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Abstract—Erasure-coded storage systems have gained considerable adoption recently since they can provide the same level of

reliability with significantly lower storage overhead compared to replicated systems. However, background traffic of such

systems – e.g., repair, rebalance, backup and recovery traffic – often has large volume and consumes significant network resources.

Independently scheduling such tasks and selecting their sources can easily create interference among data flows, causing severe

deadline violation. We show that the well-known heuristic scheduling algorithms fail to consider important constraints, thus resulting in

unsatisfactory performance. In this paper, we claim that an optimal scheduling algorithm, which aims to maximize the number of

background tasks completed before deadlines, must simultaneously consider task deadline, network topology, chunk placement, and

time-varying resource availability. We first show that the corresponding optimization problem is NP-hard. Then we propose a novel

algorithm, called Linear Programming for Selected Tasks (LPST) to maximize the number of successful tasks and improve overall

utilization of the datacenter network. It jointly schedules tasks and selects their sources based on a notion of Remaining Time Flexibility,

which measures the slackness of the starting time of a task. We evaluated the efficacy of our algorithm using extensive simulations and

validate the results with experiments in a real cloud environment. Our results show that, under certain scenarios, LPSTcan perform

7x�10x better than the heuristics which blindly treat the infrastructure as a collection of homogeneous resources, and 21.7�65.9
percent better than the algorithms that only take the network topology into account.

Index Terms—Traffic scheduling, erasure code, storage

Ç

1 INTRODUCTION

ERASURE-CODING technology has been applied to many
large scale storage systems. The technique allows us to

significantly save storage space while still maintaining the
same level of reliability as replicated systems [1], [2], [3], [4],
[5], [6], [7], [8], [9]. In an ðn; kÞ erasure code, a given data
object or a file, is split into k pieces and encoded into n
chunks (n � k), each stored on a different storage node1 to
maximize reliability. The file can be retrieved by querying
any k-out-of-n chunks from these storage nodes, tolerating
at most n� k lost chunks. Compared with replicating data
object n� k times, ðn; kÞ erasure-coding chunks save ðn�
kþ 1Þ � k

n space. For example, ð9; 6Þ erasure-coding save
83 percent space.

However, a major drawback of erasure-coding is that they
generate large amounts of background traffic. The back-
ground traffic could be repair traffic generated when an
erasure-coded chunk is lost, rebalance traffic when storage
capacity is added or reduced, backup traffic, etc. As an

example, repairing a data chunk, say x bytes of data, could
generate kx bytes of network traffic in an ðn; kÞ erasure-coded
system. Background traffic has been shown to consume a sub-
stantial amount of datacenter network bandwidth. In [10], the
authors characterized backup workloads in EMC Data
Domain backup systems in production use and showed that
on average, background traffic per week is equivalent to
about 21 percent of total stored data. The vast majority of
repair times are relatively short but had large deviation, lead-
ing to undesirable impact to the infrastructure [11]. Recent
measurements on a Facebooks datawarehouse cluster storing
multiple petabytes of erasure-coded data, required a median
of more than 180 Terabytes of data transferred to recover
from 50machine-unavailability events per day [12].

Existing systems often schedule each background task
independently [13]. With reasonably high probability, these
distributed tasks share same deadlines, compute, network
and storage resources of the underlying infrastructure. These
aspects cause interference among competing data flows,
resulting in poor resource utilization and frequent violation
of Service Level Agreements (SLAs) associated with those
tasks.

To mitigate the problem, this paper proposes a novel and
practical way of scheduling background jobs in a holistic
manner, by jointly considering all background jobs together.
Specifically, we solve the following problem—given a set of
background tasks with known deadlines, how should the
tasks be scheduled and the sources be selected, such that the
number of tasks that successfully complete within their dead-
line is maximized?We consider a joint, online optimization of
background traffic over task scheduling and source selection

1. Server, node, machine all refer to the same entity in this paper.
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to maximize the number of tasks meeting deadlines in
erasure-coded storage systems.

Deadline-aware scheduling has been studied extensively
in many domains [14], [15], [16], [17], [18]. However, sched-
uling background tasks in an erasure-coded storage system
running in a large datacenter environment is unique and
more difficult, because it introduces three challenging
dimensions to the problem–task scheduling over time, data
source selection, and bandwidth allocation in each network
segment to each background task. Existing scheduling algo-
rithms designed for other problem domains consider mostly
the first challenge and often assume homogeneous resour-
ces, e.g., processor scheduling across CPUs, MapReduce
jobs across worker processes, etc. The recently proposed
bandwidth reservation techniques, such as [19], can be used
to better utilize network resource by allocating necessary
amount of bandwidth to each task, but still did not consider
source selection. Our problem is significantly different from
these body of work. In an ðn; kÞ erasure-coded system,
scheduling background tasks requires selecting k out of n
nodes as sources of a data flow. Furthermore, in a typical
datacenter environment, at any given time the available net-
work bandwidth for a tenant will significantly vary over
time. Simply combining heuristics developed for the sub-
problems are insufficient for achieving an optimal perfor-
mance, which calls for a joint optimization of all tasks over
the “control knobs”.

Well-studied heuristics such as Early Deadline First
(EDF), First In First Out (FIFO) and Linear Programming
(LP) do not take into account important constraints, such as
network topology, data chunk placement and/or source
chunk selection, thus resulting in unsatisfactory perfor-
mance. In particular, FIFO is easy to apply in real systems,
but has relatively low performance as observed in [20], [21].
EDF works well in networks with simple topologies [14],
[15], [16]. But for datacenter networks that often employ a
tiered-structure consisting of Top-of-Rack (TOR) and aggre-
gation switches, EDF exhibits sub-optimal performance and
fails to address data source selection when erasure coding is
used (Sections 3 and 4).

In order to address these problems, we develop an online
algorithm to maximize the number of tasks that successfully
meet deadlines, under the constraints of data placement, net-
work topology and available bandwidth. To optimally sched-
ule each task, we need to jointly solve: (i) a chunk selection
problem that determines the (erasure-coded) chunks used to
generate background traffic, (ii) a bandwidth allocation prob-
lem that apportions bandwidth at TOR and aggregation
switches among active tasks, and (iii) a scheduling problem
that schedules tasks with respect to their deadlines. This opti-
mization problem can be formulated as a mixed-integer opti-
mization problem,which is proven to beNP hard (Section 3).

Our proposed algorithm leverages a novel metric called
Remaining Time Flexibility (RTF) and jointly considers current
network topology, source selection and bandwidth con-
straints. The RTF is the amount of time until a given task
becomes infeasible with respect to its deadline. It measures
the slackness of the starting time of a task and captures both
task scheduling aspect (via task deadline and size) and source
selection aspect (via available bandwidth). Intuitively, a task
with higher RTF is less urgent (i.e., having a higher degree of

flexibility with respect to both resource allocation and source
selection) and can be postponed in the scheduling algorithm
with relatively low risk of missing deadline. Our algorithm,
called Linear Programming with Selected Tasks (LPST), is
composed of three main steps. First, we choose k-out-of-n
chunks from themost idle servers and racks. Second, we com-
pute RTF for each background taskwith respect to its selected
sources. Since the number of tasks ready to be scheduled can
be large, we select a fewer number of relatively urgent tasks
based on their RTF values. Third, we schedule the tasks
through linear programming to determine the optimal band-
width allocation for these tasks. The steps are then repeated
for every task arrival and departure event in an online fashion
tomaximize network resource utilization (Section 4).

We evaluate existing algorithms as well as our proposed
algorithm extensively in both simulation and real experi-
ments in an OpenStack cluster. We demonstrate that the pro-
posed algorithm can significantly improve the number of
tasks finished before the deadlines under various combina-
tions of arrival patterns, system parameters and resource
availability. Our results show that, under certain scenarios,
our proposed algorithm can perform 7x�10x better than the
heuristics which blindly treat the infrastructure as a collection
of homogeneous resources, and 21.7�65.9 percent better than
the algorithms that only take into account the network topol-
ogy. We also conducted a trace-driven simulation using a
Google trace [22], [23]. The result was very promising—LPST
perform 3x�17x better than others (Section 5).

2 RELATED WORK

Our proposed algorithm - LPST (Section 3) is inspired by
vast amount of related work. There exist very large body of
work in process/packet scheduling algorithms [24]. We will
not attempt to cover all existing related work but will dis-
cuss some directly related ones.

Our notion of remaining time flexibility is inspired by a
classic scheduling algorithm called Least Slack Time First
(LSTF) [25]. LSTF used a metric called slack, which is con-
ceptually similar to RTF, to schedule tasks to a single or
multiple processors and it can be easily applied to packet
scheduling problem as well [26]. In S3 problem, similar to
the reason that other simple heuristics will not work well, it
is not enough to blindly apply LSTF since we need to addi-
tionally consider source selection and bandwidth allocation
problems.

Aside from LSTF, many heuristic algorithms have been
extensively studied in the community. The representative
algorithms include Early Deadline First (EDF), First In First
Out (FIFO), and Linear Programming (LP) and we discussed
these algorithms with respect to S3 problem in Section 5.2.
Some advanced algorithms based on these concepts are as fol-
lows. Algorithms based on FIFO has been applied for multi-
cast traffic [20] and packet scheduling [21] to maximize
system throughput. In [14], authors described a Global EDF
algorithm to schedule parallel real-time tasks, which has
provable performance bounds and overcomes task heteroge-
neity noted in [15], [16]. Lastly, using the model of a time-
slotted system, traffic scheduling with deadlines can be for-
mulated as a Linear Program (LP) problem. The complexity
analysis of LP can be found in [27], [28], [29]. However, traffic
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scheduling complexity grows quickly as network size and
granularity increase [24], and it may lead to integer con-
straintswhen source selection and routing are involved [18].

Complementary to our work, substantial amount of work
is proposed on reducing the amount of repair traffic in era-
sure coded storage systems. The list includes practical
implementations that maintain local parities [30], [31] and
novel codes that provide theoretical guarantees, e.g., MSR
and MBR codes [32]. Since we assume MDS code in this
paper and the majority of erasure codes used in practice
maintain MDS property, our algorithm can be directly
applicable to most work in this category.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider a datacenter storage systemwith one aggregator
switch connecting u Top-of-Rack (TOR) switches. r storage
servers (R ¼ f1; 2; . . . ; rg) are placed in u racks (U ¼ f1; 2;
. . . ; ug), each of which is connected to a TOR switch. The traf-
fic between servers in the same rack does not need to flow to
the aggregator switch, while the traffic between servers in dif-
ferent racks needs to flow through two TOR switches and the
aggregator switch. Each file i is stored using ðni; kiÞ erasure
coding. We consider Maximum-Distance-Separable (MDS)
codes, which ensures that any ki out of ni chunks are suffi-
cient for reconstructing the file i.

3.1 An Illustrative Example

Consider the example in Fig. 1. We will illustrate that exist-
ing heuristics that work well for the sub-problems fail to
achieve the optimal performance due to the lack of joint opti-
mization over all “control knobs”. We consider a network
with u ¼ 3 racks and r ¼ 9 servers. Three files A, B and C
are stored using ð4; 2Þ erasure code. Each file is encoded into
n ¼ 4 chunks of different size vA ¼ 6 Gbits and vB ¼ vC ¼ 8
Gbits, allowing recovery from any k ¼ 2 distinct chunks. At
t ¼ 0, one chunk of each file is lost and needs to be repaired
before deadlines dA ¼ 10s, dB ¼ 10:5s and dC ¼ 15s, respec-
tively. Suppose the link capacity is CST ¼ 2 Gbps between
servers and TORs, and CTA ¼ 3 Gbps between TORs and
the aggregator.

We consider 2 heuristic policies: (1) Use shortest path algo-
rithm for source selection (i.e., select the chunk source that is
closest to the destination where repair is to be done), and then
use a first-fit heuristic to add tasks one-by-one (i.e., each
receiving the least required bandwidth (Section 4) to meet its
deadline) until no more tasks can be accommodated; and (2)
Apply Earliest-Deadline-First to prioritize and schedule all
tasks (i.e., selected tasks receive full remaining bandwidth
after higher priority tasks are assigned) and then for this fixed
schedule, select data sources in a way that it minimizes net-
work congestion.We show that none of them are able to com-
plete all 3 tasks before the deadlines.

Under Policy 1, source A2 among others is selected to
recover the lost chunk A1, requesting a least required band-
width of vA=dA ¼ 0:6Gbps on both servers 1 and 2. However,
to recover a chunk B1 on server 2, it needs to download 2
chunks of file B and requires an additional bandwidth of
2vB=dB ¼ 1:52Gbps on server 2, exceeding bandwidth capac-
ity of 2 Gbps. Thus, faulty chunks of filesA andB cannot both
be recovered before their deadlines. Under Policy 2, the three
repair tasks are processed in the order of their deadlines. To
balance network congestion, we choose servers 5, 9 (hosting
chunks A3; A4) and servers 6, 8 (hosting chunks B3; B4) as
sources to recover faulty chunksA1 and B1. Since taskA1 has
the earliest deadline, it receives full bandwidth from t ¼ 0s to
t ¼ 6s. Task B1 can only utilize the remaining 1 Gbps band-
width available at the aggregator switch untilA1 is recovered.
It is easy to see that at dB ¼ 10:5s, there is still 1 Gb data
remaining to be transfered for taskB1, resulting in a failure to
meet its deadline.

However, completing all 3 tasks before the deadlines is
indeed possible. Our key intuition is to consider RTF
(Section 4), which measures the maximum available waiting
time before a task becomes infeasible given its deadline. RTF
captures both task scheduling (via task deadline and size) and
source selection (via available bandwidth for each possible
source) in the joint optimization. In particular, while B1 has a
later deadline, it has less slackness in scheduling, because its
RTF (measuring maximum allowedwaiting time before start-
ing B2) is fB ¼ tB � vB=CST ¼ 6:5s, less than that of A1, i.e.,
fA ¼ 7s.We use the same source selection as Policy 2, but give
higher priority to taskB1 instead ofA1. It is easy to show that
all 3 tasks are able to complete before the deadlines if we
assign 2 Gbps to taskB1 from t ¼ 0 to t ¼ 8, allocate themaxi-
mum remaining bandwidth at aggregator (1 Gbps before B1

completes and 2Gbps afterwards) toA1 and let tasksC1 select
minimally-congested servers 5,8. This strategy outperforms
existing heuristics because RTF captures not only deadlines
but also task sizes and bandwidth availability.

3.2 Problem Formulation

To maximize the number of background tasks that meet their
desired deadlines, we consider a joint optimization in erasure-
coded storage over 3 key dimensions: (i) selecting data sour-
ces, (ii) apportioning network resources among different back-
ground traffic flows with respect to network topology and
deadlines, and (iii) scheduling multiple tasks to mitigate the
“noisy neighbor problem”. These three sub-problems are
closely coupled, resulting in anNP-hard problem (Section 3.3).

Our problem formulation is described as follows. Let
A ¼ fA1; A2; . . . ; Amg denote a set of background tasks,

Fig. 1. An illustrative example with 3 racks and 9 servers. 3 files are
stored using ð4; 2Þ code. None of the existing heuristics can complete all
3 repair tasks before their deadlines.
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such as backup, repair, and re-balance. Each task, Ai, is
associated with a number of parameters, including ni poten-
tial sources of data chunks (denoted as oi;1 2 U , oi;2 2 U, . . .,
oi;ni 2 U), one destination (denoted as pi 2 U), the number ki
of chunks to be retrieved, volume (denoted as vi) for each
chunk, task starting time (denoted as si), and task deadline
(denoted as di). Task starting time and deadline are given in
seconds, satisfying 0 � si � di. To formally formulate this
optimization problem, we consider a time slotted system.
Suppose yi;j is a binary chunk selection variable, such that
yi;j ¼ 1 if chunk j is selected to execute task Ai, and yi;j ¼ 0
otherwise. Since ki data chunks must be selected, we haveX

j

yi;j ¼ ki; 8i; (1)

where the selection remains fixed while task i is running. For
regenerating codes, it is possible that d<k chunks are
required to repair a lost chunk, while it is also possible to
access d>k chunks to minimize the repair bandwidth. In
either case, it is equivalent to an erasure code with parame-
ters (n,d) instead of (n,k). Since our proposed LPST algorithm
works with arbitrary erasure codes, the joint scheduling and
source selection problem remains the same, except for differ-
ent parameters (n,d).

To count the number of successfully completed tasks, we
use a binary variable zi, which is 1 if task Ai is finished
before the deadline, and 0 otherwise. Let xt;i;j be the band-
width assigned in time slot t to the data flow transferring
chunk j of task Ai. If the task is successfully completed
before a deadline di, all of the k flows should finish before
di, implying a deadline constraint for successful tasks:

Xdi
t¼si

xt;i;jyi;j � vi; if zi ¼ 1; 8i; 8j: (2)

Since each source-destination pair has a predetermined
route, for a given set of tasks, we use RCg to denote the set
of tasks/chunk flows traversing a (TOR or aggregator)
switch g, i.e., ði; jÞ 2 RCg if flow of chunk j of task i uses
switch g. Similarly, SCh is the set of tasks/chunk flows
using a server h. Further, each TOR has capacity limit CTA,
and each server has capacity limit CST . The link capacities,
CST and CTA, are actually the amount of bandwidth avail-
able for background traffic optimization, i.e., the maximum
link capacity minus the bandwidth assigned to foreground
traffic. Thus, we have the following capacity constraints:X

ði;jÞ2RCg

xt;i;jyi;j � CTA; 8g; t (3)

X
ði;jÞ2SCh

xt;i;jyi;j � CST; 8h; t: (4)

Our goal is to maximize the number of tasks that can be
successfully completed before deadline in erasure-coded
storage. This is formulated as a joint Scheduling and Source
Selection (denoted as S3) problem, i.e.,

max
X
i

zi (5)

s:t:
X
j

yi;j ¼ ki; 8i (6)

Xdi
t¼si

xt;i;jyi;j � vizi; 8i; (7)

X
ði;jÞ2RCg

xt;i;jyi;j � CTA; 8g; t (8)

X
ði;jÞ2SCh

xt;i;jyi;j � CST; 8h; t (9)

var: xt;i;j � 0; yi;j 2 f0; 1g; zi 2 f0; 1g: (10)

Here the deadline constraint (7) is exactly (2) for successful
tasks with zi ¼ 1, and is superfluous when zi ¼ 0. Note that
replication can be considered as a special case of our pro-
posed optimization with ki ¼ 1, i.e., the entire file is repli-
cated across the network.

3.3 Proof of NP-Hardness

Theorem 1. The proposed S3 Problem is NP-hard.

Proof.We show that if the S3 Problem can be solved in poly-
nomial time, then the maximum independent set problem
can also be solved in polynomial time, which contradicts
the known NP-hardness of maximum independent set
problem. For some small � > 0, we consider a special case
of the S3 Problem with following simplifications:

1. There is only one rack;
2. All chunks have equal size v;
3. Equal link capacity CST from each server to TOR.
4. All tasks have equal deadline d ¼ v=CST þ �.
Our formulation implies that only 1 chunk can be

transferred from any server before deadline. It remains
to prove that if the S3 Problem can be solved in polyno-
mial time, so is the maximum independent set problem.

We consider a given instance of maximum indepen-
dent set problem and converts it to an S3 Problem in the
special case. Given a graph G ¼ ðV; EÞ, an independent
set is a set of vertices in the graph, such that no two verti-
ces are connected by an edge. A maximal independent
set problem is to find an independent set that has the
largest number of vertices. It is well known as an NP-
hard problem [33], [34]. Given a maximum independent
set problem, we convert it into a S3 Problem with
m ¼ jVj files and r ¼ jEj servers as follows: We use a file
to represent each vertex in V. If there is an edge connect-
ing i; j 2 V, we let files i; j share a common server by
placing a single chunk of each file into the server. Thus,
each file i has ni chunks, which is equal to the degree of
vertex iV in G. Finally, we choose erasure codes ni ¼ ki
for any file i. It means that all ni chunks must be
retrieved to reconstruct the file before deadline.

Assume that all files need to be backed up on a server
with large enough bandwidth. Our goal in S3 is to maxi-
mize the number of such m ¼ jVj tasks that can be com-
pleted before deadline. It is easy to see that if we can
solve this S3 problem, we can also solve the maximum
independent set problem. Clearly, no 2 tasks can be com-
pleted at the same time if they have 2 chunks sharing a
common server (due to the deadline and link capacity
constraint, only allowing 1 chunk to be retrieved). Maxi-
mizing the number of successfully-completed tasks is
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equivalent to finding the maximum independent set on
G. Since the maximum independent set problem is NP-
hard, we conclude that our problem is also NP-hard. tu

4 LPST ALGORITHM DESIGN

In this section, we describe our proposed algorithm, called
Linear Programming for Selected Tasks (LPST), which har-
nesses resource-aware chunk selection, deadline-aware task
prioritization, and bandwidth optimization via linear pro-
gramming. As a result, LPST maximizes the number of tasks
that can meet their deadlines. We compare LPST to a set of
heuristic algorithms2 and their qualitative descriptions are
presented in Section 5.2. Quantitative comparison results are
in Section 5. We devide the S3 problem into 3 subproblems—
selecting sources, scheduling tasks and assigning bandwidth.

Selecting Sources (Phase I). When a new task arrives to the
system, the algorithm needs to decide which sources will be
used for the task. The source selection process will affect the
resource availability for other tasks in the system. Recall that,
in ðni; kiÞ erasure coding used for task i, we need only ki
chunks out of ni, whichwill be enough to reconstruct the orig-
inal data. If one chunk is lost and ki chunks are chosen by task
i, a future taskmight be able to utilize other ni � ki � 1 chunks
without worrying about the execution status of the previous
task. LPST implements a source selection policy that finds the
first ki subtasks that make the network least congested. in
order to better utilize network resources. Many well-known
distributed storage systemswant to distribute data uniformly
across the available machines. This ensures the scalability of
the system and provides a certain level of reliability guaran-
tees. For instance, Ceph [1] uses CRUSH algorithm [35] to
make eachOSD equally contribute to the client load. Swift [2],
HDFS [36], and Ambry [37] have similar design rationals, i.e.,
either placing data as equally as possible or regularly reba-
lancing data, to achieve the same high level goals.

Suppose a task Ai arrives to the system. Then Ai is split
into ki subtasks, each of which has a distinct source. Each
subtask A

0
i;s (s=1..ki) has 5 properties: a) source (o

0
i;s), b) des-

tination (p
0
i;j ¼ pi), c) volume (v

0
i ¼ vi), d) starting time

(s
0
i ¼ si), and e) deadline (d

0
i ¼ di). Note that while each sub-

task A
0
i;s has its own selected source, all subtasks belonging

to Ai must be completed before di to meet a common dead-
line. For each of the ki subtasks, we calculate its least required
bandwidth (LRB), defined by the minimum amount of band-
width that is necessary to finish the task before the deadline.
Let t be the current system time. LRB can be calculated
using the following equation.

LRBi ¼ vi=ðdi � tÞ: (11)

Then, for the corresponding servers or TORs in the path, we
add LRBi to their congestion factors. Then we calculate the
congestion factors for all subtasks, and we select ki sources
with least fulfilled links (smallest congestion factor).

Prioritizing Tasks (Phase II).Once the sources are chosen,we
could generate a plan on howwemay allocate bandwidth for
the tasks to satisfy our objective, e.g.,maximizing network uti-
lization of our datacenter. However, blindly applying existing

optimizing technique, such as linear programming, is likely
to cause a scalability problem (Section 5). Therefore, in LPST
we first sort all subtasks based on a metric, called remaining
time flexibility (RTF), which quantifies the flexibility in sched-
uling a taskwith respect to its deadline and resource availabil-
ity, reflecting how emergent the task is. After a list of admitted
tasks are identified, a linear programming problem is solved
to optimize bandwidth allocation for maximizing network
utilization for the admitted tasks.

Algorithm 1. LPST Algorithm

1 // Phase I: Source Selection Procedure
2 foreach task i do
3 Least required bandwidth: LRBi = vi/(di � t);
4 Sort wi candidate sources by the largest congestion

factor in each path from source to destination;
5 Find ki source servers with least fulfilled path;
6 Create ki new subtask A

0
i;s;

7 Add LRBi to congestion factor of links in each subtask’s
path;

8 end
9 // Phase II: Selecting Emergent Tasks
10 foreach subtask i do
11 Calculate RTF fi ¼ mins d

0
i �maxðt; siÞ � v

0
n=Coi;s;pi

� �
;

12 end
13 Initialize T ¼ fg, remaining bandwidth for each link;
14 Find task iwith smallest fi;
15 while task i is feasible w.r.t. remaining bandwidth do
16 T  T

S
fAig

17 Assign initial bandwidth bi ¼ LRBi;
18 Update remaining bandwidth;
19 Find next task iwith smallest fi;
20 end
21 // Phase III: Optimize bandwidth for admitted tasks in T ;
22 Solve the following optimization problem using LP;
23 max

P
i:Ai2T bi

24 s.t.
P
ði;sÞ2RCg

bi � CTA, 8g
25

P
ði;sÞ2CSh bi � CST , 8h

26 biðdi � siÞ � vi 8i
27 var. fbi; 8i 2 T g

In particular, for subtaskA
0
i;s, a chunk of size v

0
i needs to be

transferred, from source server o
0
i;s to destination server p

0
i,

which has pre-determined route with maximum available
capacity Coi;s;pi . The task starting time is si and deadline is d

0
i.

Then RTF f
0
i;s of the subtaskA

0
i can be calculated as follows.

fi;s
0 ¼ d

0
i �maxðt; siÞ � v

0
n=Coi;s;pi ; (12)

where t is current timestamp and Coi;s;pi is the maximum
available link capacity from source server o

0
i;s to destination

server p
0
i. Next, the RTF of task Ai is defined as the mini-

mum RTF of all its subtasks, i.e.,

fi ¼ min
s

f
0
i;s: (13)

Intuitively RTF fi measures the maximum allowed delay to
begin processing task Ai, in order to meet its deadline. If fi
value is smaller, the task is more emergent and we may
need to schedule it right away by delaying some other tasks
that have higher RTF values.

2. Some of these heuristics are extensively studied in the commu-
nity. Note that the proof of NP-hardness is provided in Section 3.3.
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Finally, we rank all tasks according to their RTF in
ascending order, and admit tasks one-by-one until no more
task with higher RTF can be added.

Assigning Bandwidth (Phase III). After we get a final list of
feasible tasks, we formulate a network optimization to assign
bandwidth bi for each task by maximizing network link utili-
zation. This is shown in Phase III of Algorithm 1. While this
step does not directly affect the number of tasks that are
completed before deadline, it maximizes resource utilization
and thus reduces the overall completion time required by
currently admitted tasks. This has two benefits. First, when
we use the proposed LPST algorithm in an iterative fashion,
optimizing bandwidth utilization allows us to accommodate
more tasks by re-running the procedure in Phase I and II.
Second, this is particularly important in an online setting—
by completing the current, admitted tasks as fast as possible,
we can make more resources available for new tasks that
arrive in the future. The bandwidth assignment in Phase III
is solved as a linear programming problem with network
capacity and deadline constraints. The admitted tasks are
guaranteed to meet their individual deadlines.

Supporting Different Network Topologies. Although in this
paper we formulate our optimization for a hierarchical data-
center network topology involving TOR and aggregator
switches, the results can be readily extended to arbitrary
topologies such as fat-tree or Bcube [38], [39]. In particular,
source selection (Phase I) and bandwidth assignment (Phase
III) need to reflect updated link capacity constraints due to
new network topologies, while task prioritization (Phase II)
remains the same. More complicated network topologies,
such as B-cube or fat-tree, may introduce more link capacity
constraints, but they are still linear constraints and can be
solved by linear programming. Since LPST uses task priori-
tization, the complexity of linear programming will still be
limited due to small number of variables.

Complexity Analysis of LPST Algorithm. In this section, we
analyze computational complexity of LPST algorithm.

Remark. The time complexity for Phase I is OðmÞ.

As shown in Table 1,m is the number of tasks and k is the
number of chunks to be transmitted. For m tasks, we need to
make source selection one by one, so there arem iterations in
outer loop. As for each taskAi, if one chunk is lost, we need to
select ki sources fromwi remaining source options andupdate
the link congestion status for other tasks, which has Oðn2Þ
operations. Notice that the parameter n is a very small num-
ber (no more than 25) in a typical erasure coded storage sys-
tems. Therefore,Oðn2Þ can be replaced byO(1). Thus, the time
complexity for source selection isOðmÞ.

Remark. The Phase II has time complexity O(m0logm0).

There arem
0
selected subtasks to be transmitted. Ranking

mk transmissions by their remaining time flexibility has
time complexity O(m0logm0).

Remark. The linear programing block has time complexity

Oððuþ rþm0Þlogðm0Þ=�2 þm0Þ.

According to [40], given a linear programming problem
with a constraintmatrix that hasn non-zeros, r rows, and c col-
umns, a proposed algorithm (with high probability) computes
feasible primal and dual solutions whose costs are within
a factor of 1 + � of opt (the optimal cost) in time Oððrþ cÞ
logðnÞ=�2 þ nÞ. In our linear programming block, the variables
are the assigned bandwidth for transmission tasks selected
from previous phase. In the worst case, all of themk tasks are
selected for scheduling. So the number of variables is at most
mk. Each server to TOR link and TOR to the aggregator link
has one constraint. So there are uþ r rows in the constraint
matrix. At most, there are mk columns in the matrix if all
tasks are placed in the same server. So in the worst case, the
linear programing block has time complexity Oððuþ rþm0Þ
logðm0Þ=�2 þm0Þ. Since selected tasks are only part of original

tasks, this procedure will not be slow and can adapt to more

complicated network topology.
In summary, the time complexity of the entire algorithm

is Oðmþm0logm0 þ ðuþ rþm0Þlogðm0Þ=�2 þm0Þ] The illus-

tration of the algorithm is presented in Algorithm 1.

Example. We use the same example in Fig. 1, Section 3 to
demonstrate how the proposed LPST algorithm jointly sol-
ves the S3 optimization over task scheduling and source
selection. The results are shown in Table 2. We adopt the
following notation: For RTF, we use AiðfÞ to represent that
the task with source Ai currently has remaining time flexi-
bility f . Similarly, we use Aiðv; bÞ to represent a task with

TABLE 1
Table of Key Notations

m number of tasks
ðn; kÞ erasure code parameters
A A set ofm tasks A1; . . . ; Am

RCg A set of tasks traversing TOR/aggregator switch g
SCh A set of tasks using server h
r number of storage servers
u number of racks
CST Link capacity from servers to each TOR
CTA Link capacity from each TOR to the aggregator
xt;i;j Bandwidth assigned at t to send chunk j of task Ai

wi Number of candidate sources/chunks for task Ai

zi Whether task i is completed before deadline
oi;1; . . . ; oi;wi

Candidate sources/chunks for task Ai

o
0
i;s Selected source/chunk for sub-task A

0
i;s

pi (p
0
i) Destination of task Ai (sub-task A

0
i;s)

vi Volume (chunk size) of task Ai

di Deadline of task Ai

si Starting time of task Ai

LRB Least required bandwidth of task Ai

fi (f
0
i;s) RTF of task Ai (sub-task A

0
i;s)

TABLE 2
Illustration of how our LPSTAlgorithm Works for the Example in

Fig. 1, Section 3

Time
Remaining

Time Flexibility Task status

0 A3(7),A4(7), B3(6.5) A3(6,0.6),A4(6,1.4),B3(8,0.76)
B4(6.5),C2(11),C3(11) B4(8,1.24),C2(8,1),C3(8,1)

6.28 A3(2.6),B3(2.6),B4(4.17) A3(2.23,1.5),A4(0,C),B3(3.23,1.5)
C2(7.86),C3(7.86) B4(0.21,0.05),C2(1.72,0.5),C3(1.72,0.5)

7.77 B3(2.23),B4(1.73) A3(0,C),B3(1,0.5)
C2(5.27),C3(5.27) B4(2,1.5),C2(0.98,1),C3(0.98,1)

9.1 B3(1.235) B3(0.33,2),B4(0,C),C2(0,C),C3(0,C)
9.76 B3(0,C), all tasks complete
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remaining volume v and status b, which could be the band-
width value if it is active or a code (i.e., W,C,F) denoting
waiting, completed, and failed task status.

For source selection, we select A3 and A4 as sources for
file A at t ¼ 0. The least required bandwidth for transmit-
ting file A is 6 Gb/10s = 0.6 Gbps. We add 0.6 Gbps to the
congestion factor of the links in the path of transmitting A3

and A4. For file B, the largest congestion factor within B2,
B3 and B4’s path is 1.2 Gbps, 0.6 Gbps and 0. So we select
B3 and B4. Then we update congestion factors. For file C,
the largest congestion factor for C2, C3 and C4 is 0.6 Gbps,
0.76 Gbps, and 0.76 Gbps. Select C2 and C3.

At t ¼ 0, B3 and B4 have the smallest RTF. We assign LRB
(least required bandwidth) of 8/10.5=0.76 Gbps to them ini-
tially and update remaining bandwidth for links in the path
ofB3 andB4. ThenA3 andA4 have secondary RTF and LRB is
0.6 Gbps. Then we assign LRB and update the remaining
bandwidth for links. Then C2 and C3 are assigned LRB of
0.53 Gbps. Tomake full use of available bandwidth resources,
we re-optimize bandwidth for the selected tasks as described
in the last phase of the propsoed LPST algorithm. The result-
ing bandwidth is shown in Table 2. At t ¼ 6:28,A4 completes.
Then we repeat the calculation. At time instant 9.76 second,
all tasks complete successfully.

5 EVALUATION

5.1 Methodology, Simulator, and Experimental
Setup

As discussed in Section 3, our problem space has many
dimensions to explore. To properly evaluate the perfor-
mance of LPST and other algorithms, we conducted exten-
sive simulations and validated the results with experiments in
a real cloud environment.

To this end, we built a custom simulator and a prototype
implementation of all algorithms in an Openstack-based clus-
ter [41]. In addition, we implemented a task generator to feed
tasks into both the simulator and the prototype system for
experiments. The simulator is event-driven and written in
Java. It takes the task generator’s output as input and simulates
the behavior of various algorithms. It captures essential
resource constraints including network topology, bandwidth
limitation, task deadlines, and erasure-code source selection.
We also implemented a prototype system to validate simula-
tion results. Similar to our simulator, our prototype system
takes the task generator’s output as input. However, it actually
schedules the tasks to a real cloud environment managed by
Openstack, and consequently generates real packet transmis-
sions among VMs. Our prototype consists of two sub-
components— task scheduler as a control plane and a rsync [42]
based data plane.

The cloud environment that we conducted experiments
has 16 physical servers, with each server having a 10 Gbps
network connectivity to a single TOR switch. We created
30 VMs to construct a virtual topology with 3 racks and one
aggregation switch. The constructed topology is similar to
Fig. 1, with each rack consisting of 10 servers. Each VM has
2 VCPUs, 4 GB RAM and 40 GB virtual disk drive.3 We use

rsync to limit the bandwidth usage of each scheduled task
in our experiments. Whenever an event occurs according to
a given algorithm, e.g., a task arrives or completes, we
pause ongoing background operations is these VMs, per-
form computations based on the scheduling algorithm, and
send remote ssh commands to VMs to resume data trans-
missions for background jobs. Scheduling parameters such
as allocated bandwidth and transmission time are piggy-
backed on these commands and applied to rsync argu-
ments. Rsync uses delta encoding and supports “suspend”
and “resume” operations for these tasks. When a paused
task is resumed, rsync checks the difference and transmits
the remaining part of the data.

All results presented in this paper in each point are aver-
age values computed over 1000 tasks. We evaluate different
algorithms using three metrics—number of tasks completed
by the deadline, remaining volume, and link utilization.
Remaining volume refers to the amount of data in GB, whose
transmission to the destination server was not completed by
the deadline. Link utilization is the ratio of the total amount
of data that can be transferred through a given network link
to the total amount of data that was actually transferred
through that link. In all settings, erasure-coded chunks are
placed uniformly following the best practices of many dis-
tributed storage system in a real world as discussed in
Section 4.

5.2 Competing Algorithms

We compare LPST against several variants of well-known
heuristic scheduling algorithms. The competing algorithms
that we considered in this paper are three-fold—FIFO and
its variants, EDF and its variants, and Linear Programming.

FIFO Family. Due to its simplicity, First In First Out
(FIFO) scheduling algorithm is widely used in different
problem domains. The algorithm schedules a task to the
first available resource in a sequential manner. FIFO has an
obvious inefficiency when two consecutive tasks share the
same network link. In Fig. 1, consider the case in which the
task A1 is transmitting data from server 2 to server 1 and
the task A2 is sending data from server 8 to server 5. In
FIFO, A2 will need to wait until A1 completes. To address
this issue, we come up with a disjoint version of FIFO (Dis-
FIFO). In DisFIFO, the tasks that do not share network links
can be scheduled at the same time, and consequently result
in better performance. Lastly, all algorithms in FIFO family
choose sources randomly in erasure-coding case.

EDF Family. Earliest Deadline First (EDF) algorithm is
also well-studied in the scheduling literature. In our prob-
lem setting, the EDF algorithm has the same problem like
FIFO. So we developed DisEDF using the similar technique.
The difference between EDF and DisEDF is exactly the
same as that between FIFO and DisFIFO.

Linear Programming. We utilize a recent advance in data-
center networking, i.e., bandwidth reservation, to devise an
algorithm called Linear Programming applied on All tasks
(LPAll). Whenever a new task arrives to the system or a task
finishes, LPAll assigns bandwidth to a given set of tasks
using the linear programming technique. The formulation
is same as that of LPST bandwidth allocation scheme, i.e.,
the objective function is to maximize bandwidth utilization
under link capacity and task deadlines constraints.

3. Due to quota issues, we were limited to 40GB drives. But the
results are not fundamentally affected by small drive size.
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5.3 LPST Performance and Validation of Simulation
Results

Fig. 2 shows results from both simulation and real experi-
ments. Table 3 shows parameters used for simulation and
real experiments. The ”baseline” row shows the common
parameters while other rows show how the variable param-
eters are changed. We used (9,6) erasure code4, which is a
popular erasure-code scheme used by many practical sys-
tems [7], [43].

As shown in Fig. 2a, LPST completes significantly greater
number of tasks within deadline than other algorithms. For
example, compared to FIFO and EDF, LPST completes 7x
and 70x more tasks within deadline. Compared to disjoint
versions of these algorithms (Section 4), LPST still shows
46.6 to 65.9 percent better performance. Compared to even
more optimized algorithms, such as DisEDF and LPAll,
LPST completes 21.8 and 24.8 percent more tasks, respec-
tively. Fig. 2b shows that the amount of data not transmitted
by background jobs within deadline is significantly lower in
LPST than in other algorithms. Fig. 2c shows network utili-
zation by all algorithms averaged over all network links.
Since LPST uses network resources efficiently, it is able to
parallelize background tasks in disjoint network links,
resulting in better performance.

It is not surprising that naive EDF and FIFO algorithms—
who do not consider network topology, source selection
and/or bandwidth constraints—exhibit poor performance.
Notice that they utilize network link capacities poorly
(Fig. 2c, and thus fail in parallelizing data flows across dis-
joint network links. Although FIFO amd EDF have similar
amount of remaining volume, FIFO completes more tasks
within deadline. This is because a scheduled task in EDF

can be interrupted by tasks that arrive later, but have
shorter deadline. This can impact the number of tasks that
finish within deadline negatively. These results show that it
is important to consider network topology when designing
a scheduling algorithm. All enhanced algorithms that take
into account network topology, e.g., DisFIFO and DisEDF,
perform much better than corresponding original algo-
rithms. For example, DisEDF and DisFIFO finish 45x and 5x
more tasks than EDF and FIFO, respectively. Another
important factor that affects the performance of a schedul-
ing algorithm is the proper selection of erasure-code sour-
ces. For example, compared to DisEDF increases the
number of tasks completed within deadline by 36 percent
and reduces remaining volume by 58 percent, while increas-
ing bandwidth utilization slightly. Notice that LPST is still
better than DisEDF. The reason is that, although DisEDF
considers network topology and source selection, it does
not control bandwidth allocations among tasks scheduled
in the same time slot. In contrast, LPST assigns appropriate
amount of bandwidth to each task, resulting in better utili-
zation of network resources for all tasks. Improving the uti-
lization of cloud infrastructure resources is important for
cloud service providers.

It is interesting to observe that LPST performs better than
LPAll, which focuses on optimizing bandwidth utilization.
Note that both LPAll and LPST have very similar bandwidth
utilization. However, LPAll does not consider task deadlines,
which results in a significant degradation in performance.

It should be noted that our goal in presenting perfor-
mance of enhanced algorithms like DisEDF and DisFIFO is
to show that we need to consider all three factors—smart
source selection, appropriate network bandwidth alloca-
tions, and deadline-aware scheduling—together in order to
schedule background tasks efficiently. These are the novel

Fig. 2. Experimental results in a real Openstack cloud environment match very well with the simulation results. LPST outperforms all competing
algorithms.

TABLE 3
Parameters used for Simulation & Experiments

# of
Tasks

Erasure
Code

Arrival
Rate(s�1)

Chunk
Size(MB)

Link
(Mbps) Deadline

Baseline 1000 (9,6) Poisson, 0.1 64 500/1500 þLRT * 10
Each Phase Contribution 1000 (9,6) Poisson, 0.1 64 500/1500 LRT * 10
Foreground Task 1000 (9,6) Poisson, 0.1 64 0� 60%*500/1500, Uniform

Distribution
LRT * 10

(9,6), (14,10) Erasure Code 1000 (9,6) Poisson, 0.1 64 500/1500 LRT * 10
Chunk Size 1000 (9,6) Poisson, 0.1 64�2048 500/1500 LRT * 10
Arrival Rate 1000 (9,6) Poisson, 1/30�2 64 500/1500 LRT * 10
Deadline 1000 (9,6) Poisson, 0.1 64 500/1500 LRT * (2, 5, . . ., 10)

þLeast Required Time.

4. Note that we use ð9; 6Þ and ð6þ 3Þ formats interchangeably.
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aspects of scheduling background traffic in practical data-
center environments.

Fig. 2 also validates that our simulation results closely
resemble real experiment results. The difference between
simulation and experimental results are negligible, less than
2.2 percent. We also performed 10000 other tasks by using
different parameter settings(not included in this paper for
brevity) and the difference between those results and corre-
sponding simulation results was in a similar range. It
should be noted that we cannot cover all the parameter
spaces using experiment because, in real experiments, han-
dling only 200 tasks takes about 3�4 hours, mainly due to
wide spanning task deadline settings.

5.4 Sensitivity Analysis via Simulations

Next we thoroughly investigate the effect of several param-
eters on the performance of various agorithms. We use sim-
ulations for these evaluations. Please note that simulation
results match real experiment results quite well. To make
simulation results more realistic, we use 64MB(which is
used in Google clusters) as default chunk size, and use (9,6)
erasure code(which is used in Google ColossusFS) and
(14,10) erasure code (which is used in Facebook HDFS) as
erasure code patterns. Then, we use parameters from Goo-
gle trace for validation simulation. Overall, for almost all
parameter space we explored, we found that LPST either
outperforms competing algorithms, or performs at least as
good as other algorithms. The parameters used for the sim-
ulation runs are described in Table 3.

Comparison of Each Phase’s Contribution of LPST. We divide
the problem into 3 subproblems - selecting sources, schedul-
ing tasks and assigning bandwidth. Fig. 3a shows the contri-
bution of solving each subproblem in the joint optimization.
We consider 3 new algorithms, each of which is constructed
by keeping our proposed algorithm for 1 subproblem and
applying some simple heuristics to the other 2 subproblems.

The 3 heuristics we use to replace our algorithms for different
subproblems are: 1. selecting sources: randomly pick sources;
2. scheduling tasks: tasks with earlier start time are executed
early; 3. assigning bandwidth: assign the least required band-
width to each task. As shown in Fig. 3a, LPST-P1 finishes
38.61 percent less tasks, while LPST-P2 and LPST-P3 respec-
tively reduce 17.35 and 12.89 percent completed tasks. Thus,
solving the source selection problem has the least contribu-
tion, and assigning bandwidth has the largest contribution
followed by scheduling.

Foreground Task Influence. We conduct a simulation to
show the influence introduced by random and time-varying
foreground tasks in Fig. 3b. Each link capacity has a maxi-
mum capacity of 500 Mbps as CST and 1500 Mbps as CTA.
Random and time-varying Foreground tasks are occupying
link capacity. For those foreground tasks in each link, their
bandwidth utilization are randomly generated between
0 � 10%; 0 � 20%; . . . ; 0 � 60% from a uniform distribution
from time to time. Thus, the mean bandwidth of random
foreground tasks in each link is from 5% � 30%. Whenever
there are large foreground traffic change, or new coming
background task, or completed background task, we do
optimization calculation. LPST always completes the largest
amount of tasks than other competing algorithms. Although
the performance of algorithms decreases with more fore-
ground traffic, the relative benefit of LPST becomes higher,
demonstrating the importance of joint S3 optimization in
heavy and complicated network traffic environment. For
example, when foreground tasks occupy 5 percent link
capacity on average, LPST only completes 13.63 percent
more tasks than LPAll, but this difference enlarges to
48.91 percent when foreground tasks occupy 30 percent link
capacity on average.

Combination of Two Realistic Erasure Codes. We show with
the performance of LPST with combination of 2 realistic era-
sure codes - (9,6) and (14,10) in Fig. 3c. (9,6) erasure code is

Fig. 3. Sensivity analysis vis simulations.
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applied in Google ColossusFS and (14,10) erasure code is
applied in Facebook HDFS[44]. We change the percentage
of (9,6) and (14,10) erasure code among tasks, from
90 percent tasks using (9,6) erasure code and 10 percent
tasks using (14,10) erasure code, to 10 percent tasks using
(9,6) erasure code and 90 percent tasks using (14,10) erasure
code. The performance improves as more tasks employ
(14,10) erasure code. This is because (14,10) erasure code
provides more flexibility in source selection, but the benefit
is not significant due to relatively low contribution of source
selection phase in LPST shown in Fig. 3a.

Chunk Size. We examine the sensitivity of various algo-
rithms with respect to erasure-coded chunk size. Fig. 3a
shows that LPST performs consistently better than other
algorithms in the entire range of data size we used in our
experiments. LPST on average completes 8.76 percent more
tasks than LPAll, 38.75 percent more tasks than DisEDF and
DisFIFO, and 1615.46 percent more tasks than EDF and
FIFO. DisEDF has similar performance as DisFIFO, and so
do EDF and FIFO. In other words, unlike other resources
tightly coupled with the infrastructure, data size has less
impact on the relative performance of these algorithms.
This is mainly because data size impacts all algorithms in a
similar way. Data size does not impact the factors for which
these algorithms are designed. Specifically, data size does
not directly affect parameters like network topology, source
selection, bandwidth allocation, and deadlines.

Arrival Rate. The rate at which background jobs arrive in
the system is an important parameter that can affect perfor-
mance. We conduct a simulation study with different
arrival rates while fixing other parameters. The number of
completed tasks and link utilization(dashed lines) are
shown in Fig. 3e. For the same algorithm, solid line that
indicates the number of completed tasks has the same color
as dashed line that indicates the link utilization. To make
the figure concise, the performance of DisEDF and EDF are
not shown, since they have very similar performance as Dis-
FIFO and FIFO. The impact of arrival rate is quite signifi-
cant, e.g., the number of completed tasks can be degraded
by 48.36 percent under demanding arrival rates, but the link
utilization can be upgraded by 58.02 percent.

Not surprisingly, as the arrival pattern becomes more
sparse, the performance gap between LPST and greedy alter-
natives gets narrower. In the most sparse arrival pattern we
tried (arrival rate of 0.033 tasks per second), many algorithms
perform equally well. However, many algorithms complete
less tasks but have better link utilization when arrival rate
pressure gets higher. In the most dense arrival pattern, LPST
completes 89.09, 99.12 and 1041.63 percent more tasks than
LPAll, DisFIFO and FIFO. By comparing the completed task
number and link utilization of LPST and LPAll, we can see
LPST completes much more tasks than LPAll, although
the link utilization is close. This is because LPAll optimizes
the bandwidth allocation to have high link utilization with-
out considering scheduling, and thus will transmit a lot of
non-urgent data.

Deadline. Next we examine the impact of task deadlines.
We set our deadline as (deadline factor) � (least required time
(LRT)). LRT is a fixed value and can be calculated using

DataSize
FullLinkCapacity. For a given LRT, a higher deadline factor means

there is more time for scheduling. A smaller deadline factor

means there is greater urgency in scheduling tasks to meet
their deadlines.

Fig. 3f shows the number of completed tasks and remain-
ing volume of failed tasks(dashed lines). For the same algo-
rithm, solid line that indicates the number of completed
tasks has the same color as dashed line that indicates the
remaining volume of failed tasks. To make the figure con-
cise, DisFIFO and FIFO are not shown since they have simi-
lar performance of DisEDF and EDF. Overall LPST still
performs significantly better than other algorithms and the
advantage gets larger for tighter deadlines.

By comparing the completed task number and remaining
volume of failed tasks of LPST and LPAll, we can see LPST
complete much more tasks than LPAll although the remain-
ing volumes of both algorithms are similar. This is because
LPAll optimizes the bandwidth allocation without consider-
ing scheduling, and thus will transmit a lot of data but miss
deadlines and leave small amount of remaining volume of
many tasks that have tight deadlines or crowded links.

5.5 Google Trace

We further conduct additional evaluation to validate the abil-
ity of our algorithm to schedule file access requests with real-
world Google trace arrival patterns. Google trace contains all
types of workloads(including but not limited on ”background
traffic” like repair, backup and rebalancing traffic) running on
Google compute cells. Since it does not indicate individual
task type, we use Google trace to test LPST’s performance on
common file access requests - each task only has one source
and one destination. In addition, Google trace provides each
task’s source machine and starting time but does not describe
the data size, network topology, networkmetrics and destina-
tion machine for each task[22], [23]. To make simulation
parameters consistent, we use 64MB chunks, 500 and
1500 Mbps network capacity, 10 deadline factor as parame-
ters. In each simulation iteration, we randomly select
30machines fromGoogle trace data and use 20000 tasks’ start-
ing time from these chosenmachines for simulation. LPST still
performs well. Fig. 4 shows cumulative distribution of algo-
rithms’ normalized completion time by using 20000 Google
trace tasks’ information. Task completion time is normalized
by deadline. For 20000 Google trace tasks, LPST completes 95
percent of tasks, and most of them are completed between 0.5
and 0.8 of their deadlines. LPAll finishes 70 percent of tasks;
DisFIFO and DisEDF finish 30-40 percent tasks; while FIFO
and EDF only finish 5 percent tasks. Although DisFIFO and
DisEDF completemore tasks thanLPSTbefore 0.5�deadlines

Fig. 4. CDF graph for normalized completion time.
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and LPAll completes more tasks than LPST before 0.7 �
deadlines, they complete fewer tasks as expense.

5.6 Overhead

It is quite clear that LPST is more complex than greedy heu-
ristics. But LPST is designed in a practical and scalable way
to handle large number of tasks. In this section, we compare
the computation cost of LPST with LPAll to evaluate the
scalability of LPST. For scalability experiments, we vary the
number of tasks and measure the time required to generate
a scheduling plan. The results are shown in Fig. 5. We see
that LPST’s computation time stays roughly the same even
if we increase the number of tasks significantly. The compu-
tation time of LPAll, however, increases dramatically with
the number of tasks. It is mainly because LPST selects only
a fixed number of most “emergent” tasks—rather than
selecting all tasks as done by LPAll—for computing linear
programming functions.

6 CONCLUSIONS

In this paper, we consider the problem of optimizing back-
ground traffic in erasure-coded distributed storage systems.
Our goal is to maximize the number of tasks meeting dead-
lines under data placement, network topology and band-
width constraints. The proposed solution makes use of
Remaining Time Flexibility to select active tasks for each
scheduling interval and linear programming to apportion
bandwidth among them. Our evaluation results based on
both simulations and experiments on a real cluster showed
that our proposed algorithm significantly outperforms six
competing algorithms. In the future, we plan to evaluate
LPST using other topologies, such as fat-tree or Bcube, and
prove a performance bound for the algorithm.
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