), or max-min fairness
(for α =∞).

C. Our Proposed Algorithm
We present an online scheduling algorithm for solving

the optimization problem to obtain the optimal rj for
each job under cloud resource constraints. Upon job
arrivals and departures, the scheduler first recalculates
remaining resources available for dynamic cloning, and
identifies all jobs as well as their upcoming deadlines.
The algorithm then works in a greedy fashion to assign
VMs to jobs with highest utility improvement. More
precisely, we start by assigning rj = 0 to each job, and
calculate each job’s utility as a function of its PoCD. We
use ω to denote the total resource assigned to all jobs
and κ the available resource for all tasks. We iteratively
find the job with minimum PoCD utility and increase
its rj by one. The process is repeated until the system
capacity constraint (11) is reached.

Algorithm 1: Proposed Online Algorithm
1: Upon submission of a new job:
2: Kill all jobs which missed their deadlines
3: J = {j1, j2, j3, . . .}
4: if |J | == 1 then
5: rmax =

⌊
λ·m−N1−1

N1

⌋
6: r1 = rmax

7: else
8: rj = 0 ∀j
9: ω = 0

10: κ = λ ·m−
∑J
j=1Nj − |J |

11: Calculate Rj ∀j
12: while J 6= {∅} do
13: j′ = argminj{Rj}
14: if Nj′ + ω > κ then
15: J = J − {j′}
16: else
17: rj′ = rj′ + 1
18: ω = ω +Nj′
19: Calculate Rj ∀j
20: end if
21: end while
22: end if

V. IMPLEMENTATION

We implement Shed as a pluggable scheduler in
Hadoop YARN, which consists of a Resource Manager

!"#

!!"#$#$%
#

&

!!"#$#$#

!!"#$#$# !!"#$#$%'#$"
!"#$%&'()*+#&#,(

-'./01*/2

%&'()*

!"+

!!"($#$%'#

!!"($#$#

%&'()*

,-.+

#

/

0

1

1

0

,-.234-54677

!!"#$#$)8 8

+

Fig. 1: System Architecture and steps taken upon new job
arrival.

(RM), an Application Master (AM) for each application
(job) and a Node Manager (NM) in each node. The AM
requests resource containers (VMs) to execute jobs/tasks
and continuously monitors the progress of each tasks in
NMs. The RM is responsible for tracking and managing
VMs in a cluster and scheduling jobs. In particular, the
scheduler in the RM optimizes and assigns resources to
requesting jobs. Figure 1 illustrates our system architec-
ture and steps taken to achieve optimality.

Upon submission of a job, our scheduler uses the job’s
deadline and number of tasks to calculate the optimal r
which maximizes its PoCD. Once r is obtained, the RM
sends it to the corresponding AM to create r+1 attempts
for each task. Then, the AM negotiates resources with
the RM and works with NMs to launch attempts. While
the submitted job is running, the AM keeps track of all
attempts’ progress and maintains the last record’s offset
processed.

As the AM keeps track of all running attempts, it
reacts to every new arrival (job) by killing all slow
attempts belonging to every task, while the fastest one
(i.e., which processed the most data) is kept alive
and will continue running. Note that when a new job
arrives, our scheduler reoptimizes resources and obtains
a new r for each job (running or newly submitted)
that maximizes the overall PoCD. Therefore, the AMs
speculate/create new r copies for each running attempt
that is kept alive as the fastest attempt. We develop a
new clone launching mechanism, which allows existing
task progress to be preserved and transferred to clone
attempts. In particular, the last known data offset that
has been processed by the original task is passed by
AM to its new clone attempts, which are able to con-
tinue the task execution in a smooth, seamless fashion.
This significantly improves the effectiveness of dynamic
cloning and thus the performance of PoCD optimization.

In Figure 1, we demonstrate how our scheduler reacts

to new arrivals. Consider job 1 is submitted to a cluster
and running. For simplicity, we assume each job has
only one task Aj,1. Job 1 creates r1 extra attempts
as determined by the scheduler upon submission. Each
attempt, A1,1,k for k = 1, . . . , r1+1, reports its progress
to the AM including number of bytes processed. Then
the AM reports the whole job’s progress to the RM.
When job 2 arrives, the scheduler in the RM reoptimizes
cluster resources and obtains r for jobs 1 and 2 based
on their PoCDs. Once job 1 receives a new value r′1,
the AM kills all slow attempts and clones the fastest
attempt, A1,1,f . The total number of attempts for all
jobs are bounded by the available resources.

One challenge that arises is that AMs need to consider
the time it takes to launch new r attempts. The reason
is because in highly contended clusters, Java Virtual
Machine (JVM) startup time is significant and cannot
be ignored [16]. Moreover, these on-demand requests
submitted to the RM can not be predicted and could
arrive at any time. Thus, each AM takes JVM launching
time into consideration when passing the last offset
processed to the new attempts [17]. In particular, the
AMs estimate the number of bytes, bextra, that will be
processed by the fastest attempts. Even though the last
offset, bproc, is recorded when the new attempts are
created, the AM will skip the data processed during
launching time and pass a new offset, bnew, to the new
attempts. If the AM finds that all remaining bytes of the
data will be processed during launching time, the new
attempts will be killed. The estimated number of bytes,
bextra, can be obtained as follows:

bproc − bstart
tnow − tproc

·(tFP − tlau) (14)

where tproc, tFP and tlau are attempt start processing
time, first progress report time and attempt launch time,
respectively. Thus, the new byte offset received by the
new attempts is calculated as follows:

bnew = bstart + bproc + bextra (15)

VI. EVALUATION

A. Experimental Setup
We deploy our proposed scheduler on Amazon EC2

consisting of 121 nodes, one master and 120 slaves.
We set λ = 100%. Each node is capable of running
one task at a time. We evaluate our scheduler by
using Map phases of two benchmarks, WordCount and
WordMean. WordCount is an I/O and CPU-bound job
while WordMean is CPU-bound. We assume that tasks
of a job are executed in one wave in homogeneous
nodes. We create three classes of jobs consisting of 5,

440 460 480 500

Deadline (s)

0

20

40

60

80

100

Po
C
D
 (
%
)

Shed

Dolly

Hadoop

(a)

480 500 520 540

Deadline (s)

0

20

40

60

80

100

Po
CD

 (%
)

Shed

Dolly

Hadoop

(b)

540 560 580 600

Deadline (s)

0

20

40

60

80

100

Po
C
D
 (
%
)

Shed

Dolly

Hadoop

(c)
Fig. 2: Comparisons of Shed, Dolly and Hadoop in terms of PoCD with different workloads using WordCount benchmark: (a)
5-task jobs (b) 10-task jobs (c) 20-task jobs.

480 500 520 540

Deadline (s)

0

20

40

60

80

100

Po
C
D
 (
%
)

Shed

Dolly

Hadoop

(a)

520 540 560 580

Deadline (s)

0

20

40

60

80

100

Po
C
D
 (
%
)

Shed

Dolly

Hadoop

(b)

560 580 600 620

Deadline (s)

0

20

40

60

80

100

Po
C
D
 (
%
)

Shed

Dolly

Hadoop

(c)
Fig. 3: Comparisons of Shed, Dolly and Hadoop in terms of PoCD with different workloads using WordMean benchmark: (a)
5-task jobs (b) 10-task jobs (c) 20-task jobs.

5 10 20

Number of Tasks

0

20

40

60

80

100

Po
C
D
 (
%
)

Shed
Hadoop

Fig. 4: Comparison of Shed and Hadoop
in terms of PoCD with hybrid work-
loads and deadlines.

400 500 600 700 800 900 1000 1100
Job Execution Time (s)

0.2

0.4

0.6

0.8

1.0

CD
F

Shed
Dolly
Hadoop

Fig. 5: The cumulative distribution
function (CDF) of Shed, Dolly and
Hadoop for 10-task jobs of WordCount
benchmark.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (normalized)

10

20

30

40

50

60

70

80

90

U
til
iz
at
io
n(
%
)

Shed

Dolly

Hadoop

Fig. 6: Cluster utilization of Shed, Dolly
and Hadoop for 10-task jobs of Word-
Count benchmark.

10, and 20 tasks. Each task processes a chunk of data
with size 128MB. We run 100 jobs for each experiment
and set average job inter-arrival time to 5 minutes. The
baseline in our experiment is Dolly and Hadoop with
speculation. Since Dolly does not consider deadlines, to
make it comparable to our work, we set its straggler
probability p equal to 1 − PoCD, i.e., one minus the
PoCD of default Hadoop, which is the probability of a
job not meeting the deadline in Hadoop. Thus, Dolly
assigns exactly r+1 = log(1− (1− ε) 1

N)/ log p clones
to each task for ε = 5%, regardless of their sizes
and deadlines. We measure the PoCD of all strategies
by calculating the percentage of jobs that completed
before their deadline. To emulate a realistic cloud cluster
with resource contentions, we introduce background
noise/tasks in each slave node, where noise shares re-

sources with computation tasks. The task execution time
measured in our cluster follows a Pareto distribution
with an exponent β ≤ 2 [14], and tmin = 120 sec.
Even though our proposed algorithm sets r equal to
the maximum value if there is only one job, we find
that r can be an environment-specific variable where
there is not much improvement in execution time when
r is large. To see what the maximum value of r is in
our cluster, we run 10-task experiments with different
values of r. We find that there is little improvement in
execution time beyond r = 5, so we set the maximum
number of attempts per task to be 5.

B. Results
Figures 2 and 3 compare the measured PoCD (per-

centage of jobs meeting deadline) of our proposed algo-
rithm with Dolly and default Hadoop with speculation.

The figures show that our algorithm is able to achieve up
to 100% PoCD, while default Hadoop is around 40% in
most experiments. The figures also show that Shed can
significantly outperform Dolly with large jobs or tight
deadlines. The performance difference reduces for small
jobs with large deadlines, i.e., when the cloud utilization
is extremely low, so there exists enough cloud resource
to assign the maximum needed number of clones to each
job, making optimization less appealing.

Moreover, the figures show that when job deadlines
are relaxed, the PoCDs of all strategies increase, but
Shed continues to perform significantly better than
Dolly and default Hadoop, demonstrating its superiority
in dealing with hard application deadlines. Note that
our numerical results compare Shed, Dolly and default
Hadoop for various deadlines up to 620s, because
Shed already achieves nearly 100% PoCD due to more
efficient utilization of system resources for running
clone copies. This massive improvement over both Dolly
and default Hadoop is also due to the fact that Shed
proactively launches clones before stragglers occur in
the cloud and jointly optimizes the number of clones for
all jobs. Moreover, the new clone launching mechanism
guarantees that no repeated data processing is needed
for any clone attempts.

Figure 4 shows the PoCD of Shed compared with
Hadoop for hybrid workloads and deadlines. We test
our algorithm by running WordCount benchmark with
100 jobs: 50 5-task jobs, 30 10-task jobs and 20 20-
task jobs with deadlines 460 s, 500 s and 560 s,
respectively. The results show that, even with mixed,
heterogeneous workloads and deadlines, our algorithm
achieves a PoCD of more than 85% in all cases (which
is consistent with the homogeneous workload results),
and significantly outperforms Hadoop.

Figure 5 shows the cumulative distribution function
(CDF) of job execution times for 10-task WordCount
jobs and a deadline of 500s. Notice that almost all
jobs complete within 500s under Shed whereas only
10% and 20% of the jobs complete by 500s under
Dolly and Hadoop, respectively, and it takes as much as
1000s and 900s for some jobs to complete under Dolly
and Hadoop, respectively. The average job execution
time (not shown in the figure) for Shed, Dolly and
Hadoop are 457s, 645s and 615s, respectively. Figure
6 depicts the cluster utilization under Shed and Hadoop
strategies. It can be clearly seen that while Hadoop can
only achieve 20% utilization (similar to Dolly), Shed is
able to optimize the underutilized resources and achieve
much higher levels of utilization. The figure also shows
how Shed exploits idle slots in order to achieve better
performance in meeting job deadlines. Similar results
are evident for different workloads.

VII. CONCLUSION

In this paper, we propose Shed, an optimization
framework that leverages dynamic cloning to jointly
maximize PoCD and cluster utilization. We also present
an online scheduler that dynamically optimize resources
upon new job arrival. Our solution includes an online
greedy algorithm to find the optimal number of clones
needed for each job. Our results show that Shed can
achieve up to 100% PoCD compared to Dolly and
Hadoop with speculation. The proposed algorithm is
able to achieve more than 90% utilization of available
cloud resources, whereas Dolly and Hadoop achieves
only about 22%.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[2] Apache Software Foundation, “Hadoop.” [Online]. Available:
https://hadoop.apache.org

[3] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica, “Improving mapreduce performance in heterogeneous
environments.” in OSDI’08, 2008.

[4] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris, “Reining in the outliers in map-
reduce clusters using mantri.” in OSDI’10.

[5] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Ef-
fective straggler mitigation: Attack of the clones,” in NSDI’13,
2013.

[6] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-
G. Chun, “Making sense of performance in data analytics
frameworks,” in NSDI’15, 2015.

[7] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: measurements & analysis,” in
SIGCOMM’09.

[8] D. Cheng, J. Rao, C. Jiang, and X. Zhou, “Resource and
deadline-aware job scheduling in dynamic hadoop clusters,” in
IPDPS’15.

[9] X. Xu, M. Tang, and Y.-C. Tian, “Theoretical results of qos-
guaranteed resource scaling for cloud-based mapreduce,” IEEE
Trans. on Cloud Computing, vol. PP, no. 99, pp. 1–1, 2016.

[10] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: automatic
resource inference and allocation for mapreduce environments,”
in ICAC’11.

[11] S. Alamro, M. Xu, T. Lan, and S. Subramaniam, “Cred: Cloud
right-sizing to meet execution deadlines and data locality,” in
CLOUD’16.

[12] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar,
S. Parekh, K.-L. Wu, and A. Balmin, “Flex: A slot allocation
scheduling optimizer for mapreduce workloads,” in Middle-
ware’10.

[13] M. Elteir, H. Lin, W.-c. Feng, and T. Scogland, “Streammr: an
optimized mapreduce framework for amd gpus,” in ICPADS’11.

[14] H. Xu and W. C. Lau, “Optimization for speculative execution
in big data processing clusters,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 2, pp. 530–545, 2017.

[15] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An axiomatic
theory of fairness in network resource allocation,” in INFO-
COM’10.

[16] M. Mao and M. Humphrey, “A performance study on the vm
startup time in the cloud,” in CLOUD’12.

[17] M. Xu, S. Alamro, T. Lan, and S. Subramaniam, “Optimizing
speculative execution of deadline-sensitive jobs in cloud,” in
SIGMETRICS’ 17.

