
Self-adaptive, Deadline-aware Resource Control in 
Cloud Computing  

Yu Xiang1, Bharath Balasubramanian2, Michael Wang2, Tian Lan1, Soumya Sen3, and Mung Chiang2 

 
1Department of Electrical and Computer Engineering, George Washington University, DC 20052 

{xy336699, tlan}@gwu.edu 
2Department of Electrical and Engineering, Princeton University, NJ 08543 

{bharathb, mwseven, chiangm}@princeton.edu 
3Carlson School of Management, University of Minnesota, MN 55455 

ssen@umn.edu 
 

 
Abstract. Modern data centers deliver resources over the 
cloud for clients to run various applications and jobs with 
diverse requirements. Today’s cloud resource management 
is able to support certain Quality of Service (QoS) 
requirements including reliability and security. However, in 
many settings such as the military cloud where latency 
requirement is paramount, existing cloud resource 
management schemes fall short in providing a systematic 
framework to meet and balance disparate types of 
application deadlines, since they are primarily focused on 
speeding up job executions for timely processing. In this 
paper we present a self-adaptive, deadline-aware resource 
control framework that can be implemented in a fully 
distributed fashion, making it suitable for unreliable 
environments where a single point of failure is not 
acceptable. Relying on Nash Bargaining in non-cooperative 
game theory, our framework allocates cloud resources in an 
optimal way to maximize the Nash Bargaining Solutions 
(NBS) with respect to both job priority and deadline. 
Further, it also enables self-adaptive deadline-aware 
resource allocation and rebalancing under cyber or physical 
attacks that may diminish cloud capacity. We validate our 
technique by performing experiments on the Hadoop 
framework. 

I. INTRODUCTION 
Cloud computing is becoming increasingly prevalent as it 
allows the delivery, in a pay-per-use manner, of highly 
automated, streamlined cloud services over a networked 
environment to hundreds of thousands of cloud clients 
with low costs and elastic Service Level Agreements 
(SLAs). As more applications are migrating toward the 
cloud, it poses a great challenge to meet disparate client 
expectations that vary significantly due to their 
heterogeneous requirements and demands, e.g., 
application type, priority and deadline, resource 
requirements, and personal budgets. All of these 
necessitate a highly flexible, adaptive, and resilient cloud 
resource management framework to support such 
requirements and dynamically adjust resource allocation. 
 

In this paper, we focus on military clouds that need to 
provide self-adaptive, resilient cloud services in hostile 
forward areas and enable a “scattered cloud” to support 
missions with disparate demands. We dynamically adjust 
resource allocation and mission scheduling to allow the 
cloud to fight external attacks autonomously. In such a 
cloud system it is critical to know when, where, and how 
to execute various missions so that effectiveness of all 
tasks executing on the cloud is optimized. Hence this 
challenge needs novel solutions that offer self-adaptive, 
deadline-aware mission scheduling and resource 
allocation. We make use of Nash Bargaining [5] in non-
cooperative game theory, which provides a single value 
solution that uniquely satisfies four axioms, i.e., 
Invariance to Affine Transformations, Pareto Optimality, 
Symmetry, and Independence of Irrelevant Alternatives. 
By extend Nash Bargaining to take into account disparate 
job priorities and deadlines, our proposed cloud 
framework allocates and dynamically rebalances cloud 
resources in an optimal way to maximize prioritized and 
deadline-aware Nash Bargaining Solutions (NBS) with 
respect to cloud capacity changes as well as job 
arrivals/departures.  
 

 
Fig 1. Cloud computing in military environments 
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The military cloud we model supports an architecture in 
which computing resources (both computing and storage 
capacity) reside in geographically dispersed micro-
clusters, each of which contains only a fraction of overall 
cloud capacity. Micro-clusters might comprise a small 
rack of servers in the back of a HUMVEE, command 
post, aircraft, or other structure of opportunity, as shown 
in Fig. 1. The NBS framework developed in this paper 
can be implemented independently within each micro 
cluster to offer intra-cluster resource bargaining, while its 
output, including expected completion time and 
congestion price, provide valuable information to guide 
upper layers in the could system for inter-cluster resource 
management. We refer readers to [1, 2] for a survey of 
such cluster selection and load-balancing algorithms. 
 
The rest of the paper is organized as follows. Following a 
review of prior relevant work in Section II, a background 
of Nash Bargaining and the problem formulation is 
introduced in Section III. We describe our proposed 
optimization algorithm in Section IV, and present our 
experimental results on the Hadoop framework [10] in 
Section V. Section VI summarizes this work and outlines 
several possible directions for future work. 
 

II. RELATED WORK 
While existing approaches on cloud resource management 
have focused on improving timely execution of critical 
cloud applications via admission control, concurrent job 
execution, or preemption of lower priority jobs 
[1,3,4,6,7,8], relatively little past work has considered a 
systemic resource control framework to meet and 
dynamically rebalance disparate types of application 
deadlines in order to maximize overall mission 
effectiveness.  
 
For Hadoop-based data processing, the authors in [1] 
propose a job execution cost model that accounts for the 
various parameters that affect job completion times and 
designed a constraint-based scheduler that takes user 
deadlines as part of its input and determines the feasibility 
of scheduling a job based on the proposed cost model. 
However, this solution does not allow any deadline 
optimization and jobs are only scheduled if specified 
deadlines can be met. Another related work [4] presents  
delay scheduling in Hadoop, aiming at solving the 
conflict between fair scheduling of jobs and latency for 
obtaining non-local data. In their approach, when the next 
job scheduled to run cannot be launched immediately due 
to data availability and locality, it gives up the scheduling 
opportunity to other jobs to improve overall execution 
efficiency despite some fairness degradation. While this 
approach speeds up job processing, the approach does not 
optimize resource allocation to meet individual deadline 
requirements. The goal of this paper is to develop a self-

adaptive and deadline-aware resource control framework, 
which not only guarantee individual job deadlines when 
feasible, but also maximize overall cloud efficiency by 
adjusting and rebalancing mission objectives. 
 

III. NASH BARGAINING  
In this section, we present the application of the Nash 
bargaining solution to our problem. Nash Bargaining 
introduces a form of utility maximization that yields 
efficient, Pareto-optimal allocation of resources [5], 
among clients in a prioritized and deadline-aware fashion. 
Our previous work [1] showed that this approach 
succeeds in balancing computing loads among dispersed 
micro-clusters (hereafter referred to simply as clusters) 
without the need for centralized cloud-wide control. To 
do so, cloud clients obtain estimates of computational 
congestion price (produced by the Nash Bargaining 
algorithm) from reachable clusters, and send their jobs to 
the cluster with the lowest price.  
 
In this paper, we consider a three-step process for 
clients/cluster controller to allocate jobs across various 
clusters. First, a cluster controller submits the client jobs 
to all the clusters to obtain a congestion price. Second, 
each cluster calculates the congestion price based on the 
NBS solution. Finally, the coordinator uses this 
information to submit the job to the appropriate.  In this 
section, we focus on the second step: calculating the 
congestion price based on the jobs in the system within 
each cluster.  
 
Consider a set of N jobs, each job indexed by i, submitted 
to a cluster with C resources. For each job i, we associate 
a total resource requirement Di, priority Pi and a utility 
function Ui(yi )  that quantifies the value of the job to the 
client as a non-decreasing function of the aggregate units 
of resource yi  that it receives. The goal of Nash 
Bargaining is to maximize the total utility that all N jobs 
in the system can receive before their designated 
deadlines, weighted by their priorities. In addition, if the 
available resources change due to attack or failure, the 
system must rapidly and autonomously find new 
operating points that again attain the maximum aggregate 
utility achievable from the available resources. Nash 
Bargaining provides a solution to this problem. 
Specifically, it maximizes the generalized Nash product 

max Ui (yi )⎡⎣ ⎤⎦
i

∏
Pi  s.t., yi  are feasible.    (1)� 

Where the aggregate resource yi  must be feasible under 
cluster capacity constraints. The NBS approach provides a 
unique optimal solution to (1) with several attractive 
properties. It is efficient (i.e., it utilizes all available 
resources), achieves proportional fairness, and is also 
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Pareto optimal: it is not possible to increase any yi
without decreasing one or more other jobs’ resource 
allocation. The NBS approach also achieves proportional 
fairness. By taking a logarithmic transformation, (1) 
becomes: 

max Pi ⋅ log Ui(yi )( )
i

∑  s.t., yi are feasible.  (2) 

Here NBS maximizes the sum of individual logarithmic 
utilities, weighted by their respective priorities. The 
significance of this point will become apparent shortly. 
 
As discussed earlier, clients may have different 
requirement on job completion time, and in this paper we 
consider three different types of deadlines: (i) Hard 
deadlines, which cannot be violated, and a job must be 
assigned enough resource to complete by the deadline, (ii) 
Soft deadlines, which can be exceeded but any resource 
allocated after the deadline will have decreasing utility 
value, and (iii) No deadlines, which means the job does 
not have to meet any deadline at all, and resources 
allocated at any time are equally useful. In a military 
cloud, examples of hard deadline jobs include missile 
trajectory calculation or maneuvering unmanned vehicles, 
while automated translation of recorded speech could 
have soft deadlines, and identifying enemy combatants 
from security/surveillance feeds may be an example of no 
deadline jobs. In the next, we mathematically define these 
types of deadlines within our NBS framework. 
 
Hard deadline. Let )(txi  be the resource allocated to 
job i in time slot t. In the hard deadline case, the utility of 
a job is solely determined by the aggregate resources it 
receives from job submission to the deadline, i.e., 

yi =
1

Di

xi(t)dt ≥1
0

ti
dead

∫
                     

(3) 

 Here resource yi  is normalized by total resource 
requirement Di to complete the job. For hard deadline 
jobs, we must have yi ≥1since each job i should receive 
at least Di  units of resource before the hard deadline.  
 
Soft deadline. For this case, we compute aggregate 
resource allocation with respect to a time-dependent 
weigh function wi (t): 
 

(4) 
 

(5) 
 
 
 

Since any resource assigned after a soft deadline is still 
useful, but would have diminishing utility, we weight 
resource xi(t) by a discount function wi(t) that is 1 
before the deadline and decreases exponentially over time 
afterwards. Here ti

ref represents the time horizon of NBS 
optimization. Decaying factor μ  may vary based on 
application type and client expectations. There is no 
minimum resource requirement for soft deadline jobs. 
 
No deadline. By our definition, resources assigned to no 
deadline jobs, at any time, always have equal utility value. 
Therefore, we obtain 

yi =
1

Di

xi(t)dt
0

ti
ref

∫
                     

(6)

Here the aggregate resource is computed from job 
submission to the time horizon ti

ref . Notice that, similar 
to soft deadline jobs, no minimum resource assignment is 
required for no deadline jobs. 
 

 
 

Fig 2. An example of NBS optimization. 
 
These 3 types of deadlines are closely related. It is easy to 
see that a soft deadline job with μ = 0  is equivalent to a 
no deadline job, while it corresponds to a hard deadline 
job for μ = +∞ .  
 
Combining the above equations for the various type of 
deadlines and taking into account the cluster capacity, we 
formulate the following self-adaptive, NBS optimization 
problem: 

max   Pi ⋅ log Ui (yi )( )
i

∑ , 

s.t.,    xi (t)
i

∑ ≤C  ∀t,  and (3), (4), (5), (6).  

The problem described above is an extension of the 
classic optimization problem relying on NBS because it 
takes into account the relative, temporal value of resource 
allocation with respect to when it is assigned, in addition 
to “what” and “how much” is assigned. When utility 
function Ui(yi) satisfies certain conditions (e.g., linear 
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or logarithmic functions), it is easy to verify that the NBS 
optimization is a convex problem and thus can be solved 
by off-the-shelf optimization tools. The NBS optimization 
is performed repeatedly at each job arrival and departure, 
or when cloud capacity changes. Its solution also provides 
an estimated completion time and a resource congestion 
price, which guide upper layer modules for cluster 
selection and workload balancing.  
 
Figure 2 illustrates a simple simulation of our algorithm 
for a cluster with 6 jobs. While all jobs have equal 
resource requirements, jobs 1 and 2 have hard deadlines 
and are guaranteed to completed before their deadlines at 
t=5 and t=10 (if feasible). Soft deadline jobs 3 and 4 
completes close to their deadlines at t=10 and t=15, but 
before any no deadline jobs 5 and 6 finish.  
 

IV. IMPLEMENTATION AND RESULTS 
In this section, we present experimental results for our 
NBS scheduling algorithm on the ubiquitously used 
Hadoop framework [10] for processing MapReduce [11] 
jobs. We compare our algorithm with three other 
scheduling policies: (i) Random scheduling in which each 
job is allocated a random share of the cluster resources, 
(ii) Fair or Equal scheduling in which each job is 
allocated the same share of cluster resources, (iii) 
Earliest-Deadline-First (EDF) scheduling in which jobs 
are processed in increasing order of their deadlines.  
 
Our experiments focus on the performance of our 
algorithm w.r.t the latency experienced by the hard-
deadline jobs and the latency experienced by high priority 
jobs. The results confirm the following facts: (a) For a set 
of jobs submitted to the Hadoop framework unlike the 
other three schedulers, our policy always finishes hard-
deadline jobs before their deadline. (b) For a given set of 
job, our scheduler finishes the high priority jobs much 
before the deadline as compared to other schedulers. (c) 
For experiments averaged over many sets of jobs, the 
cumulative latency for hard-deadline jobs and high 
priority jobs is lesser than that for the other schedulers.  
 
Hadoop is one of the most commonly used engines for 
large-scale data processing applications modeled as 
MapReduce jobs. The MapReduce framework is built 
using the master-worker configuration where the master 
assigns the map and reduce tasks to various workers. 
While the map tasks perform the actual computation on 
the data files received by it as <key, value> pairs, the 
reducer tasks aggregate the results according to the keys 
and writes it to the output file.  Let us consider the 
canonical example of Hadoop MapReduce for the word 
count application in which we we wish to count the 
number of occurrences of each word in a given data set. 
For the word count job, the Hadoop framework first splits 

the data into smaller chunks and assigns map tasks for 
each of these chunks. The map tasks simply output <key, 
value> pairs corresponding to its input chunk, where the 
key is the string which occurs in the input text and the 
value is always 1. Then reduce tasks combine the outputs 
of each of these map tasks, which in this case is simple 
addition of the values corresponding to each key. This 
would give us the word count in the text.  
 
Scheduling in Hadoop is primarily based on the number 
of map and reduces tasks the engine can allocate to each 
job in the system. For the purposes of our experiment we 
focus purely on the number of map tasks assigned to 
different jobs and consider a job completed when all its 
map tasks have executed.   
 
We perform our experiments on a 3 machine, 12-core 
Hadoop cluster with a total capacity of 6 map tasks. All 
the jobs in our experiments are identical word count jobs 
each of which requires 3 map tasks to complete. We 
implemented a Hadoop-plugin that controls the number of 
map slots allocated to each job in the system, thereby 
controlling the resources allocated to them. Using this 
framework, we can specify different scheduling policies. 
We ran different sets of experiments with the four 
scheduling policies defined above. The results of our 
experiments are shown in Fig. 3, Fig. 4, Fig. 5 and Fig. 6.   

 
Fig 3. Latency distribution for Hard-Deadline Jobs 

 
The results in Fig. 3 and Fig. 4 correspond to experiments 
where we submitted a set of ten jobs and collected the 
time taken for each of the jobs to complete.  We ensured 
that among the jobs at least one-third had hard deadlines, 
while the remaining two-third jobs were assigned soft and 
no deadlines randomly.  The priorities of all the jobs were 
the same and equal to 1 while the deadlines were fully 
randomized.  
 
The graphs show the latency (execution time - deadline) 
experienced under each scheduling policy. The results 
confirm that our scheduling policy (NBS) always 
complete all the jobs with hard deadlines well before their 
deadline (when feasible). In fact while NBS has a worst-
case latency of -0.367 secs, the ‘Equal’ (or fair), ‘Rand’ 
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and ‘EDF’ scheduling policies have worst-case latency of 
26.84, 16.77 and 12.177 secs for hard deadline jobs 
respectively.  In Fig. 4, we assign all jobs an identical 
deadline of 65 secs and job type of 1 (soft deadlines), 
while varying the priority from 300 to 30. Note that for 
jobs with priority greater than or equal to 100 (first three 
jobs on the graph starting from 0), the worst case latency 
by NBS is just  -6.85 secs, whereas the latency for Equal, 
Rand and EDF are 8.45 secs, 13.77 secs and 6.128 secs 
respectively.  
 
 

 
 

Fig 4. Latency distribution for High-Priority Jobs 
 

 
Fig 5. Aggregate Latency for Hard-Deadline Jobs 

 
In Fig. 5 and Fig. 6, we show results that compare the 
aggregate performance of our scheduler across runs with 
different sets of jobs, where the number of jobs is varied 
from 2 to 10.  In the first experiment (Fig. 5), we plot the 
latency for hard-deadline jobs. For each run, at least one-
third of the jobs had hard deadlines, while the remaining 
two-third jobs were assigned soft and no deadlines 
randomly. The deadlines were varied randomly while the 
priorities were kept constant at 1. The results show that 
NBS on average, across the runs, has a latency of -20.72 
secs for hard-deadline jobs, while Equal, Rand and EDF 
have average latencies of 2.665 secs, 8.405 secs and -4.2 
secs respectively.  
 
 
 

 
Fig 6. Aggregate Latency for High-Priority Jobs 

 
 
In the second experiment (Fig. 6) we assign a constant job 
type of 1 and deadline of 65 seconds.  The job priorities in 
each run was varied randomly 2 to 256. The total latency 
for jobs with priority greater than 50 was plotted. The 
results show that NBS on average, across the runs, has a 
latency of -62.8 secs for high priority jobs, while Equal, 
Rand and EDF have average latencies of  -47.1 secs, -48.9 
secs and -51.2 secs respectively. In conclusion, our 
experiments on Hadoop confirm that our scheduler 
prioritizes the scheduling of jobs with hard-deadlines and 
high priorities over other commonly used schedulers.  
 

V. CONCLUSIONS 
This paper proposes a self-adaptive, deadline-aware cloud 
resource control framework based on the Nash Bargaining 
Solution. Our technique apportions resources in an 
optimal way to maximize aggregate utility with respect to 
both job priorities and deadlines. It enables automated 
resource scheduling and rebalancing under cyber or 
physical attacks that may diminish cloud capacity. Our 
prototype implementation utilizing Hadoop Mapreduce 
shows significant utility improvement and deadline 
satisfaction over existing approaches. 
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