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ABSTRACT
Experience replay is crucial for off-policy reinforcement learning

(RL) methods. By remembering and reusing the experiences from

past different policies, experience replay significantly improves the

training efficiency and stability of RL algorithms. Many decision-

making problems in practice naturally involve multiple agents and

require multi-agent reinforcement learning (MARL) under cen-

tralized training decentralized execution paradigm. Nevertheless,

existing MARL algorithms often adopt standard experience replay

where the transitions are uniformly sampled regardless of their im-

portance. Finding prioritized sampling weights that are optimized

for MARL experience replay has yet to be explored. To this end,

we propose MAC-PO, which formulates optimal prioritized experi-

ence replay for multi-agent problems as a regret minimization over

the sampling weights of transitions. Such optimization is relaxed

and solved using the Lagrangian multiplier approach to obtain the

close-form optimal sampling weights. By minimizing the resulting

policy regret, we can narrow the gap between the current policy

and a nominal optimal policy, thus acquiring an improved prior-

itization scheme for multi-agent tasks. Our experimental results

on Predator-Prey and StarCraft Multi-Agent Challenge environ-

ments demonstrate the effectiveness of our method, having a better

ability to replay important transitions and outperforming other

state-of-the-art baselines.
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1 INTRODUCTION
Reinforcement learning (RL) has demonstrated great success in

solving challenging problems [26, 50]. For off-policy RL, experience
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replay mechanism [31, 40] allows utilizing history experiences in

the replay buffer that stores the most recently collected transitions

for training. It has been shown to significantly improve policy

learning and RL algorithms’ stability. Due to these benefits, various

approaches [49, 51, 66] for computing priority scores of experiences

have been proposed for single-agent RL. For instance, prioritized

experience replay (PER) [49] leverages predefined metrics for pri-

oritizing experience based on the temporal-difference (TD) error

related to the loss of the critic network. It calculates the sampling

probabilities proportional to the magnitude of TD error, resulting in

a non-uniform sampling/prioritization scheme in Q-learning [65].

In practice, we often face RL tasks involving multiple agents shar-

ing the same environment, e.g., in autonomous driving [7, 21] and

robotics and planning [22, 30, 35]. To coordinate multiple agents

and learn desired joint behavior from their collective experiences,

we require multi-agent reinforcement learning (MARL) [2, 24, 60],

such as value-based methods QMIX [46] and QPLEX [61], or policy-

based methods COMA [12] and MADDPG [34]. These approaches

leverage centralized training decentralized execution (CTDE) [27]

and often employ standard memory replay buffers with a uniform

sampling of transition history. However, in MARL problems, such

a standard sampling strategy of the replay buffer cannot reflect

the dynamics in the environment caused by multi-agent interac-

tions. Therefore, indiscriminately training from past experiences

will make agents less capable of using experiences optimally. Al-

though we can impart existing single-agent prioritization schemes

directly to the joint action-value function of MARL, such a naive ap-

plication is oblivious to the interaction between multiple agents in

the shared environment and may lead to sub-optimal performance.

Thus, priority optimization for experience replay in MARL is still

an open problem.

To this end, we propose MAC-PO, which formulates MARL pri-

oritized experience replay problems as a regret minimization over

the sampling weights of different state-action values. Specifically,

we define policy regret as the difference between the expected dis-

counted reward of a nominal optimal policy and that of the current

policy under given sampling weights. By minimizing such a pol-

icy regret by considering its upper bound, we can narrow the gap

between the optimal and current policies with respect to the sam-

pling weights, leading to an optimal solution of sampling weights

with minimum regret. We note that similar regret minimization

techniques have been employed in single-agent RL settings [33].



Our paper expands it to analyze multi-agent prioritized experience

replay and develops new solutions, e.g., to handle joint actions of

multiple agents and to analyze concurrent optimality constraints. It

turns out that the optimal sampling weights in MARL now depend

on the collective policies of decentralized agents. To the best of

our knowledge, this is the first proposal for optimizing prioritized

experience replay in cooperative MARL.

In particular, we show that the proposed optimization can be

solved via the Lagrangian multiplier method [4] considering an

upper bound of the regret. Since we focus on multi-agent prioritized

experience replay problems, the optimization objective is defined

by the joint policy of all agents. Therefore, when we further analyze

the Lagrangian conditions for optimality, the agents’ conditions

depend on each other and become a vector form. Further, by ex-

amining a weighted Bellman equation, we leverage the implicit

function theorem [28] for multiple agents and apply a group of

Karush–Kuhn–Tucker (KKT) [14] conditions to find the optimal

sampling weights in closed form.

Our results illuminate the key principles contributing to opti-

mal sampling weights in multi-agent prioritized experience replay.

The optimal sampling weights can be interpreted to consist of four

components: Bellman error, value enhancement, on-policiness of

available transitions, and a new term depending on joint action

probabilities. While the first three have been identified in single

agent settings [29, 33], our paper shed light on a new term - as a

function of joint action probabilities - to reveal that optimal sam-

pling weights of multi-agent prioritized experience replay should

depend on the interaction among all the agents within an envi-

ronment. More specifically, we should assign the highest sampling

weights to transitions only if one agent’s action probability is small

in the transition while all other agents’ action probabilities are

large. The result – slightly counter-intuitive since higher weights

are assigned to transitions with more differentiated action probabil-

ities (rather than similar ones) – is quantified and formalized as a

new theorem in our paper. Based on this result, we also present an

approximated solution for estimating sampling weights in problems

involving many agents or having limited information for an exact

solution.

Following the theoretical analysis, we propose a MARL algo-

rithm,MAC-PO, for multi-agent prioritized experience replay via re-

gret minimization. Like existing methods, MAC-PO can be plugged

into any MARL algorithms with a memory replay buffer. We vali-

date the effectiveness of MAC-PO in StarCraft Multi-Agent Chal-

lenge (SMAC) [48] and Predator-Prey [5] through comparison with

other single-agent experience replay methods (adapted to MARL

problems by considering all agents as a conceptual agent). Moreover,

we also compared MAC-PO with state-of-the-art MARL algorithms.

In the experiments, MAC-PO demonstrates improved convergence

and superior empirical performance.

The main contributions of our work are as follows:

• We propose a novel method, MAC-PO, which formulates

multi-agent experience replay as a policy regret minimiza-

tion and solves the optimal sampling weights in closed form.

• The theoretical results illuminate a new factor in optimal

sampling weights and motivate the design of new MARL

experience replay algorithms with both exact and approxi-

mated weights.

• Experiment results of MAC-PO in SMAC and Predator-Prey

environments demonstrate superior convergence and empiri-

cal performance over various baselines, including experience

replay and state-of-the-art MARL methods.

2 BACKGROUND
2.1 Partially Observable Markov Decision

Process
In this work, we consider a multi-agent sequential decision-making

task as a decentralized partially observable Markov decision process

(Dec-POMDP) [44] consisting of a tuple 𝐺 = ⟨𝑆,𝑈 , 𝑃, 𝑅, 𝑍,𝑂, 𝑛,𝛾⟩,
where 𝑠 ∈ 𝑆 describes the global state of the environment. At each

time step, each agent 𝑎 ∈ 𝐴 ≡ {1, . . . , 𝑛} selects an action 𝑢𝑎 ∈ 𝑈 ,

and all selected actions combine and form a joint action u ∈ U ≡ 𝑈𝑛
.

Such a process leads to a transition in the environment based on

the state transition function 𝑃 (𝑠′ |𝑠, u) : 𝑆 × U × 𝑆 → [0, 1]. All
agents share the same reward function 𝑟 (𝑠, u) : 𝑆 × U → R with a

discount factor 𝛾 ∈ [0, 1).
In the partially observable environment, the agents’ individual

observations 𝑧 ∈ 𝑍 are generated by the observation function

𝑂 (𝑠,𝑢) : 𝑆 ×𝐴 → 𝑍 . Each agent has an action-observation history

𝜏𝑎 ∈ 𝑇 ≡ (𝑍 ×𝑈 )∗. Conditioning on the history, the policy becomes

𝜋𝑎 (𝑢𝑎 |𝜏𝑎) : 𝑇 ×𝑈 → [0, 1]. The joint policy 𝝅 has a joint action-

value function: 𝑄𝜋 (𝑠𝑡 , u𝑡 ) = E𝑠𝑡+1:∞,u𝑡+1:∞ [𝑅𝑡 |𝑠𝑡 , u𝑡 ], where 𝑡 is the
timestep and 𝑅𝑡 =

∑∞
𝑖=0

𝛾𝑖𝑟𝑡+𝑖 is the discounted return. In this

paper, we adopt the CTDE mechanism. The learning algorithm has

access to all local action-observation histories 𝝉 and global state

𝑠 during training, yet every agent can only access its individual

history in execution. Although we compute individual policy based

on histories in practice, following the existing work [54], we will

use 𝜋𝑎 (𝑢𝑎 |𝑠) in analysis and proofs for simplicity.

2.2 Policy Regret
In MARL, we aim to find a joint policy 𝝅 that can maximize the

expected return: 𝜂 (𝝅) = E𝝅 [
∑∞
𝑖=0

𝛾𝑖𝑟𝑡+𝑖 ]. For a fixed policy, the

Markov decision process becomes a Markov reward process, where

the discounted state distribution is defined as 𝑑𝝅 (𝑠). Similarly,

the discounted state-action distribution is defined as 𝑑𝝅 (𝑠, u) =

𝑑𝝅 (𝑠)𝝅 (u|𝑠). Then, we will have the expected return rewritten as

𝜂 (𝝅) = 1

1−𝛾 E𝑑𝝅 (𝑠,u) [𝑟 (𝑠, u)].
We assume a nominal optimal joint policy 𝝅∗

such that 𝝅∗ =

arg max𝝅 𝜂 (𝝅). The regret of the joint policy 𝝅 is the difference be-

tween the expected discounted reward of an optimal policy and that

of the current policy as regret(𝝅) = 𝜂 (𝝅∗)−𝜂 (𝝅). The policy regret
measures the expected loss when following the current policy 𝝅
instead of optimal policy 𝝅∗

. Since 𝜂 (𝝅∗) is a constant, minimizing

the regret is consistent with maximizing of expected return 𝜂 (𝝅).
In this paper, we use regret as an alternative optimization objective

for finding the optimal sampling weight in MARL tasks, along with

multiple constraints, such as the Bellman equation. By minimizing

the regret, the current joint policy 𝝅𝑘 of all agents’ actions will

approach the optimum 𝝅∗
.



2.3 Connection of Prioritized Sampling and
Weighted Loss Function

The design of prioritized sampling methods is not isolated from

the loss function. Instead, the expected gradient of a loss function

with non-uniform sampling is equivalent to that of a weighted loss

function with uniform sampling, which facilitates the design of

prioritized sampling algorithms [13]. Given a data sample set 𝐷 of

size 𝑑 , a regular loss function 𝐿1 where we use a specific priority

scheme 𝑝𝑟 (·) to sample the transitions, and another loss function

𝐿2 whose transitions are sampled uniformly, the two approaches

are equivalent if we have the following requisition satisfied:

∇𝑄𝐿1 =
𝜒

𝑝𝑟
∇𝑄𝐿2,

where 𝜒 =

∑
𝑖 𝑝𝑟 (𝑖 )
𝑑

and 𝑖 ∈ 𝐷 is the uniformly sampled instance.

We can leverage such equivalence to analyze the correctness of

approaches using non-uniform sampling by transforming the loss

into the uniform-sampling equivalent or considering whether the

new loss is in line with the target objective. It also provides a recipe

for transforming a regular loss function 𝐿1 with a non-uniform

sampling scheme into an equivalent weighted loss function 𝐿2 with

uniform sampling.

3 RELATEDWORKS
3.1 MARL Algorithms
MARL algorithms have developed into neural-network-based meth-

ods that can cope with high-dimensional state and action spaces.

Early methods practice finding policies for a multi-agent system

by directly learning decentralized value functions or policies. For

example, independent Q-learning [57] trains independent action-

value functions for each agent via Q-learning. [56] extends this

technique to DQN [40]. Recently, approaches for CTDE have come

up as centralized learning of joint actions that can conveniently

solve coordination problems without introducing non-stationary.

COMA [12] uses a centralized critic to train decentralized actors

to estimate a counterfactual advantage function for every agent.

Similar works [17, 34] are also proposed based on such analysis.

Under CTDE manner, value decomposition approaches [8, 16] are

widely used in value-based MARL. Such methods integrate each

agent’s local action-value functions through a learnable mixing

function to generate global action values. For instance, QMIX [46]

estimates the optimal joint action-value function by combining

mentioned utilities via a continuous state-dependent monotonic

function generated by a feed-forward mixing network with non-

negative weights. QTRAN [52] and QPLEX [61] further extend

the class of value functions that can be represented. ReMIX [39]

provides a factorization weighting scheme to find the optimal pro-

jection of an unrestricted mixing function onto monotonic function

classes. PAC[69] and LAS-SAC[70] proposes to use latent assisted

information [38] as extra-state information for better value fac-

torization. Aside from methods focusing on tackling cooperative

problems, other mechanisms can also solve competitive problems

or mixed problems. MADDPG [34] utilizes the ensemble of poli-

cies for each agent that leads to more robust multi-agent policies,

showing strength in cooperative and competitive scenarios. Beyond

that, the extensions [15, 23, 53] of MADDPG have been proposed

to realize further optimization towards the original algorithm. In

this paper, we focus on the cooperative setting and leverage a

standard QMIX with a monotonic mixing network, along with an

unrestricted QMIX [45] without a monotonic function for retrieving

the optimal joint policy.

3.2 Single-Agent Experience Replay
Many RL algorithms adopt prioritization to increase the learning

speed, initially originating from prioritized sweeping for value

iteration [41, 59]. Besides, they have also been used in other modern

applications, such as learning from demonstrations [18]. Prioritized

experience replay [49] is one of several popular improvements to the

DQN algorithms [58, 64] and has been included in many algorithms

combining multiple improvements [3, 19]. Variations of PER have

been proposed for considering sequences of transitions [6, 9] or

optimizing the prioritization function [66]. Furthermore, to favor

recent transitions without explicit prioritization, alternate replay

buffers have been raised [42]. [10, 67] studied the composition

and size of the replay buffer, and [32] looked into prioritization

in simple environments. Other important sampling approaches

also greatly improved the performance. [29] re-weights updates

to reduce variance. [33] uses the regret minimization method to

design the prioritized experience replay scheme for the only agent

in the environment. MaPER [43] employsmodel learning to improve

experience replay by using a model-augmented critic network and

modifying the rule of priority. Also, new loss function designs

can help develop prioritization schemes [55]. So far, most works

about experience replay are designed for single-agent reinforcement

learning, and a limited number of works [1, 11, 63] investigate

the possible extensions. In this paper, we proposed MAC-PO for

MARL tasks by considering the interaction among multiple agents

through collective priority optimization to seek an optimal multi-

agent prioritization mechanism.

4 METHODOLOGY
4.1 Problem Formulation
Let 𝑄𝑘 denote the action-value function at iteration 𝑘 . We lever-

age B∗𝑄𝑘−1
as the target with a Bellman operator B∗

and up-

date 𝑄𝑘 in tandem using a weighted Bellman equation: 𝑄𝑘 =

arg min𝑄∈Q E𝜇 [𝑤𝑘 (𝑠, u) (𝑄 −B∗𝑄𝑘−1
)2 (𝑠, u)], where𝑤𝑘 (𝑠, u) rep-

resent non-negative sampling weights for different transitions that

need to be optimized for the experience replay.

To formulate the policy regret with respect to the joint action-

value function, we consider a Boltzmann policy 𝝅𝑘 corresponding

to each agent’s individual utilities 𝑄𝑎
𝑘
, i.e., 𝝅𝑘 = [𝜋1

𝑘
, ..., 𝜋𝑛

𝑘
]T

and

𝜋𝑎
𝑘

= 𝑒𝑄
𝑎
𝑘
(𝜏𝑎,𝑢𝑎 )/∑𝜏𝑎,𝑢

′
𝑎
𝑒𝑄

𝑎
𝑘
(𝜏𝑎,𝑢′

𝑎 ) . Our objective is to minimize

the policy regret 𝜂 (𝝅∗) −𝜂 (𝝅) over non-negative sampling weights

under relevant constraints, i.e.,

min

𝑤𝑘

𝜂 (𝝅∗) − 𝜂 (𝝅𝑘 )

s.t. 𝑄𝑘 = arg min

𝑄∈Q
E𝜇 [𝑤𝑘 (𝑠, u) (𝑄 − B∗𝑄𝑘−1

)2 (𝑠, u)],

E𝜇 [𝑤𝑘 (𝑠, u)] = 1, 𝑤𝑘 (𝑠, u) ≥ 0,

(1)

where 𝝅𝑘 and 𝝅∗
𝑘
are Boltzmann policies for the current and nom-

inal optimal policy, and the latter can be obtained from another



network. The sampling weights must sum up to 1, and 𝜇 is the dis-

tribution that we uniformly sample data from the replay buffer. An

additional table to summarize and explain the common notations

is provided in Appendix A.

4.2 Solving Optimal Sampling Weights for
Experience Replay

Our goal is to seek the optimal priority by minimizing the regret at

every iteration 𝑘 , with respect to the weight 𝑤 used for Bellman

error minimization at iteration 𝑘 . For this purpose, we consider

an upper bound of the relaxed regret objective and formulate its

Lagrangian by introducing Lagrangian multipliers regarding the

constraints. It allows us to solve the proposed regret-minimization

problem and obtain optimal projection weights in closed form (al-

beit with a normalization factor 𝑍 ∗
).

Theorem 1 (Optimal sampling weight). The optimal weight
𝑤𝑘 (𝑠, u) to a relaxation of the regret minimization problem in Equa-
tion (1) with discrete action space is given by:

𝑤𝑘 (𝑠, u) =
1

𝑍 ∗ (𝐸𝑘 (𝑠, u) + 𝜖𝑘 (𝑠, u)), (2)

where we have:

𝐸𝑘 (𝑠, u) =
𝑑𝝅𝑘 (𝑠, u)
𝜇 (𝑠, u) |𝑄𝑘 − B∗𝑄𝑘−1

|

· exp(−|𝑄𝑘 −𝑄∗ |)
©«1 +

𝑛∑︁
𝑖=1

𝑛∏
𝑗=1

𝑗≠𝑖

𝜋
𝑗

𝑘
− 𝑛

𝑛∏
𝑖=1

𝜋𝑖
𝑘

ª®®®¬ ,
(3)

where 𝑍 ∗ is the normalization factor, and 𝜖𝑘 (𝑠, u) is a negligible term
when the probability of reversing back to the visited state is small or
the number of steps agents take to revisit a previous state is large.

Proof (Sketch). We give a sketch of the steps involved for com-

pleteness below. The complete proof is provided in the Appendix B.

The derivation of optimal weights consists of the following major

steps: (i) Use a relaxation and Jensen’s inequality to obtain a more

tractable upper bound of the regret objective for minimization. (ii)

Formulate the Lagrangian for the new optimization problem and

analyze its KKT conditions. (iii) Compute various terms in the KKT

condition and, in particular, analyze the gradient of𝑄𝑘 with respect

to weights 𝑝𝑘 (defined through the weighted Bellman equation)

by leveraging the implicit function theorem (IFT). (iv) Derive the

optimal projection weights in closed form by setting the Lagrangian

gradient to zero and applying KKT and its slackness conditions.

Step 1: Relaxing the objective and using Jensen’s Inequality. To
begin with, we replace the original optimization objective function,

the policy regret, with a relaxed upper bound. This replacement

can be achieved through the following inequality:

𝜂 (𝜋∗) − 𝜂 (𝜋𝑘 ) ≤ E𝑑𝝅𝑘 (𝑠,u) [|𝑄𝑘 −𝑄∗ | (𝑠, u)] . (4)

The proof of this result is given in the appendix. The key idea

is to rewrite the regret using the expectation of the action-value

functions with respect to discounted state distribution 𝑑𝜋𝑘 . Af-

ter that, we adopt Jensen’s inequality [36] to continue relaxing

the intermediate objective function. Consider a convex function

𝑔(𝑥) = exp(−𝑥), a new optimization objective relaxed via Jensen’s

inequality generated from Equation (4) becomes:

min

𝑤𝑘

− logE𝑑𝝅𝑘 (𝑠,u) [exp(−|𝑄𝑘 −𝑄∗ |) (𝑠, u)], (5)

where the constraints still hold for the new optimization objective.

Step 2: Computing the Lagrangian. In this step, we leverage the

Lagrangian multiplier method to solve the new optimization prob-

lem in Equation (5). For simplicity, we use 𝑝𝑘 that absorbs the data

distribution 𝜇 into𝑤𝑘 . The constructed Lagrangian is:

L(𝑝𝑘 ; 𝜆,𝜓 ) = − logE𝑑𝝅𝑘 (𝑠,u) [exp(−|𝑄𝑘 −𝑄∗ |) (𝑠, u)]

+ 𝜆(
∑︁
𝑠,u

𝑝𝑘 − 1) −𝜓T𝑝𝑘 ,

where 𝑝𝑘 is the weight 𝑤𝑘 multiplied by the data distribution 𝜇,

and 𝜆,𝜓 are the Lagrange multipliers.

Step 3: Computing the Gradients Required in the Lagrangian. Ac-
cording to the first constraint in Equation (1), the gradient

𝜕𝑄𝑘

𝜕𝑝𝑘
can

be computed via IFT given by:

𝜕𝑄𝑘

𝜕𝑝𝑘
= −[diag(𝑝𝑘 )]−1 [diag|𝑄𝑘 − B∗𝑄𝑘−1

|] .

We also derive the gradient
𝜕𝑑𝝅𝑘 (𝑠,u)

𝜕𝑝𝑘
for solving the Lagrangian.

The derivation details are given in the appendix.

Step 4: Deriving the Optimal Weight. After having the equation
for two gradients and an expression of the Lagrangian, we can

compute the optimal 𝑝𝑘 via an application of the KKT conditions,

which needs to set the partial derivative of the Lagrangian equaling

to zero, as:

𝜕L(𝑝𝑘 ; 𝜆,𝜓 )
𝜕𝑝𝑘

= 0,

where the optimal weight𝑤𝑘 can be acquired from the 𝑝𝑘 .

□

The theoretical results shed light on the key factors determining

an optimal sampling weight for experience replay. Specifically, the

optimal weights consist of four components relating to the Bellman

error, the value enhancement, the joint action probability, and the

on-policiness of available transitions. We will interpret these four

components next, provide the analyses of some special cases in

which the transitions will be assigned with higher weights, and

develop a deep MARL algorithm through approximations of the

optimal sampling weights.

Bellman error |𝑄𝑘 − B∗𝑄𝑘−1
|: is the estimation of the action

value function after the Bellman update. This term measures the

distance between the estimation and the Bellman target. A signifi-

cant difference in this term means higher hindsight Bellman error

and will lead to higher sampling weight assignment. This character

is also similar to the prioritization criterion used in PER, which nev-

ertheless considers more about the Bellman error in the previous

iterations, i.e., |𝑄𝑘−1
− B∗𝑄𝑘−2

|.
Value enhancement exp(−|𝑄𝑘−𝑄∗ |): As we compute the absolute

value between the current and optimal action-value function, the

value enhancement term indicates that any transitions with less

accurate action values compared to the optimal value estimation

(i.e., a wider gap between 𝑄𝑘 and 𝑄∗
) after the Bellman update

should be assigned with lower weights. Conversely, a high sampling



weight will be given if the current action value is approaching the

optimal one.

Joint action probability 1 + ∑𝑛
𝑖=1

∏𝑛
𝑗=1, 𝑗≠𝑖 𝜋

𝑗

𝑘
− 𝑛

∏𝑛
𝑖=1

𝜋𝑖
𝑘
: The

agent policies determine the probabilities of choosing certain ac-

tions. This result turns out that the optimal sampling weights de-

pend on the individual policy of each agent as well, which is unique

in the MARL task. According to this term, higher sampling weights

will be assigned to transitions only if one agent’s action probability

is small in the transition while all other agents’ action probabilities

are large. This is a little counter-intuitive because we give higher

weights to transitions with more differentiated action probabilities

rather than similar ones. We will provide a thorough analysis in

section 4.3 regarding studying the condition for the highest weight

assignment in the general multi-agent scenario.

Measurement of on-policy transitions 𝑑𝝅𝑘 (𝑠,u)
𝜇 (𝑠,u) : The efficient up-

date of the joint action value function can be achieved by focusing

on transitions that are more possibly to be visited by the current

policy, i.e., with a higher 𝑑𝝅𝑘 (𝑠, u). Such strategy has been empiri-

cally studied in existing works [51]. Adding this term can speed up

the search for the optimal 𝑄𝑘 close to 𝑄∗
.

4.3 Approximated Weights via Joint Action
Probability Studies

Theorem 1 shows terms determining the sampling weights needed

for transitions, where a function of the joint action probability is

the new result for MARL tasks. Although numerical calculation for

the joint action probability is available, to lower the computational

complexity when the environment has many agents involved, we

develop an approximated weighting scheme that can determine the

joint action probability via action probabilities and action-value

functions of agents. For this purpose, we present a new theorem

indicating the condition for obtaining maximum probability and

several special case studies.

For the environment, we consider a general MARL scenario with

agent space of 𝑛, where we have 𝑎 ∈ 𝐴 ≡ {1, . . . , 𝑛}. Every step,

each agent 𝑎 selects an action from its action space𝑈 𝑎
, following

𝑢𝑖𝑎 ∈ 𝑈 𝑎 ≡ {𝑢1

𝑎, ..., 𝑢
𝑚𝑎
𝑎 }, where𝑚𝑎 is the size of action space of

agent 𝑎. Let the 𝑢𝑎 ∈ 𝑈 𝑎
denote the selected action of agent 𝑎

at the step 𝑘 from the action space. Due to the CTDE manner of

MARL algorithms, the joint action value function space Q contains

the combinations of 𝑢𝑖𝑎 (𝑖 ranges from 1 to𝑚𝑎) for each agent 𝑎.

For simplicity, we use 𝑄𝑖 to be the shorthand of 𝑄 (𝑠,𝑢𝑖1
1
, . . . , 𝑢

𝑖𝑛
𝑛 ),

which represent a random action value function from Q space.

In particular, considering one selected action combination ū =

(𝑢1, . . . , 𝑢𝑛), the joint action-value function is 𝑄 = 𝑄 (𝑠, ū). Since
we use Boltzmann policy to compute the action probability, for one

agent 𝑎 ∈ 𝐴 with the action 𝑢𝑎 , its individual policy is:

𝜋𝑎
𝑘
=

𝑒
E
𝑢
𝑗
−𝑎∼𝜇

𝑄 (𝑠,𝑢𝑎,𝑢 𝑗
−𝑎 )∑𝑚𝑎

𝑖=1
𝑒
E
𝑢
𝑗
−𝑎∼𝜇

𝑄 (𝑠,𝑢𝑖
𝑎,𝑢

𝑗
−𝑎 )

=
𝑒
∑

−𝑎
∑

𝑗 𝜇𝑄 (𝑠,𝑢𝑎,𝑢 𝑗
−𝑎 )∑𝑚𝑎

𝑖=1
𝑒
∑

−𝑎
∑

𝑗 𝜇𝑄 (𝑠,𝑢𝑖
𝑎,𝑢

𝑗
−𝑎 )

, (6)

where −𝑎 represents all the agents except for target agent 𝑎, and 𝜇

is short for 𝜇 (𝑠,𝑢𝑖1
1
, . . . , 𝑢

𝑖𝑛
𝑛 ) representing the data distribution.

Under the general environmental setting, the state 𝑠 will be fixed

at each iteration, and the size of the action value function space

Q is

∏𝑛
𝑎=1

𝑚𝑎 with the dimension of 𝑛. Let the following function

denotes the joint action probability:

𝑓
def
= 1 +

𝑛∑︁
𝑖=1

𝑛∏
𝑗=1

𝑗≠𝑖

𝜋
𝑗

𝑘
− 𝑛

𝑛∏
𝑖=1

𝜋𝑖
𝑘
, (7)

and we will provide another theorem indicating the conditions

where we can acquire the maximum value of joint probability 𝑓 in

Equation (3).

Theorem 2 (Maximum probability conditions). Considering
a selected action value 𝑄 with action combination ū of the step 𝑘 , the
joint action probability function reaches its maximum 𝑓max if and
only if the value of each action probability 𝜋𝑖

𝑘
is on the boundary (i.e.,

either 0 or 1) as well as at least one probability 𝜋𝑎
𝑘
equals to 0.

Proof. See Appendix C. □

Based on Theorem 2, a higher joint action probability will be as-

signed to 𝑄 of which agents’ action probabilities are on the bound-

ary of the interval [0, 1] and at least one of the agents have its

probability equaling 0. This conclusion casts light on determining

the approximated sampling weights for MARL tasks. To better il-

lustrate such an idea, we introduce several special case studies with

respect to the selected 𝑄 at step 𝑘 .

Case 1: single large value 𝑄 . In this case, we assume only one

action value 𝑄 out of the action value function space Q is large,

and values 𝑄𝑖 of other action combinations elsewhere are negli-

gibly small, represented by 𝜈 . These small values obey 𝜈 ≈ 0 and

𝜈 ≪ 𝑄𝑚 . Therefore, according to Equation (6) and Theorem 2, the

joint action probability for the selected action combination of 𝑄

is lower since the action probability 𝜋𝑎
𝑘
for each agent is similarly

large. In contrast, the action combinations with only one action

difference (e.g., 𝑄 (𝑠, ū−𝑎1
, 𝑢𝑖𝑎1

)) will be given with high weights 𝛼ℎ .

The remaining position, such as the action combinations with two

or more different actions, along with 𝑄 , will be assigned with low

weight 𝛼𝑙 .

Case 2: dual large values𝑄,𝑄 ′.We propose only two large values

𝑄 ≈ 𝑄 ′
under this setting. Other positions are filled with negli-

gible value 𝜈 . 𝑄 ′
is the very same as 𝑄 except that one agent’s

action is different, i.e., 𝑄𝑚 = 𝑄 (𝑠, ū) and 𝑄 ′ = 𝑄 (𝑠, ū−𝑎1
, 𝑢𝑖𝑎1

).
Since two large values equally share the importance over the action

value space, based on given equations/conditions, we can drive

those action combinations with only one different agent’s action

other than agent 𝑎 will be assigned with medium weights 𝛼𝑚 , e.g.,

𝑄 (𝑠, ū−(𝑎1,𝑎2 ) , 𝑢
𝑖
𝑎1

, 𝑢
𝑗
𝑎2
). The positions where action combination

with one action difference over agent 𝑎1 will receive high weights

𝛼ℎ , e.g., 𝑄 (𝑠, ū−𝑎1
, 𝑢𝑖

′
𝑎1

). Besides, we will give low weight 𝛼𝑙 for

other locations.

Case 3: isolated large value 𝑄 ′′ and 𝑄 . Apart from given 𝑄 , we

assume an isolated large value with two or more actions different

from𝑄 , i.e.,𝑄 ′′ = 𝑄 (𝑠, ū−(𝑎1,𝑎2 ) , 𝑢
𝑖
𝑎1

, 𝑢
𝑗
𝑎2
), which exists somewhere

in the action value function space, and satisfies 𝑄 ≈ 𝑄 ′′
. Other

action values are 𝜈 . In this situation, both two large values share

the same importance, and we will assign the medium weight 𝛼𝑚
to 𝑄 , 𝑄 ′′

, and the action combinations having one action different

over agent 𝑎1 or 𝑎2, such as𝑄 (𝑠, ū−(𝑎1,𝑎2 ) , 𝑢
𝑖′
𝑎1

, 𝑢
𝑗
𝑎2
). The rest of the

action combination values will be allocated with low weight 𝛼𝑙 .

This special case demonstrates that if one or more action values



are extraordinarily large, indicating another joint policy candidate

with latent high joint action probability, we should also heed such

equivalent competitor and its local search.

We can establish the approximation structure by studying from

mentioned special cases. The scaled weights 𝛼𝑙 , 𝛼𝑚 , and 𝛼ℎ provide

an alternative solution that spares us from directly using the numer-

ically computed sampling weights to solve the latent computational

cost, yet the performance remains mainly impervious.

4.4 Proposed Algorithms
Our analytical results in Theorem 1 identify four key factors deter-

mining the optimal projection weights. The first term, relating to

the Bellman error, recovers the designs in classic prioritized expe-

rience replay. Specifically, when the Bellman error of a particular

transition is high, which indicates a wide hindsight gap between𝑄𝑘

and the Bellman target, we may consider assigning a larger weight

to this transition. Besides, the value enhancement term selectively

emphasizes the importance of incoming transitions. Based on the

difference between current 𝑄𝑘 and ideal 𝑄∗
, it will compensate

the near-optimal 𝑄𝑘 with larger importance while penalizing non-

optimal𝑄𝑘 with a smaller weighting modifier. Moreover, similar to

previous studies, the measurement of on-policy transitions in the

weighting expression underlines the useful information carried by

more current, on-policy transitions.

Our analysis also identifies a new term reflecting the interaction

among agents in the MARL scenario: the joint action probability

of multiple agents, which is crucial in obtaining optimal sampling

weights for specific transitions. We interpret the joint action proba-

bility term in optimal weights constrained by the given condition:

one agent’s action probability is small in the transition, while all

other agents’ action probabilities are large. We increase the weights

for transitions satisfying this condition. On the contrary, we de-

crease the weight if the condition fails to be satisfied.

Following these theoretical results, we propose a MARL algo-

rithm for collective priority optimization, MAC-PO, with regret-

minimizing joint policy in multi-agent environments. We consider

a new loss function with respect to the optimal sampling weights

𝑤𝑘 applied to the Bellman equation of, i.e.,

𝐿MAC−PO =

𝑏∑︁
𝑖=1

𝑤𝑘 (𝑠, u) (𝑄𝑘 − 𝑦𝑖 )2 (𝑠, u), (8)

where 𝑏 is the batch size, and 𝑦𝑖 = B∗𝑄𝑘−1
is a fixed target that

can be obtained through a target network.

The Bellman error and joint action probability of all agents in

the environment can be directly computed using Theorem 1. To

compute the sampling weights for value enhancement term in prac-

tice, we use the backbone of the classical value factorization MARL

algorithm QMIX and leverage the unrestricted joint action-value

function 𝑄∗
to compute the approximated optimal action-value

function quantitatively. Ideally, we could have included measure-

ment of on-policy transitions term in the computation, but it is not

readily available since the distribution 𝑑𝝅𝑘 (𝑠, u) in the numerator

cannot be directly obtained. It is also worth mentioning that such

term can be dismissed and the other terms in the weight expression

are enough to provide a good estimate and lead to performance

improvements, as shown in existing work [29]. Furthermore, based

on our previous discussion, we designed an approximated counter-

part, MAC-PO Approximation, by setting the threshold and scaling

sampling weights values into low, medium, and high ones. The

pseudo-codes are provided in Appendix D.

5 EXPERIMENTS
In this section, we present our experimental results on Predator-

Prey and SMAC benchmarks and demonstrate the effectiveness

of MAC-PO by comparing the results with several state-of-the-art

MARL baselines. Additionally, we compare MAC-PO and MAC-PO

Approximation with other experience replay methods adapted from

single-agent RL to multi-agent environments. Each comparison is

implemented independently with fixed and optimized [37] hyper-

parameters. We also conduct the ablation experiments to discuss

the contribution of each term mentioned in Theorem 1. More imple-

mentation details are provided in Appendix E. The code has been

made available at: https://github.com/ysmei97/MAC-PO.

5.1 Comparison with Existing Experience
Replay Methods

In this experiment, we compare MAC-PO with other experience

replay methods in the multi-agent environment SMAC. Since exist-

ing experience replay methods are designed for the single-agent

scenario, we borrow their core designs and transplant them tomulti-

agent environments by considering all agents as the conceptual

agent to match the single-agent target in their original settings.

Such transplanting will recover the most important ingredients

from RL to MARL to the greatest extent. It is worth mentioning

that many other algorithms are also introducing a variety of ex-

perience replay schemes. Some of them [43, 55] depend on new

components, and others [47] have different algorithm architectures.

Since the backbone MARL algorithm of our choice in this exper-

iment is QMIX, we do not expect a significant change over the

algorithm architecture (e.g., actor-network) or major components

(e.g., loss structure) as presented in other approaches to realize a

relatively fair comparison.

The first approach for comparing is PER [49]. Due to the equiv-

alence between loss functions and non-uniform sampling for ex-

perience replay [13], we reconstruct PER scheme by computing

weights only related to the current TD error regarding the joint

action-value function. We also compare our method with the one

mentioned in DisCor [29], where the weights are calculated from

the production of Bellman error and value enhancement terms,

and ReMERN [33], which has an additional term describing action

likelihood, and we extend it to the multi-agent case. Besides, we

transplanted the mechanism from PSER [6], which is another ex-

tension of PER, by applying an additional decay factor and window

size on the weights for coming transitions. For this experiment, we

set the decay factor as 0.4 and the window size as 5.

Figure 1 shows the performance comparison among MAC-PO

and other experience replay algorithms on three maps of SMAC

benchmark, which are 3s_vs_5z, 5m_vs_6m, and MMM2. Compared

to MAC-PO, other experience replay schemes underperform in im-

proving learning performance. DisCor and ReMERN have higher

final winning rates than the regular PER, demonstrating the ef-

fectiveness of additional terms. PSER also acts better than PER

https://github.com/ysmei97/MAC-PO
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(b) 5m_vs_6m (super hard)
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Figure 1: Comparison between MAC-PO, MAC-PO Approximation and other experience replay methods on three SMAC maps
(from hard to super hard), where MAC-PO outperforms the second best one – MAC-PO Approximation by 10%, 6%, and 4% on
each map, respectively.
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(b) Punishment = −1.5

Figure 2: Average reward per episode on the Predator-Prey tasks for MAC-PO and other MARL algorithms of two settings,
where MAC-PO shows the profoundly better convergence speed and pretty good results.

owing to its decaying mechanism for selecting history transitions.

All transplanted algorithms from single-agent scenario act unsta-

bly in the multi-agent environment, as we can notice the variance

reflected by the shaded area in Figure 1.

Besides, we also test our approximated sampling weight ap-

proach, shown as MAC-PO Approximation in Figure 1. We set the

higher weight 𝛼ℎ as 0.75, medium weight 𝛼𝑚 as 0.5, and lower

weight 𝛼𝑙 as 0.25. The final result is almost identical to the original

MAC-PO with small nuance. For the original MAC-PO, the compu-

tational complexity of obtaining sampling weights will increase if

more agents get involved. Since the approximated MAC-PO uses

scaled weights instead of numerical results, it will improve the

computational efficiency of the original MAC-PO at the price of

slightly sacrificing the overall performance.

5.2 Comparison with MARL Algorithms
5.2.1 Predator-Prey. We compare MAC-POwith MARL algorithms

on a complex partially-observable multi-agent cooperative envi-

ronment, Predator-Prey, that involves eight agents in cooperation

as predators to catch eight prey on a 10×10 grid. In this task, a

successful capture with the positive reward of 1 must include two

or more predator agents surrounding and catching the same prey

simultaneously, requiring a high level of cooperation. A failed coor-

dination between agents to capture the prey, which happens when

only one predator catches the prey, will receive a negative punish-

ment reward. We select multiple state-of-the-art MARL algorithms

for comparison, which include value-based factorization MARL al-

gorithm (i.e., QMIX, WQMIX [45], and QPLEX), decomposed policy

gradient method (i.e., VDAC [53]), and decomposed actor-critic

approaches (i.e., FOP [68] and DOP [62]). All mentioned baselines

have shown strength in handling MARL tasks in existing works.

Figure 2 shows the performance of seven algorithms with dif-

ferent punishments, where all results show the effectiveness of

MAC-PO. Besides, regarding efficiency, we can spot that MAC-PO

has the fastest convergence speed in seeking the best policy. In Fig-

ures 2b, MAC-PO significantly outperforms other state-of-the-art

algorithms in a hard setting requiring a higher level of coordination

among agents as learning the best policy. Most MARL algorithms

learn a sub-optimal policy where agents learn to work together with

limited coordination. Although the performance of MAC-PO and

WQMIX are similar, compared to the latter, MAC-PO converges

to the optimal policy profoundly faster, demonstrating that our

multi-agent optimal weighting scheme can efficiently learn from

specific existing transitions.
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Figure 3: Comparison between MAC-PO and other MARL algorithms on three SMAC maps (from hard to super hard). MAC-PO
achieves the best results with the optimal weighting scheme alone, outperforming the second best result by 11%, 4%, and 16% on
each map, respectively.

5.2.2 SMAC. Next, we evaluate MAC-PO on the SMAC bench-

mark. We report the experiments on three maps consisting of two

hard maps and one super-hard map. The selected baselines for this

experiment are consistent with those in the Predator-Prey environ-

ment. The empirical results are provided in Figure 3, demonstrating

that MAC-PO can effectively generate optimal weight transitions

on SMAC for achieving a higher win rate, especially when the

environment becomes substantially complicated and harder, such

as MMM2. We can see that several state-of-the-art algorithms are

brittle when significant exploration is undergoing without finding

optimal sampling weights.

Specifically, MAC-PO performs well on hard maps, such as

3s_vs_5z, the best policy found by our optimal weighting approach

significantly outperforms the remaining baseline algorithms regard-

ing winning rate. For super-hard mapMMM2, MAC-PO, along with

QMIX, WQMIX, and QPLEX, can learn a better policy than VDAC,

DOP, and FOP. We achieve the highest winning rate by adopting

our algorithm on MMM2, showing the superiority of the optimal

weighting scheme in utilizing past transitions.

5.3 Ablation Experiments
For ablations, we conduct experiments by disabling one term (men-

tioned in Theorem 1) every trial to investigate their contribution to

finding optimal sampling weights, respectively. The terms consid-

ered in these experiments are Bellman error, value enhancement,

and joint action probability. Figure 4 shows the results on MMM2.
Compared to the original result, missing any of the terms will be

detrimental to the performance, and the tests without joint action

probability have the lowest final winning rate, which is around

60%. Such a phenomenon demonstrates that the interaction among

agents is the critical factor in MARL tasks. The designing of the

optimal weighting scheme without taking joint action probability

into account will be less capable of achieving ideal results. Further-

more, the contributions of Bellman error and value enhancement

terms are similar according to the given trend in Figure 4.
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Figure 4: Ablations by disabling one term each for MAC-PO
on MMM2 (super hard). The final winning rates decrease by
18% for disabling the joint action probability term, 15% for
disabling the Bellman error term, and 10% for disabling the
value enhancement term.

6 CONCLUSION
In this paper, we formulate multi-agent experience replay as a re-

gret minimization problem and solve the optimal sampling weights

in close form. The theoretical results illustrate key ingredients for

an optimal experience replay in MARL settings. The results enable

us to propose MAC-PO (with both exact and approximated weights)

as a new MARL experience replay algorithm with optimized expe-

rience replay weights. Our experiment results in multiple MARL

environments show the effectiveness of MAC-PO by demonstrat-

ing superior convergence and empirical performance over other

experience replay solutions (adapted from single-agent RL) as well

as state-of-the-art MARL methods.
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A NOMENCLATURE
Table 1 summarizes the common notations used in this paper.

Table 1: Definitions of the common notations.

Notation Definition

𝑠 State of the environment

𝑎 Agent

𝑢 Agent’s individual action

u Agents’ joint action

𝑟 Reward

𝛾 Discount factor

𝜏 Action-observation history

𝝅 Joint policy

𝝅∗
Expected optimal joint policy

𝜂 (𝜋) Expected return under the joint policy 𝝅
𝑑𝝅 (𝑠) Discounted state distribution

𝑄 (·) Action value function

𝑄∗ (·) Optimal action value function

𝑉 (·) Value function

𝑉 ∗ (·) Optimal value function

𝐴(·) Advantage function

𝐿(·) Loss function

B∗
Bellman operator: B∗𝑄 (𝑠, u) def

= 𝑟 (𝑠, u) + 𝛾 arg maxu′ E𝑠′𝑄 (𝑠′, u′)
𝑤 Sampling weight

𝛼 Scaled sampling weight

B PROOF OF THEOREM 1
We have provided the outline of the proof including four key steps. In this section, we present the detailed proof of the theorem. The

optimization problem needed solving is:

min

𝑤𝑘

𝜂 (𝝅∗) − 𝜂 (𝝅𝑘 )

s.t. 𝑄𝑘 = arg min

𝑄∈Q
E𝜇 [𝑤𝑘 (𝑠, u) (𝑄 − B∗𝑄𝑘−1

)2 (𝑠, u)],

E𝜇 [𝑤𝑘 (𝑠, u)] = 1, 𝑤𝑘 (𝑠, u) ≥ 0,

This problem is equivalent to:

min

𝑝𝑘
𝜂 (𝝅∗) − 𝜂 (𝝅𝑘 )

s.t. 𝑄𝑘 = arg min

𝑄∈Q
E𝑝𝑘 [(𝑄 − B∗𝑄𝑘−1

)2 (𝑠, u)],∑︁
𝑠,u

𝑝𝑘 (𝑠, u) = 1, 𝑝𝑘 (𝑠, u) ≥ 0,

(9)

where 𝑝𝑘 = 𝑤𝑘 (𝑠, u)𝜇 (𝑠, u) is the solution to problem (9).

To solve the optimization problem in Equation (9), we needed to provide some definitions, which are total variation distance, Wasserstein
metric, and the diameter of a set.

Definition 1 (Total variation distance). The total variation distance of the distribution P and Q is defined as 𝐷 (𝑃,𝑄) = 1

2
∥𝑃 −𝑄 ∥.

Definition 2 (Wasserstein metric). For F,G two cumulative distribution function over the reals, the Wasserstein metric is defined as

𝑑𝑝 (𝐹,𝐺)
def
= inf𝑈 ,𝑉 ∥𝑈 − 𝑉 ∥𝑝 , where the infimum is taken over all pairs of random variables (U,V) with cumulative distributions F and G,

respectively.

Definition 3 (Diameter of a set). The diameter of a set A is defined as diam(𝐴) = sup𝑥,𝑦∈𝐴𝑚(𝑥,𝑦), where m is the metric on A.

Furthermore, we introduce some mild assumption as follows:



Assumption 1. The state space 𝑆 , action space𝑈 and observation space 𝑍 are compact metric spaces.

Assumption 2. The action-value and observation function are continuous on 𝑆 ×𝑈 and 𝑍 , respectively.

Assumption 3. The transition function T is continuous regarding 𝑆×𝑈 in the sense ofWassersteinmetric: lim(𝑠,u)→(𝑠0,u0 ) 𝑑𝑝 (𝑇 (·|𝑠, u),𝑇 (·|𝑠0, u0)).

Assumption 4. The joint policy 𝝅 is the product of each agent’s individual policy 𝜋𝑎

These assumptions can be satisfied in most MARL environments.

Let 𝑑𝜋
𝑎 (𝑠) denote the discounted state distribution of agent 𝑎, and 𝑑𝜋

𝑎

𝑖
(𝑠) denote the distribution where the state is visited by the agent

for the 𝑖-th time. Thus, we have:

𝑑𝜋
𝑎

(𝑠) =
∞∑︁
𝑖=1

𝑑𝜋
𝑎

𝑖 (𝑠), (10)

where each 𝑑𝜋
𝑎

𝑖
(𝑠) is given by:

𝑑𝜋
𝑎

𝑖 (𝑠) = (1 − 𝛾)
∞∑︁
𝑡𝑖=0

𝛾𝑡𝑖 Pr(𝑠𝑡𝑖 = 𝑠, 𝑠𝑡𝑘 = 𝑠,∀𝑘 = 1, ..., 𝑖 − 1), (11)

where the Pr(𝑠𝑡𝑖 = 𝑠, 𝑠𝑡𝑘 = 𝑠,∀𝑘 = 1, ..., 𝑖 − 1) in this equation contains the probability of visiting state 𝑠 for the 𝑖-th time at 𝑡𝑖 and a sequence

of times 𝑡𝑘 , for 𝑘 = 1, ..., 𝑖 , such that state 𝑠 is visited at each 𝑡𝑘 . Thus, state 𝑠 will be visited for 𝑖 times at time 𝑡𝑖 in total.

The following lemmas are proposed by Liu [33], where Lemma 1 support the derivation of the Lemma 2, and Lemma 2 demonstrates that���� 𝜕𝑑𝜋𝑎 (𝑠 )
𝜕𝜋𝑎 (𝑠 )

���� is a small quantity.

Lemma 1. Let 𝑓 be an Lebesgue integrable function. P and Q are two probability distributions, 𝑓 ≤ 𝐶 , then:

|E𝑃 (𝑥 ) 𝑓 (𝑥) − E𝑄 (𝑥 ) 𝑓 (𝑥) | ≤ 𝐶 · 𝐷 (𝑃,𝑄) . (12)

Lemma 2. Let 𝜌 be the probability of the agent 𝑎 starting from (𝑠,𝑢𝑎) and coming back to 𝑠 at time step 𝑡 under policy 𝜋𝑎 , i.e. Pr(𝑠0 = 𝑠,𝑢𝑎
0
=

𝑢𝑎, 𝑠𝑡 = 𝑠, 𝑠1:𝑡−1 ≠ 𝑠;𝜋𝑎), and 𝜖 = sup𝑠,𝑢𝑎

∑∞
𝑡=1

𝛾𝑡 𝜌𝜋
𝑎 (𝑠,𝑢𝑎, 𝑡). We have:����� 𝜕𝑑𝜋𝑎 (𝑠)

𝜕𝜋𝑎 (𝑠)

����� ≤ 𝜖𝑑𝜋
𝑎

1
(𝑠), (13)

where 𝑑𝜋
𝑎

1
(𝑠) = (1 − 𝛾)∑∞

𝑡1=0
𝛾𝑡1

Pr(𝑠𝑡1
= 𝑠) and 𝜖 ≤ 1.

Lemma 1 and 2 can be extended to suit the multi-agent scenario. Besides, we have the following lemma holds in MARL:

Lemma 3. Given two policy 𝝅 and �̃� , where 𝝅 =
exp(𝑄 (𝑠,u) )∑

u′ exp(𝑄 (𝑠,u′ ) ) is defined as the Boltzmann policy, we have:

Eu∼�̃� [𝑄 (𝑠, u)] − Eu∼𝝅 [𝑄 (𝑠, u)] ≤ 1 (14)

Proof. Assume there are two joint actions u and ũ. Let 𝑄 (𝑠, u) = 𝑝 , 𝑄 (𝑠, ũ) = 𝑞 and let 𝑝 ≤ 𝑞.

Eu∼�̃� [𝑄 (𝑠, u)] − Eu∼𝝅 [𝑄 (𝑠, u)] ≤ 𝑞 − 𝑝𝑒𝑝 + 𝑞𝑒𝑞
𝑒𝑝 + 𝑒𝑞

= 𝑞 − 𝑝 + 𝑞𝑒𝑞−𝑝
1 + 𝑒𝑞−𝑝

= 𝑞 − 𝑝 − (𝑞 − 𝑝)𝑒𝑞−𝑝
1 + 𝑒𝑞−𝑝

.

Let 𝑓 (𝑧) = 𝑧 − 𝑧𝑒𝑧

1+𝑒𝑧 , the maximum point 𝑧0 satisfies 𝑓 ′ (𝑧) = 0, from which we further have 1 + 𝑒𝑧0 = 𝑧0𝑒
𝑧0

where 𝑧0 ∈ (1, 2). Therefore, we
conclude:

Eu∼�̃� [𝑄 (𝑠, u)] − Eu∼𝝅 [𝑄 (𝑠, u)] ≤ 𝑓 (𝑞 − 𝑝) ≤ 𝑧0 − 1 ≤ 1.

□

Remark 1. The inequality in Lemma 3 can be applied to both the situation where we have joint action of more than two agents and the
situation regarding per-agent action.

The following lemma is proposed by Kakade [25]. It was originally proposed for the finite MDP, while it will also hold for the continuous

scenario that is given by Assumption 1 and 2.



Lemma 4. For any policy 𝝅 and �̃� , we have:

𝜂 (�̃�) − 𝜂 (𝝅) = 1

1 − 𝛾
E𝑑 �̃� (𝑠,u) [𝐴

𝝅 (𝑠, u)], (15)

where 𝐴𝝅 (𝑠, u) is the advantage function given by 𝐴𝝅 (𝑠, u) = 𝑄𝝅 (𝑠, u) −𝑉 𝝅 (𝑠).

Lemma 5. Let 𝜖𝝅𝑘
= sup𝑠,u

∑∞
𝑡=1

𝛾𝑡 𝜌𝝅 (𝑠, u, 𝑡), the optimal solution 𝑝𝑘 to a relaxation of optimization problem in Equation (9) satisfies
relationship as follows:

𝑝𝑘 (𝑠, u) =
1

𝑍 ∗ (𝐷𝑘 (𝑠, u) + 𝜖𝑘 (𝑠, u)), (16)

where 𝐷𝑘 (𝑠, u) = 𝑑𝝅𝑘 (𝑠, u) |𝑄𝑘 − B∗𝑄𝑘−1
| exp(−|𝑄𝑘 −𝑄∗ |) (1 + ∑𝑛

𝑖=1

∏𝑛
𝑗=1, 𝑗≠𝑖 𝜋

𝑗

𝑘
− 𝑛

∏𝑛
𝑖=1

𝜋𝑖
𝑘
) and 𝑍 ∗ is the normalization constant.

Proof. Suppose u∗ ∼ 𝝅∗ (𝑠). Let 𝝅 = 𝝅∗
and �̃� = 𝝅𝑘 in Lemma 4, we have

𝜂 (𝝅∗) − 𝜂 (𝝅𝑘 )

= − 1

1 − 𝛾
E𝑑𝝅𝑘 (𝑠,u) [𝐴𝝅∗

(𝑠, u)]

=
1

1 − 𝛾
E𝑑𝝅𝑘 (𝑠,u) [𝑉 ∗ (𝑠) −𝑄∗ (𝑠, u)]

=
1

1 − 𝛾
E𝑑𝝅𝑘 (𝑠,u) [𝑉 ∗ (𝑠) −𝑄𝑘 (𝑠, u∗) +𝑄𝑘 (𝑠, u∗) −𝑄𝑘 (𝑠, u) +𝑄𝑘 (𝑠, u) −𝑄∗ (𝑠, u)]

(𝑎)
≤ 1

1 − 𝛾

[
E𝑑𝝅𝑘 (𝑠 ) (𝑄∗ (𝑠, u∗) −𝑄𝑘 (𝑠, u∗)) + E𝑑𝝅𝑘 (𝑠,u) (𝑄𝑘 (𝑠, u) −𝑄∗ (𝑠, u)) + 1

]
≤ 1

1 − 𝛾

[
E𝑑𝝅𝑘 (𝑠 ) |𝑄∗ (𝑠, u∗) −𝑄𝑘 (𝑠, u∗) | + E𝑑𝝅𝑘 (𝑠,u) |𝑄𝑘 (𝑠, u) −𝑄∗ (𝑠, u) | + 1

]
=

2

1 − 𝛾

[
E
𝑑𝝅𝑘 ,𝝅

∗ |𝑄∗ (𝑠, u) −𝑄𝑘 (𝑠, u) | + 1

]

(17)

where 𝑑𝝅𝑘 ,𝝅
∗ (𝑠, u) = 𝑑𝝅𝑘 (𝑠) 𝝅𝑘+𝝅∗

2
(u|𝑠) and (a) uses Lemma 3. □

Since the original optimization is non-tractable, we consider this upper bound to obtain a closed-form solution. Therefore, we replace the

objective in Equation (9) with the upper bound in Equation (17) and solve the relaxed optimization problem, given by:

min

𝑝𝑘
E𝑑𝝅𝑘 (𝑠,u) [|𝑄𝑘 −𝑄∗ | (𝑠, u)]

s.t. 𝑄𝑘 = arg min

𝑄∈Q
E𝑝𝑘 [(𝑄 − B∗𝑄𝑘−1

)2 (𝑠, u)],∑︁
𝑠,u

𝑝𝑘 (𝑠, u) = 1, 𝑝𝑘 (𝑠, u) ≥ 0,

(18)

As we cannot access 𝝅∗
, we use 𝑑𝝅𝑘 (𝑠, u) to replace 𝑑𝝅𝑘 ,𝝅

∗
. The best surrogate available is 𝝅𝑘 . The objective in Equation (18) can be

further relaxed with Jensen’s inequality. Consider a convex function 𝑔(𝑥) on the real space R, the inequality is given by:

E[𝑔(𝑋 )] ≥ 𝑔(E[𝑋 ]). (19)

According to Equation (19), we select the convex function 𝑔(𝑥) = exp(−𝑥), and the objective can be further relaxed as:

min

𝑝𝑘
− logE𝑑𝝅𝑘 (𝑠,u) [exp(−|𝑄𝑘 −𝑄∗ |) (𝑠, u)]

s.t. 𝑄𝑘 = arg min

𝑄∈Q
E𝑝𝑘 [(𝑄 − B∗𝑄𝑘−1

)2 (𝑠, u)],∑︁
𝑠,u

𝑝𝑘 (𝑠, u) = 1, 𝑝𝑘 (𝑠, u) ≥ 0,

(20)

In order to handle optimization problem in Equation (20), we follow the standard procedures of Lagrangian multiplier method, which is:

L(𝑝𝑘 ; 𝜆,𝜓 ) = − logE𝑑𝝅𝑘 (𝑠 ) [exp |𝑄𝑘 −𝑄∗ | (𝑠, u)] + 𝜆(
∑︁
𝑠,u

𝑝𝑘 − 1) −𝜓T𝑝𝑘 , (21)

After constructing the Lagrangian, we further compute some gradients that will be used in calculating the optimal solution. We first

calculate the
𝜕𝑄𝑘

𝜕𝑝𝑘
according to the implicit function theorem (IFT). Based on the first constraint in Equation (20), we aim to find the minimum

𝑄𝑘 to satisfy the arg min(·), and therefore we need to ensure the derivative of the term inside arg min(·) (we use 𝑓 (𝑝𝑘 , 𝑄𝑘 ) to denote this

term) to be zero, which is:

𝑓 ′𝑄𝑘
= 2

∑︁
u

𝑝𝑘 (𝑄𝑘 − B∗𝑄𝑘−1
) = 0 (22)



We can notice that 𝐹 (𝑝𝑘 , 𝑄𝑘 ) : 𝑓 ′
𝑄𝑘

= 0 is an implicit function regarding𝑄𝑘 and 𝑝𝑘 . Hence, we apply the IFT on the 𝐹 (𝑝𝑘 , 𝑄𝑘 ) considering
the Hessian matrices of 𝑝𝑘 and 𝑄𝑘 in 𝑓 (𝑝𝑘 , 𝑄𝑘 ) as follows:

𝜕𝑄𝑘

𝜕𝑝𝑘
= −

𝐹 ′𝑝𝑘
𝐹 ′
𝑄𝑘

= −[diag(𝑝𝑘 )]−1 [diag(𝑄𝑘 − B∗𝑄∗
𝑘−1

)] . (23)

Next, we derive the expression for
𝜕𝑑𝝅𝑘 (𝑠,u)

𝜕𝑝𝑘
in the following equation:

𝜕𝑑𝝅𝑘 (𝑠, u)
𝜕𝑝𝑘

=
𝜕𝑑𝝅𝑘 (𝑠, u)

𝜕𝝅𝑘

𝜕𝝅𝑘
𝜕𝑄𝑘

𝜕𝑄𝑘

𝜕𝑝𝑘

= diag

©«𝑑
𝝅𝑘 (𝑠)

𝑛∏
𝑗=1

𝑗≠𝑖

𝜋
𝑗

𝑘
+ 𝜖0 (𝑠)

ª®®®¬
𝜕𝝅𝑘
𝜕𝑄𝑘

𝜕𝑄𝑘

𝜕𝑝𝑘

(𝑏 )
= diag

©«𝑑
𝝅𝑘 (𝑠)

𝑛∏
𝑗=1

𝑗≠𝑖

𝜋
𝑗

𝑘
+ 𝜖0 (𝑠)

ª®®®¬ diag

(
𝜕𝜋𝑖

𝑘

𝜕𝑄𝑘

)
𝜕𝑄𝑘

𝜕𝑝𝑘

(𝑐 )
= diag

©«𝑑
𝝅𝑘 (𝑠)

𝑛∏
𝑗=1

𝑗≠𝑖

𝜋
𝑗

𝑘
+ 𝜖0 (𝑠)

ª®®®¬
𝑛∏
𝑖=1

𝜋𝑖
𝑘

diag(1 − 𝜋𝑖
𝑘
) 𝜕𝑄𝑘

𝜕𝑝𝑘

= 𝑑𝝅𝑘 (𝑠, u)
©«

𝑛∑︁
𝑖=1

𝑛∏
𝑗=1

𝑗≠𝑖

𝜋
𝑗

𝑘
− 𝑛

𝑛∏
𝑖=1

𝜋𝑖
𝑘

ª®®®¬
𝜕𝑄𝑘

𝜕𝑝𝑘
+ 𝜖0 (𝑠)

𝑛∏
𝑖=1

𝜋𝑖
𝑘

diag(1 − 𝜋𝑖
𝑘
) 𝜕𝑄𝑘

𝜕𝑝𝑘
,

(24)

where 𝜖0 (𝑠) = 𝜕𝑑𝝅𝑘 (𝑠,u)
𝜕𝝅𝑘

is a small quantity provided by Lemma 2. Besides, (b) and (c) are based on the the definition of the Boltzmann policy

and Assumption 4.

Since we have all the preparations ready, we now compute the Lagrangian by applying the Karush–Kuhn–Tucker (KKT) condition. We let

the Lagrangian gradient to be zero, i.e.,

𝜕L(𝑝𝑘 ; 𝜆,𝜓 )
𝜕𝑝𝑘

= 0 (25)

Besides, the partial derivative of the Lagrangian can be computed as:

𝜕L(𝑝𝑘 ; 𝜆,𝜓 )
𝜕𝑝𝑘

= −
𝜕 logE𝑑𝝅𝑘 (𝑠,u) [exp(−|𝑄𝑘 −𝑄∗ |) (𝑠, u)]

𝜕𝑝𝑘
+ 𝜆 −𝜓𝑠,u

=
1

𝑍
exp(−|𝑄𝑘 −𝑄∗ |) ( 𝜕𝑑

𝝅𝑘 (𝑠, u)
𝜕𝑝𝑘

+ 𝑑𝝅𝑘 (𝑠, u) 𝜕𝑄𝑘

𝜕𝑝𝑘
) + 𝜆 −𝜓𝑠,u,

(26)

where 𝑍 = E𝑠′,u′∼𝑑𝝅𝑘 (𝑠,u) exp(−|𝑄𝑘 −𝑄∗ |) (𝑠′, u′).
Based on Equation (25) and (26), and substituting the expression of

𝜕𝑄𝑘

𝜕𝑝𝑘
and

𝜕𝑑𝝅𝑘 (𝑠,𝑎)
𝜕𝑝𝑘

with the derived results in Equation (23) and (24),

we obtain:

𝑝𝑘 (𝑠, 𝑎) =
1

𝑍 (𝜓∗
𝑠,u − 𝜆∗)

𝑑
𝝅𝑘 (𝑠, u) |𝑄𝑘 − B∗𝑄𝑘−1

| exp(−|𝑄𝑘 −𝑄∗ |)
©«1 +

𝑛∑︁
𝑖=1

𝑛∏
𝑗=1

𝑗≠𝑖

𝜋
𝑗

𝑘
− 𝑛

𝑛∏
𝑖=1

𝜋𝑖
𝑘

ª®®®¬
+𝜖0 |𝑄𝑘 − B∗𝑄𝑘−1

| exp(−|𝑄𝑘 −𝑄∗ |)
𝑛∏
𝑖=1

𝜋𝑖
𝑘

diag(1 − 𝜋𝑖
𝑘
)
]
,

(27)

According to Lemma 2, the value of 𝜖0 is smaller than 𝑑𝝅𝑘 (𝑠) so the second term will not influence the sign of the equation. Equation (27)

will always be larger or equal to zero. By KKT condition, when Equation (27) equal to zero, we let𝜓∗
𝑠,u = 0 because the value of𝜓∗

𝑠,u will not

affect 𝑝𝑘 . In the contrast, when Equation (27) is larger than 0, the 𝑝𝑘 should equal to zero. Therefore, Equation (27) can be simplify as follows:

𝑝𝑘 (𝑠, u) =
1

𝑍 ∗ (𝐷𝑘 (𝑠, u) + 𝜖𝑘 (𝑠, u)), (28)



where we have

𝐷𝑘 (𝑠, u) = 𝑑𝝅𝑘 (𝑠, u) |𝑄𝑘 − B∗𝑄𝑘−1
| exp(−|𝑄𝑘 −𝑄∗ |)

©«1 +
𝑛∑︁
𝑖=1

𝑛∏
𝑗=1

𝑗≠𝑖

𝜋
𝑗

𝑘
− 𝑛

𝑛∏
𝑖=1

𝜋𝑖
𝑘

ª®®®¬ ,
𝜖𝑘 = 𝜖0 |𝑄𝑘 − B∗𝑄𝑘−1

| exp(−|𝑄𝑘 −𝑄∗ |)
𝑛∏
𝑖=1

𝜋𝑖
𝑘

diag(1 − 𝜋𝑖
𝑘
)

(29)

This concludes the proof.

C PROOF OF THEOREM 2
We first reform Equation (7) via factorization of extracting 𝜋𝑎

𝑘
, given by:

𝑓 = 1 +
𝑛∏
𝑖=1

𝑖≠𝑎

𝜋𝑖
𝑘
+ 𝜋𝑎

𝑘
(
𝑛∑︁
𝑖=1

𝑖≠𝑎

𝑛∏
𝑗=1

𝑗≠𝑖,𝑎

𝜋𝑖
𝑘
𝜋
𝑗

𝑘
− 𝑛

𝑛∏
𝑖=1

𝑖≠𝑎

𝜋𝑖
𝑘
) . (30)

Let 𝑔 represent the term

∑𝑛
𝑖=1,𝑖≠𝑎

∏𝑛
𝑗=1, 𝑗≠𝑖,𝑎 −𝑛

∏𝑛
𝑖=1,𝑖≠𝑎 𝜋

𝑖
𝑘
in Equation (30). Based on the fact that the agent’s action probability is within

the range [0, 1], if 𝑔 > 0, we have 𝜋𝑎
𝑘
= 1 to ensure the 𝑓 reaches its maximum; if 𝑔 < 0, we let 𝜋𝑎

𝑘
= 0 for the same purpose. In the case that

𝑔 = 0, the value of 𝜋𝑎
𝑘
can be either 0 or 1, as the third term, including 𝑔 will be eventually canceled out, and the value of 𝜋𝑎

𝑘
will not affect

𝑓max. Therefore, it is obvious that the condition for reaching 𝑓max is that all the values of 𝜋𝑎
𝑘
must be on their boundary.

After determining the boundary condition, from Equation (30), the second term, which is

∏𝑛
𝑖=1,𝑖≠𝑎 𝜋

𝑖
𝑘
, will be either 0 or 1. If it equals 1,

indicating all the 𝜋𝑖
𝑘
with 𝑖 ≠ 𝑎 is 1; if the second term equals 0, at least one of the agents’ probabilities 𝜋𝑖

𝑘
is 0. Assuming that the number of

𝜋𝑖
𝑘
equaling 0 is 𝑁𝜋 , we have:

𝑔 =


−1 𝑁𝜋 = 0

1 𝑁𝜋 = 1

0 𝑁𝜋 ≥ 2.

(31)

According to Equation (31), we can numerically compute 𝑓max as follows:

𝑓max =

{
2, 𝑁𝜋 = 0, 𝜋𝑎

𝑘
= 0 or 𝑁𝜋 = 1, 𝜋𝑎

𝑘
= 1

1, 𝑁𝜋 ≥ 2,∀𝜋𝑎
𝑘
.

(32)

Since 𝜋𝑎
𝑘
can be the probability of any selected agent, such discussion is applicable for the probabilities of all agents in the environment.

So far, we successfully proved the Theorem 2 that, to maximize the joint action probability function 𝑓 without loss of the generality, we shall

let all 𝜋𝑖
𝑘
equal to 1, but at least one of the probabilities 𝜋𝑎

𝑘
be 0.

This concludes the proof.

D ALGORITHMS
In this section, we provide the pseudo-codes for MAC-PO and MAC-PO Approximation in Algorithms 1 and 2, respectively.

E ENVIRONMENT DETAILS
We use more recent baselines (i.e., FOP and DOP) that are known to outperform QTRAN [52] and QPLEX [61] in the evaluation. In general,

we tend to choose baselines that are more closely related to our work and most recent. This motivated the choice of QMIX (baseline for

value-based factorization methods), WQMIX (close to our work that uses weighted projections so better joint actions can be emphasized),

VDAC [53], FOP [68], DOP [62] (SOTA actor-critic based methods). We acquired the results of QMIX, WQMIX based on their hyper-parameter

tuned versions from pymarl2[20] and implemented our algorithm based on it.

E.1 Predator-Prey
A partially observable environment on a grid-world predator-prey task is used to model relative overgeneralization problem [5] where 8

agents have to catch 8 prey in a 10 × 10 grid. Each agent can either move in one of the 4 compass directions, remain still, or try to catch any

adjacent prey. Impossible actions, i.e., moving into an occupied target position or catching when there is no adjacent prey, are treated as

unavailable. If two adjacent agents execute the catch action, a prey is caught and both the prey and the catching agents are removed from

the grid. An agent’s observation is a 5 × 5 sub-grid centered around it, with one channel showing agents and another indicating prey. An

episode ends if all agents have been removed or after 200 steps. Capturing a prey is rewarded with r = 10, but unsuccessful attempts by single

agents are punished by a negative reward p. In this paper, we consider two sets of experiments with 𝑝 = (0, -0.5, -1.5, -2). The task is similar

to the matrix game proposed by [52] but significantly more complex, both in terms of the optimal policy and in the number of agents.



Algorithm 1MAC-PO

1: Initialize step, learning rate 𝛼 and replay buffer D, and set 𝜃− = 𝜃

2: for step = 1 : step𝑚𝑎𝑥 do
3: 𝑘 = 0, 𝑠0 = initial state

4: while 𝑠𝑘 ≠ terminal and 𝑘 < episode limit do
5: for each agent 𝑎 do
6: 𝜏𝑎

𝑘
= 𝜏𝑎

𝑘−1
∪ (𝑜𝑘 , 𝑢𝑘−1

)

7: 𝑢𝑎
𝑘
=

{
arg max𝑢𝑎

𝑘
𝑄 (𝜏𝑎

𝑘
, 𝑢𝑎

𝑘
) with probability 1 − 𝜖

randint(1, |𝑈 |) with probability 𝜖

8: end for
9: Obtain the reward 𝑟𝑘 and next state 𝑠𝑘+1

10: Store the current trajectory into replay buffer D = D ∪ (𝑠𝑘 , u𝑘 , 𝑟𝑘 , 𝑠𝑘+1
)

11: 𝑘 = 𝑘 + 1, step = step + 1

12: end while
13: Collect 𝑏 samples from the replay buffer D following uniform distribution 𝜇.

14: for each timestep 𝑘 in each episode in batch 𝑏 do
15: Evaluate 𝑄𝑘 , 𝑄

∗
and target values

16: Obtain the utilities 𝑄𝑎 from agents’ local networks, and compute the individual policy 𝜋𝑎
𝑘

17: Compute the weight:

𝑤𝑘 ∝ |𝑄𝑘 − B∗𝑄𝑘−1
| exp(−|𝑄𝑘 −𝑄∗ |)

(
1 + ∑𝑛

𝑖=1

∏𝑛
𝑗=1, 𝑗≠𝑖 𝜋

𝑗

𝑘
− 𝑛

∏𝑛
𝑖=1

𝜋𝑖
𝑘

)
18: end for
19: Minimize the Bellman error for 𝑄𝑘 weighted by𝑤𝑘 , update the network parameter 𝜃 :

𝜃 = 𝜃 − 𝛼 (∇𝜃 1

𝑏

∑𝑏
𝑖 𝑤𝑘 (𝑄𝑘 − 𝑦𝑖 )2).

20: if update-interval steps have passed then
21: 𝜃− = 𝜃

22: end if
23: end for

E.2 SMAC
For the experiments on StarCraft II micromanagement, we follow the setup of SMAC [48] with open-source implementation including QMIX

[46], WQMIX [45], QPLEX [61], FOP [68], DOP [62] and VDAC [53]. We consider combat scenarios where the enemy units are controlled by

the StarCraft II built-in AI and the friendly units are controlled by the algorithm-trained agent. The possible options for built-in AI difficulties

are Very Easy, Easy, Medium, Hard, Very Hard, and Insane, ranging from 0 to 7. We carry out the experiments with ally units controlled by a

learning agent while built-in AI controls the enemy units with difficulty = 7 (Insane). Depending on the specific scenarios(maps), the units

of the enemy and friendly can be symmetric or asymmetric. At each time step each agent chooses one action from discrete action space,

including noop, move[direction], attack[enemy_id], and stop. Dead units can only choose noop action. Killing an enemy unit will result in a

reward of 10 while winning by eliminating all enemy units will result in a reward of 200. The global state information is only available in the

centralized critic. Each baseline algorithm is trained with 4 random seeds and evaluated every 10k training steps with 32 testing episodes for

main results, and with 3 random seeds for ablation results and additional results.

E.3 Implementation Details and Hyperparameters

Table 2: Hyperparameter value settings.

Hyperparameter Value

Batch size 128

Replay buffer size 10000

Target network update interval Every 200 episodes

Learning rate 0.001

TD-lambda 0.6

In this section, we introduce the implementation details and hyperparameters we used in the experiment. We carried out the experiments

on NVIDIA 2080Ti with fixed hyperparameter settings. Recently [20] demonstrated that MARL algorithms are significantly influenced by code-

level optimization and other tricks, e.g. using TD-lambda, Adam optimizer, and grid-searched/Bayesian optimized [37] and hyperparameters



Algorithm 2MAC-PO Approximation

1: Initialize step, learning rate 𝛼 and replay buffer D, and set 𝜃− = 𝜃

2: for step = 1 : step𝑚𝑎𝑥 do
3: 𝑘 = 0, 𝑠0 = initial state

4: while 𝑠𝑘 ≠ terminal and 𝑘 < episode limit do
5: for each agent 𝑎 do
6: 𝜏𝑎

𝑘
= 𝜏𝑎

𝑘−1
∪ (𝑜𝑘 , 𝑢𝑘−1

)

7: 𝑢𝑎
𝑘
=

{
arg max𝑢𝑎

𝑘
𝑄 (𝜏𝑎

𝑘
, 𝑢𝑎

𝑘
) with probability 1 − 𝜖

randint(1, |𝑈 |) with probability 𝜖

8: end for
9: Obtain the reward 𝑟𝑘 and next state 𝑠𝑘+1

10: Store the current trajectory into replay buffer D = D ∪ (𝑠𝑘 , u𝑘 , 𝑟𝑘 , 𝑠𝑘+1
)

11: 𝑘 = 𝑘 + 1, step = step + 1

12: end while
13: Collect 𝑏 samples from the replay buffer D following uniform distribution 𝜇.

14: for each timestep 𝑘 in each episode in batch 𝑏 do
15: Evaluate 𝑄𝑘 , 𝑄

∗
and target values

16: Obtain the utilities 𝑄𝑎 from agents’ local networks, and compute the individual policy 𝜋𝑎
𝑘

17: Re-scale the weights to high 𝛼ℎ , medium 𝛼𝑚 , and low 𝛼𝑙 based on one individual policy 𝜋𝑎
𝑘
and other policies 𝜋−𝑎

𝑘
:

18: Compute the weight:

𝑤𝑘 ∝ |𝑄𝑘 − B∗𝑄𝑘−1
| exp(−|𝑄𝑘 −𝑄∗ |) ·


𝛼ℎ when 𝜋𝑎

𝑘
≈ 0 and 𝜋𝑎

𝑘
≪ 𝜋−𝑎

𝑘

𝛼𝑙 when

∏𝑛
𝑖=1

𝜋𝑖
𝑘
≈ 0, or

∏𝑛
𝑖=1

𝜋𝑖
𝑘
≈ 1

𝛼𝑚 elsewhere

19: end for
20: Minimize the Bellman error for 𝑄𝑘 weighted by𝑤𝑘 , update the network parameter 𝜃 :

𝜃 = 𝜃 − 𝛼 (∇𝜃 1

𝑏

∑𝑏
𝑖 𝑤𝑘 (𝑄𝑘 − 𝑦𝑖 )2).

21: if update-interval steps have passed then
22: 𝜃− = 𝜃

23: end if
24: end for

(where many state-of-the-art are already adopted), and proposed fine-tuned QMIX and WQMIX, which is demonstrated with significant

improvements from their original implementation. We implemented our algorithm based on its open-sourced codebase and acquired the

results of QMIX and WQMIX from it.

We use one set of hyperparameters for each environment, i.e., no tuned hyperparameters for individual maps. We use epsilon greedy for

action selection with annealing from 𝜖 = 0.995 decreasing to 𝜖 = 0.05 in 100000 training steps in a linear way. The performance for each

algorithm is evaluated for 32 episodes every 1000 training steps. Additional hyperparameter values are provided in Table 2.
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