
Self-adaptive, Deadline-aware Resource Control in
Cloud Computing

Yu Xiang1, Bharath Balasubramanian2, Michael Wang2, Tian Lan1, Soumya Sen3, and Mung Chiang2

1Department of Electrical and Computer Engineering, George Washington University, DC 20052

{xy336699, tlan}@gwu.edu
2Department of Electrical and Engineering, Princeton University, NJ 08543

{bharathb, mwseven, chiangm}@princeton.edu
3Carlson School of Management, University of Minnesota, MN 55455

ssen@umn.edu

Abstract. Modern data centers deliver resources over the
cloud for clients to run various applications and jobs with
diverse requirements. Today’s cloud resource management
is able to support certain Quality of Service (QoS)
requirements including reliability and security. However, in
many settings such as the military cloud where latency
requirement is paramount, existing cloud resource
management schemes fall short in providing a systematic
framework to meet and balance disparate types of
application deadlines, since they are primarily focused on
speeding up job executions for timely processing. In this
paper we present a self-adaptive, deadline-aware resource
control framework that can be implemented in a fully
distributed fashion, making it suitable for unreliable
environments where a single point of failure is not
acceptable. Relying on Nash Bargaining in non-cooperative
game theory, our framework allocates cloud resources in an
optimal way to maximize the Nash Bargaining Solutions
(NBS) with respect to both job priority and deadline.
Further, it also enables self-adaptive deadline-aware
resource allocation and rebalancing under cyber or physical
attacks that may diminish cloud capacity. We validate our
technique by performing experiments on the Hadoop
framework.

I. INTRODUCTION
Cloud computing is becoming increasingly prevalent as it
allows the delivery, in a pay-per-use manner, of highly
automated, streamlined cloud services over a networked
environment to hundreds of thousands of cloud clients
with low costs and elastic Service Level Agreements
(SLAs). As more applications are migrating toward the
cloud, it poses a great challenge to meet disparate client
expectations that vary significantly due to their
heterogeneous requirements and demands, e.g.,
application type, priority and deadline, resource
requirements, and personal budgets. All of these
necessitate a highly flexible, adaptive, and resilient cloud
resource management framework to support such
requirements and dynamically adjust resource allocation.

In this paper, we focus on military clouds that need to
provide self-adaptive, resilient cloud services in hostile
forward areas and enable a “scattered cloud” to support
missions with disparate demands. We dynamically adjust
resource allocation and mission scheduling to allow the
cloud to fight external attacks autonomously. In such a
cloud system it is critical to know when, where, and how
to execute various missions so that effectiveness of all
tasks executing on the cloud is optimized. Hence this
challenge needs novel solutions that offer self-adaptive,
deadline-aware mission scheduling and resource
allocation. We make use of Nash Bargaining [5] in non-
cooperative game theory, which provides a single value
solution that uniquely satisfies four axioms, i.e.,
Invariance to Affine Transformations, Pareto Optimality,
Symmetry, and Independence of Irrelevant Alternatives.
By extend Nash Bargaining to take into account disparate
job priorities and deadlines, our proposed cloud
framework allocates and dynamically rebalances cloud
resources in an optimal way to maximize prioritized and
deadline-aware Nash Bargaining Solutions (NBS) with
respect to cloud capacity changes as well as job
arrivals/departures.

Fig 1. Cloud computing in military environments

2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops

978-1-4799-5086-7/13 $31.00 © 2013 IEEE

DOI 10.1109/SASOW.2013.35

41

The military cloud we model supports an architecture in
which computing resources (both computing and storage
capacity) reside in geographically dispersed micro-
clusters, each of which contains only a fraction of overall
cloud capacity. Micro-clusters might comprise a small
rack of servers in the back of a HUMVEE, command
post, aircraft, or other structure of opportunity, as shown
in Fig. 1. The NBS framework developed in this paper
can be implemented independently within each micro
cluster to offer intra-cluster resource bargaining, while its
output, including expected completion time and
congestion price, provide valuable information to guide
upper layers in the could system for inter-cluster resource
management. We refer readers to [1, 2] for a survey of
such cluster selection and load-balancing algorithms.

The rest of the paper is organized as follows. Following a
review of prior relevant work in Section II, a background
of Nash Bargaining and the problem formulation is
introduced in Section III. We describe our proposed
optimization algorithm in Section IV, and present our
experimental results on the Hadoop framework [10] in
Section V. Section VI summarizes this work and outlines
several possible directions for future work.

II. RELATED WORK
While existing approaches on cloud resource management
have focused on improving timely execution of critical
cloud applications via admission control, concurrent job
execution, or preemption of lower priority jobs
[1,3,4,6,7,8], relatively little past work has considered a
systemic resource control framework to meet and
dynamically rebalance disparate types of application
deadlines in order to maximize overall mission
effectiveness.

For Hadoop-based data processing, the authors in [1]
propose a job execution cost model that accounts for the
various parameters that affect job completion times and
designed a constraint-based scheduler that takes user
deadlines as part of its input and determines the feasibility
of scheduling a job based on the proposed cost model.
However, this solution does not allow any deadline
optimization and jobs are only scheduled if specified
deadlines can be met. Another related work [4] presents
delay scheduling in Hadoop, aiming at solving the
conflict between fair scheduling of jobs and latency for
obtaining non-local data. In their approach, when the next
job scheduled to run cannot be launched immediately due
to data availability and locality, it gives up the scheduling
opportunity to other jobs to improve overall execution
efficiency despite some fairness degradation. While this
approach speeds up job processing, the approach does not
optimize resource allocation to meet individual deadline
requirements. The goal of this paper is to develop a self-

adaptive and deadline-aware resource control framework,
which not only guarantee individual job deadlines when
feasible, but also maximize overall cloud efficiency by
adjusting and rebalancing mission objectives.

III. NASH BARGAINING
In this section, we present the application of the Nash
bargaining solution to our problem. Nash Bargaining
introduces a form of utility maximization that yields
efficient, Pareto-optimal allocation of resources [5],
among clients in a prioritized and deadline-aware fashion.
Our previous work [1] showed that this approach
succeeds in balancing computing loads among dispersed
micro-clusters (hereafter referred to simply as clusters)
without the need for centralized cloud-wide control. To
do so, cloud clients obtain estimates of computational
congestion price (produced by the Nash Bargaining
algorithm) from reachable clusters, and send their jobs to
the cluster with the lowest price.

In this paper, we consider a three-step process for
clients/cluster controller to allocate jobs across various
clusters. First, a cluster controller submits the client jobs
to all the clusters to obtain a congestion price. Second,
each cluster calculates the congestion price based on the
NBS solution. Finally, the coordinator uses this
information to submit the job to the appropriate. In this
section, we focus on the second step: calculating the
congestion price based on the jobs in the system within
each cluster.

Consider a set of N jobs, each job indexed by i, submitted
to a cluster with C resources. For each job i, we associate
a total resource requirement Di, priority Pi and a utility
function Ui(yi) that quantifies the value of the job to the
client as a non-decreasing function of the aggregate units
of resource yi that it receives. The goal of Nash
Bargaining is to maximize the total utility that all N jobs
in the system can receive before their designated
deadlines, weighted by their priorities. In addition, if the
available resources change due to attack or failure, the
system must rapidly and autonomously find new
operating points that again attain the maximum aggregate
utility achievable from the available resources. Nash
Bargaining provides a solution to this problem.
Specifically, it maximizes the generalized Nash product

max Ui (yi)⎡⎣ ⎤⎦
i

∏
Pi s.t., yi are feasible. (1)�

Where the aggregate resource yi must be feasible under
cluster capacity constraints. The NBS approach provides a
unique optimal solution to (1) with several attractive
properties. It is efficient (i.e., it utilizes all available
resources), achieves proportional fairness, and is also

42

Pareto optimal: it is not possible to increase any yi
without decreasing one or more other jobs’ resource
allocation. The NBS approach also achieves proportional
fairness. By taking a logarithmic transformation, (1)
becomes:

max Pi ⋅ log Ui(yi)()
i

∑ s.t., yi are feasible. (2)

Here NBS maximizes the sum of individual logarithmic
utilities, weighted by their respective priorities. The
significance of this point will become apparent shortly.

As discussed earlier, clients may have different
requirement on job completion time, and in this paper we
consider three different types of deadlines: (i) Hard
deadlines, which cannot be violated, and a job must be
assigned enough resource to complete by the deadline, (ii)
Soft deadlines, which can be exceeded but any resource
allocated after the deadline will have decreasing utility
value, and (iii) No deadlines, which means the job does
not have to meet any deadline at all, and resources
allocated at any time are equally useful. In a military
cloud, examples of hard deadline jobs include missile
trajectory calculation or maneuvering unmanned vehicles,
while automated translation of recorded speech could
have soft deadlines, and identifying enemy combatants
from security/surveillance feeds may be an example of no
deadline jobs. In the next, we mathematically define these
types of deadlines within our NBS framework.

Hard deadline. Let)(txi be the resource allocated to
job i in time slot t. In the hard deadline case, the utility of
a job is solely determined by the aggregate resources it
receives from job submission to the deadline, i.e.,

yi =
1

Di

xi(t)dt ≥1
0

ti
dead

∫

(3)

 Here resource yi is normalized by total resource
requirement Di to complete the job. For hard deadline
jobs, we must have yi ≥1since each job i should receive
at least Di units of resource before the hard deadline.

Soft deadline. For this case, we compute aggregate
resource allocation with respect to a time-dependent
weigh function wi (t):

(4)

(5)

Since any resource assigned after a soft deadline is still
useful, but would have diminishing utility, we weight
resource xi(t) by a discount function wi(t) that is 1
before the deadline and decreases exponentially over time
afterwards. Here ti

ref represents the time horizon of NBS
optimization. Decaying factor μ may vary based on
application type and client expectations. There is no
minimum resource requirement for soft deadline jobs.

No deadline. By our definition, resources assigned to no
deadline jobs, at any time, always have equal utility value.
Therefore, we obtain

yi =
1

Di

xi(t)dt
0

ti
ref

∫

(6)

Here the aggregate resource is computed from job
submission to the time horizon ti

ref . Notice that, similar
to soft deadline jobs, no minimum resource assignment is
required for no deadline jobs.

Fig 2. An example of NBS optimization.

These 3 types of deadlines are closely related. It is easy to
see that a soft deadline job with μ = 0 is equivalent to a
no deadline job, while it corresponds to a hard deadline
job for μ = +∞ .

Combining the above equations for the various type of
deadlines and taking into account the cluster capacity, we
formulate the following self-adaptive, NBS optimization
problem:

max Pi ⋅ log Ui (yi)()
i

∑ ,

s.t., xi (t)
i

∑ ≤C ∀t, and (3), (4), (5), (6).

The problem described above is an extension of the
classic optimization problem relying on NBS because it
takes into account the relative, temporal value of resource
allocation with respect to when it is assigned, in addition
to “what” and “how much” is assigned. When utility
function Ui(yi) satisfies certain conditions (e.g., linear

∫∫ +=
ref
i

dead
i

dead
i t

t ii

t

i
i

i
i dttwtx

D
dttx

D
y)()(1)(1

0

⎩
⎨
⎧

>

≤
=

−− dead
i

tt

dead
i

i ttie
tti

tw dead
i f,

 f,1
)()(μ

43

or logarithmic functions), it is easy to verify that the NBS
optimization is a convex problem and thus can be solved
by off-the-shelf optimization tools. The NBS optimization
is performed repeatedly at each job arrival and departure,
or when cloud capacity changes. Its solution also provides
an estimated completion time and a resource congestion
price, which guide upper layer modules for cluster
selection and workload balancing.

Figure 2 illustrates a simple simulation of our algorithm
for a cluster with 6 jobs. While all jobs have equal
resource requirements, jobs 1 and 2 have hard deadlines
and are guaranteed to completed before their deadlines at
t=5 and t=10 (if feasible). Soft deadline jobs 3 and 4
completes close to their deadlines at t=10 and t=15, but
before any no deadline jobs 5 and 6 finish.

IV. IMPLEMENTATION AND RESULTS
In this section, we present experimental results for our
NBS scheduling algorithm on the ubiquitously used
Hadoop framework [10] for processing MapReduce [11]
jobs. We compare our algorithm with three other
scheduling policies: (i) Random scheduling in which each
job is allocated a random share of the cluster resources,
(ii) Fair or Equal scheduling in which each job is
allocated the same share of cluster resources, (iii)
Earliest-Deadline-First (EDF) scheduling in which jobs
are processed in increasing order of their deadlines.

Our experiments focus on the performance of our
algorithm w.r.t the latency experienced by the hard-
deadline jobs and the latency experienced by high priority
jobs. The results confirm the following facts: (a) For a set
of jobs submitted to the Hadoop framework unlike the
other three schedulers, our policy always finishes hard-
deadline jobs before their deadline. (b) For a given set of
job, our scheduler finishes the high priority jobs much
before the deadline as compared to other schedulers. (c)
For experiments averaged over many sets of jobs, the
cumulative latency for hard-deadline jobs and high
priority jobs is lesser than that for the other schedulers.

Hadoop is one of the most commonly used engines for
large-scale data processing applications modeled as
MapReduce jobs. The MapReduce framework is built
using the master-worker configuration where the master
assigns the map and reduce tasks to various workers.
While the map tasks perform the actual computation on
the data files received by it as <key, value> pairs, the
reducer tasks aggregate the results according to the keys
and writes it to the output file. Let us consider the
canonical example of Hadoop MapReduce for the word
count application in which we we wish to count the
number of occurrences of each word in a given data set.
For the word count job, the Hadoop framework first splits

the data into smaller chunks and assigns map tasks for
each of these chunks. The map tasks simply output <key,
value> pairs corresponding to its input chunk, where the
key is the string which occurs in the input text and the
value is always 1. Then reduce tasks combine the outputs
of each of these map tasks, which in this case is simple
addition of the values corresponding to each key. This
would give us the word count in the text.

Scheduling in Hadoop is primarily based on the number
of map and reduces tasks the engine can allocate to each
job in the system. For the purposes of our experiment we
focus purely on the number of map tasks assigned to
different jobs and consider a job completed when all its
map tasks have executed.

We perform our experiments on a 3 machine, 12-core
Hadoop cluster with a total capacity of 6 map tasks. All
the jobs in our experiments are identical word count jobs
each of which requires 3 map tasks to complete. We
implemented a Hadoop-plugin that controls the number of
map slots allocated to each job in the system, thereby
controlling the resources allocated to them. Using this
framework, we can specify different scheduling policies.
We ran different sets of experiments with the four
scheduling policies defined above. The results of our
experiments are shown in Fig. 3, Fig. 4, Fig. 5 and Fig. 6.

Fig 3. Latency distribution for Hard-Deadline Jobs

The results in Fig. 3 and Fig. 4 correspond to experiments
where we submitted a set of ten jobs and collected the
time taken for each of the jobs to complete. We ensured
that among the jobs at least one-third had hard deadlines,
while the remaining two-third jobs were assigned soft and
no deadlines randomly. The priorities of all the jobs were
the same and equal to 1 while the deadlines were fully
randomized.

The graphs show the latency (execution time - deadline)
experienced under each scheduling policy. The results
confirm that our scheduling policy (NBS) always
complete all the jobs with hard deadlines well before their
deadline (when feasible). In fact while NBS has a worst-
case latency of -0.367 secs, the ‘Equal’ (or fair), ‘Rand’

44

and ‘EDF’ scheduling policies have worst-case latency of
26.84, 16.77 and 12.177 secs for hard deadline jobs
respectively. In Fig. 4, we assign all jobs an identical
deadline of 65 secs and job type of 1 (soft deadlines),
while varying the priority from 300 to 30. Note that for
jobs with priority greater than or equal to 100 (first three
jobs on the graph starting from 0), the worst case latency
by NBS is just -6.85 secs, whereas the latency for Equal,
Rand and EDF are 8.45 secs, 13.77 secs and 6.128 secs
respectively.

Fig 4. Latency distribution for High-Priority Jobs

Fig 5. Aggregate Latency for Hard-Deadline Jobs

In Fig. 5 and Fig. 6, we show results that compare the
aggregate performance of our scheduler across runs with
different sets of jobs, where the number of jobs is varied
from 2 to 10. In the first experiment (Fig. 5), we plot the
latency for hard-deadline jobs. For each run, at least one-
third of the jobs had hard deadlines, while the remaining
two-third jobs were assigned soft and no deadlines
randomly. The deadlines were varied randomly while the
priorities were kept constant at 1. The results show that
NBS on average, across the runs, has a latency of -20.72
secs for hard-deadline jobs, while Equal, Rand and EDF
have average latencies of 2.665 secs, 8.405 secs and -4.2
secs respectively.

Fig 6. Aggregate Latency for High-Priority Jobs

In the second experiment (Fig. 6) we assign a constant job
type of 1 and deadline of 65 seconds. The job priorities in
each run was varied randomly 2 to 256. The total latency
for jobs with priority greater than 50 was plotted. The
results show that NBS on average, across the runs, has a
latency of -62.8 secs for high priority jobs, while Equal,
Rand and EDF have average latencies of -47.1 secs, -48.9
secs and -51.2 secs respectively. In conclusion, our
experiments on Hadoop confirm that our scheduler
prioritizes the scheduling of jobs with hard-deadlines and
high priorities over other commonly used schedulers.

V. CONCLUSIONS
This paper proposes a self-adaptive, deadline-aware cloud
resource control framework based on the Nash Bargaining
Solution. Our technique apportions resources in an
optimal way to maximize aggregate utility with respect to
both job priorities and deadlines. It enables automated
resource scheduling and rebalancing under cyber or
physical attacks that may diminish cloud capacity. Our
prototype implementation utilizing Hadoop Mapreduce
shows significant utility improvement and deadline
satisfaction over existing approaches.

References

[1] S. Wagner et al., “Autonomous, Collaborative Control for Resilient
Cyber Defense,” in Proceedings of 2012 IEEE SASO, Lyon, September
2012.
[2] S. Wagner et al., “Adaptive, Network-Aware Cluster Selection for
Cloud Computing in Wireless Networks,” Submitted to 2013 IEEE
SASO, Philadelphia, July 2013.
[3] K. Anyanwu, “Scheduling Hadoop Jobs to Meet Deadlines,” in
Proceedings of Cloud Computing, Second International Conference,
CloudCom 2010.
[4] M. Zaharia et al., “Delay Scheduling: A Simple Technique for
Achieving Locality and Fairness in Cluster Scheduling”, In Proceedings
of EuroSys, 2010.
[5] J. Nash, “The Bargaining Problem”, Econometrica, Vol. 18, No. 2,
April 1950, pp. 155-162.
[6] T. Sandholm and K. Lai, “MapReduce optimization using regulated
dynamic prioritization,” in Proceedings of the 11th International Joint
Conference on Measurement and Modeling of Computer Systems (SIG-
METRICS’09), Seattle, USA, Jun. 2009, pp. 299–310.

2 3 4 5 6 7 8 9 10
-80

-60

-40

-20

0

20

40

60

80

Total Number of JobsT
ot

al
 L

at
en

cy
 fo

r
H

ar
d

D
ea

dl
in

e
Jo

bs
 in

 s
ec

on
ds Fixed Priorities, Varying Job Types and Deadlines

NBS
Equal
Random
EDF

2 3 4 5 6 7 8 9 10
-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

Total Number of Jobs

T
ot

al
 L

at
en

cy
 fo

r
H

ig
h

P
rio

rit
y

Jo
bs

 in
 s

ec
on

ds Fixed Job Types and Deadlines, Varying Priorities

NBS
Equal
Random
EDF

45

[7] J. Polo, D. Carrera, Y. Bacerra, V. Beltran, J. Torres, and E.
Ayguade, “Performance management of accelerated MapReduce
workloads in heterogeneous clusters,” in Proceedings of the 39th
International Con- ference on Parallel Processing (ICPP’10), San
Diego, USA, Sep. 2010, pp. 653–662.
[8] M. Mattess et al., “Scaling MapReduce Applications across Hybrid
Clouds to Meet Soft Deadlines”, in Proceedings of IEEE 27th
International Conference on Advanced Information Networking and
Applications, 2013.
[9] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51:107–113, January 2008.
[10] T. White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st
edition, 2009.
[11] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, Jan. 2008.

46

