
Elastic Reliability Optimization Through
Peer-to-Peer Checkpointing in Cloud Computing

Juzi Zhao, Yu Xiang, Tian Lan,Member, IEEE, H. Howie Huang, Senior Member, IEEE,

and Suresh Subramaniam, Fellow, IEEE

Abstract—Modern day data centers coordinate hundreds of thousands of heterogeneous tasks and aim at delivering highly reliable

cloud computing services. Although offering equal reliability to all users benefits everyone at the same time, users may find such an

approach either inadequate or too expensive to fit their individual requirements, which may vary dramatically. In this paper, we propose

a novel method for providing elastic reliability optimization in cloud computing. Our scheme makes use of peer-to-peer checkpointing

and allows user reliability levels to be jointly optimized based on an assessment of their individual requirements and total available

resources in the data center. We show that the joint optimization can be efficiently solved by a distributed algorithm using dual

decomposition. The solution improves resource utilization and presents an additional source of revenue to data center operators.

Our validation results suggest a significant improvement of reliability over existing schemes.

Index Terms—Cloud computing, data center, reliability, checkpoint, optimization

Ç

1 INTRODUCTION

IN today’s public clouds, reliability is provided as a fixed ser-
vice parameter, e.g., Amazon published that its EC2 users

can expect 99.95 percent uptime in terms of reliability, which
corresponds to a once-a-week failure ratio [1].1 It is up to the
users to harden the tasks running within Virtual Machine
(VM) instances to achieve better reliability if so desired.

Clearly, this all-or-nothing approach is unsatisfactory—
users may find it either inadequate or too expensive to fit
their reliability requirements, which have been shown to
vary dramatically [2]. Current solutions to achieve high reli-
ability in data centers include VM replication [3], and check-
pointing [4], [5], [6], [26], [27]. In particular, several
scheduling algorithms for balancing checkpoint workload
and reliability have been proposed in [7], [8], [9], with an
extension in [10] by considering dynamic VM prices. Never-
theless, previous work has only investigated how to derive
optimal checkpoint policies to minimize the execution time
of a single task.

In this paper, we propose a novel utility-optimization
approach to provide elastic reliability, where flexible service-
level agreements (SLAs) aremade available to the users based

on a joint assessment of their individual reliability require-
ments and total resources available in the data center.

While providing elastic reliability is undoubtedly appeal-
ing to data center operators, it also comes with great
technical challenges. To optimize reliability under network
resource constraints, data center operators not only have to
decide checkpoint scheduling, but also need to determine
where to place VM checkpoints, and how to route the check-
point traffic among peers with sufficient bandwidth. A
global checkpoint scheduling (i.e., jointly determining reli-
ability levels and checkpoint time sequences for all users) is
preferred because all users share the same pool of resources,
which also calls for an adaptive resource allocation scheme
in accordance with the user demands [28]. Intuitively, users
with higher demands and budgets should be assigned more
resources, resulting in better reliability. Their checkpoint
events should also be coordinated to mitigate resource inter-
ference among themselves and with existing tasks. In this
paper, we model different reliability requirements by user-
specific utilities, which are increasing functions of reliability
(i.e., service uptime). Therefore, the problem of joint reliabil-
ity maximization can be formulated as an optimization, in
which data center operators need to find checkpoint sched-
uling and make routing/placement decisions in order to
maximize an aggregate utility of reliability.

This paper harnesses checkpointing technique with util-
ity optimization to provide joint reliability maximization
under resource constraints in data centers. A main feature
of our approach is a peer-to-peer checkpointing mechanism,
which enables VM images to be transferred and saved
among neighboring peers, eliminating the need for any cen-
tral storage where network congestion gets magnified
across all hosts and VMs. It is demonstrated that such a dis-
tributed approach is effective to make faster checkpoints
and recovery [7]. For data center operators, it also presents
an additional source of revenue by exploiting under-
utilized resources. For example, at any time only a few core

1. We follow some of the literature (e.g., [24], [25]), where
“reliability” is used to denote the ratio of total uptime (operational
time) to the total service time.

� J. Zhao is with the Department of Electrical and Computer Engineering,
University of Massachusetts-Lowell, Lowell, Massachusetts 01852.
E-mail: juzi_zhao@uml.edu.

� Y. Xiang is with the Department of Cloud Platform Software Research,
AT&T Labs, Bedminster, NJ 07921. E-mail: yxiang@research.att.com.

� T. Lan, H. Huang and S. Subramaniam are with the Department of Elec-
trical and Computer Engineering, The George Washington University,
Washington, DC 20052. E-mail: {tlan, howie, suresh}@gwu.edu.

Manuscript received 31 Aug. 2015; revised 1 Mar. 2016; accepted 2 May
2016. Date of publication 20 May 2016; date of current version 18 Jan. 2017.
Recommended for acceptance by D. Arnold.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2571281

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2017 491

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

switches are highly congested [11], which leaves adequate
bandwidth among local switches for peer-to-peer traffic.
Our approach can effectively convert under-utilized net-
work resources into an on-demand reliability service, which
can be purchased by users on demand. The goal of our
paper is to provide a novel framework for elastic reliability
optimization through a commonly-used technique check-
pointing, which offers a theoretical support for enabling
Reliability as a Service for different cloud applications. A
prototype and standard APIs would be interesting future
work to explore in our next paper on the topic.

The rest of the paper is organized as follows: The system
model is presented in Section 2. In Section 3, we formulate
the joint reliability maximization problem as an optimiza-
tion with heterogeneous reliability utilities. In Section 4, we
investigate the combinatorial structure of this problem and
make use of dual-decomposition [12], [44] to propose an
efficient algorithm for the joint reliability maximization
problem. In Section 5, we evaluate our algorithms. It is
shown that our solution improves reliability by an order of
magnitude over both random and centralized checkpoint-
ing mechanisms. Section 6 presents concluding remarks
and directions for future work.

2 SYSTEM MODEL

2.1 VM Checkpointing in Data Centers

Checkpointing is a typical fault tolerance technique in dis-
tributed systems and high-performance computing. In cur-
rent data centers, Virtual Machine Monitors (VMMs) are
capable of checkpointing the states of its VMs. VMMs can
take local and uncoordinated checkpoints independently of
each other. However, this runs the risk of cascaded roll-
backs if causality is not respected. To avoid this, when a
task comprises multiple VMs, synchronous VM checkpoints
are taken, as shown in Fig. 1, so that they can be rolled back
to the same point of execution. Checkpoint scheduling algo-
rithms for optimizing reliability of a single job have been
proposed in [7], [8], [9], [10]. To amortize high overhead,

checkpoint intervals are often chosen to be large as long as
rollback costs are acceptable.

Yet these solutions fall short in optimizing checkpoints of
multiple jobs that require different reliabilities, due to the lack
of a model for checkpoint interference among jobs. In multi-
job scenarios, uncoordinated job checkpoints taken indepen-
dently of each other run the risk of interfering with each other
if a joint checkpoint scheduling is not enabled. In this paper,
we assume that VMMs support a coordinated checkpointing
mechanism. For a task i with multiple VMs, checkpointing
the task means synchronously checkpointing all its VMs. We
treat the individual VM checkpoints as a single checkpoint
event with overhead Ts;i ¼ Tn;i þ Tb;i, where Tn;i is the time to
pause and save local VM images and Tb;i denotes the time to
transfer the images to remote destinations as shown in Fig. 1.
In this paper, we consider this general model that separates
VM checkpointing and transferring, since Tn;i and Tb;i are
determined by I/O and network bandwidth respectively;
they can be combined into a single process in practice, e.g.,
when real-timeVMmigration technique is used.

Joint checkpoint scheduling of multiple jobs is critical for
improving datacenter job reliability, since the more frequent
the checkpoints, the less the downtime each job receives. It
is easy to see that reliability is greatly affected by checkpoint
interference and overhead: Tn;i, the time to save local check-
point images, depends on how I/O resources are shared,
and Tb;i, the time to transfer saved images, relies on how
network resources are shared [29], [30]. Upon a failure at
time t during the kth interval, a recovery Tr is performed to
restart a job form its latest available checkpoints with time-
stamp ðk� 1ÞTv;i. We consider a time-slotted model, so that
a system snapshot is taken every Dt seconds.

In the theoretical analysis, our assumptions include: (1)
each checkpoint involves overhead Ts;i ¼ Tn;i þ Tb;i, where
Tn;i is the time to pause and save local VM images and Tb;i

denotes the time to transfer the images to remote destina-
tions; (2) we consider a time-slotted model, and (3) failures
of hosts (nodes) are modeled by a Poisson process with
known rate �. Assumption (1) is a general model that sepa-
rates VM checkpointing and transferring, since Tn;i and Tb;i

are determined by I/O and network bandwidth respec-
tively, while they can be combined into a single process in
practice, e.g., when real-time VM migration technique is
used. Similar models are used in [7], [8], [31]. Assumption
(2) makes the optimization tractable and is routinely used in
existing work on scheduling and optimization [32], [33].
Assumption (3) is standard for reliability analysis, such as
[34], [35], [36], [37].

Fig. 1. VM checkpoint and recovery model for a single job.

TABLE 1
Main Notation

Symbol Meaning

n Number of tasks, indexed by i ¼ 1; . . . ; n
mi Number of VMs for task i
Ri Reliability of task i
UiðRiÞ Utility of task i as a function of Ri

Tv;i; hi Checkpoint interval and initial offset of task i

Ts;i Checkpoint overhead of task i

Tn;i The time to pause and save local VM images of task i

Tb;i The time to transfer images to destinations of task i

Tr VM rollback and recovery time
Xi Checkpoint routing vector of task i
Yi VM placement vector of task i
P The set of feasible checkpoint routing vectors
IiðTv;iÞ VM delta image size as a function of Tv;i

Gb;Go Background traffic and I/O vector

Cb;Co Data center network and I/O capacity constraints

Bi;Oi Network bandwidth and I/O assigned for task i
� Node failure rate
VðtÞ Lagrangian multiplier for network capacity constraints
WðtÞ Lagrangian multiplier for I/O capacity constraints

492 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2017

As shown in Fig. 2, without joint scheduling, the jobs
may take conflicting, parallel checkpoints and evenly share
a bottleneck. The overhead for saving and transferring
checkpoint images is significantly amplified due to interfer-
ence. Alternatively, performing a joint checkpoint schedul-
ing, such as the pipeline scheme shown in Fig. 2, mitigates
interference and optimizes reliability. A preliminary experi-
ment with four jobs in Section 5 will show that pipeline
scheduling reduces downtime by as much as one order of
magnitude over parallel checkpoints.

2.2 Quantifying Reliability

To achieve high reliability, VM checkpoint images must be
placed in different clusters and/or availability zones, whose
failures are made as independent as possible. Our research
is strongly motivated by recent major service outages, some
of which are recapped below.

� In February 2010, Google experienced a power fail-
ure that affected 25 percent of the machines in one of
its datacenters [13].

� In March 2011, Amazon’s cloud-hosted Web Services
experienced a catastrophic failure due to configura-
tion error, knocking down hundreds of sites off the
web [14].

� In February 2012, a process meant to detect failed
hardware in Microsoft’s Azure cloud was inadver-
tently triggered by a software bug and caused 7.5
hours downtime in 4 regional datacenters [15].

� In March 2012, a network card failure affected 2 core
routers in OVH cloud and the backbone network
was down for 2 hours.

To utilize the diversity of datacenter topologies and
availability zones, reliability optimization needs to deter-
mine not only how often checkpoints are created, but also
where they are placed. We consider the placement of check-
points into different clusters and availability zones, which
are assumed to have independent and identical failure
probabilities. After each host failure, tasks can be recovered
from the latest available checkpoints. All tasks using the
failed node must be rolled back and restarted. We assume
that failures of hosts (nodes) are modeled by a Poisson pro-
cess with known rate �. Therefore, the mean time between
failures is 1=�. In this research, we consider infinite time-
horizon jobs whose reliability given by the expected fraction
of service downtime, where the expectation is taken over
failure modes and distributions. As large-scale datacenters
are typically well-managed and tracked for any critical

events, the event logs can be used to provide important his-
torical information for estimating the failure rates.

We quantify reliability as a function of failure rate �,
and checkpoint parameters, including checkpoint overhead
Ts;i ¼ Tn;i þ Tb;i, checkpoint interval Tv;i, and rollback time
Tr. For example, total downtime per failure in Fig. 1 is given
by kTn;i þ t � ðk� 1ÞTv;i þ Tr. We define reliability by one
minus the fraction of service downtime. This yields the fol-
lowing Lemma 1 on the expected reliability with periodic
checkpointing.

Lemma 1. If VMs of task i reside on hi different hosts, the
expected reliability of task i with periodic checkpointing inter-
val Tv;i is

Ri ¼ 1�
X1
k¼1

Z Ts;i

0

tþ kTn;i þ Tr þ Tv;i

kTv;i
fkðtÞdt

�
X1
k¼1

Z Tv;i

Ts;i

tþ kTn;i þ Tr

kTv;i
fkðtÞdt;

(1)

where fkðtÞ ¼ hi�e
�hi�½tþðk�1ÞTv;i � is the probability that a VM

failure for task i occurs t seconds after the kth checkpoint interval.

Proof. Since task i uses hi hosts, its VM failure process is

Poisson with rate hi�. Therefore, fkðtÞ ¼ hi�e
�hi�½tþðk�1ÞTv;i�

is the p.d.f of VM failure at time tþ ðk� 1ÞTv;i.
Now if the failure occurs during ½Ts;i; Tv;i� of the kth

checkpoint interval, the total service downtime in kTv;i

seconds is tþ kTn;i þ Tr, where the checkpointing over-
head Tn;i is experienced in all checkpoint intervals due to
pausing all VMs. In contrast, if the failure occurs during
½0; Ts;i� of the kth checkpoint interval, the total service
downtime becomes tþ kTn;i þ Tr þ Tv;i, because the kth
checkpoint has not been completed yet, and task i must
roll-back to the ðk� 1Þth checkpoint. Therefore, reliabil-
ity is obtained as the mean fraction of service uptime as
in (1). This completes the proof of Lemma 1. tu

2.3 Peer-to-Peer Checkpointing to Mitigate
Congestion

Mechanisms for checkpointing on central storage servers
have been provided in [4], [5], [6]. Since a huge amount of
VM image data must be transferred periodically, as the
number of tasks and VMs increase in a data center, the links
that connect central storage server and core switches easily
become congested. To avoid such a bottleneck, we propose
a peer-to-peer checkpointing mechanism that enables VM
images to be transferred and saved among neighboring
peers. Fig. 3 shows a schematic diagram of peer-to-peer

Fig. 2. Coordinated checkpointing of multiple jobs mitigates overhead
and improves reliability.

Fig. 3. Illustrations of peer-to-peer checkpointing with fat-tree topology,
where traffics are distributed over the entire network.

ZHAO ETAL.: ELASTIC RELIABILITYOPTIMIZATION THROUGH PEER-TO-PEER CHECKPOINTING IN CLOUD COMPUTING 493

checkpointing. In comparison, in a centralized checkpoint-
ing scheme where networked storage servers are connected
to top-level switches, all checkpointing traffic is routed
through core switches.

To characterize the benefits of peer-to-peer checkpoint-
ing, we first notice that if we further assume that checkpoint
interval Tv;i is much smaller than the mean time between
failures, i.e., Tv;i � 1=ðhi�Þ, then reliability can be approxi-
mated by the following lemma:

Lemma 2. When Tv;i � 1=ðhi�Þ, reliability Ri can be approxi-
mated by

Ri ¼ 1� Tn;i

Tv;i
� hi�

Tv;i

2
þ Tr þ Ts;i

� �
: (2)

Proof. This result is straightforward by applying the
approximation e�hi�t ¼ 1 to fkðtÞ on the right hand side of
(1), since t � Tv;i � 1=ðhi�Þ. tu

To illustrate limitations of the centralized checkpointing
method, we consider a scenario where the link connecting
central storage servers and top-level core switches is the
only traffic bottleneck. This analysis provides an upper
bound for the centralized checkpointing method because
possible local bottlenecks are ignored. Suppose that there
are n tasks with the same checkpoint interval Tv;i and VM
image size Ii. The aggregate checkpoint traffic from all tasks
cannot exceed the total capacity C over a checkpoint inter-
val, i.e.,

Xn
i¼1

miIi � CTv;i: (3)

According to (2), it implies that, for centralized checkpointing,

Ri � 1� hi�
Tv;i

2
� 1� hi�Ii

2C

Xn
i¼1

mi: (4)

Reliability Ri tends to zero as the number of VMs
Pn

i¼1 mi

grows large. The centralized checkpointing method leads to
very poor performance for large-scale data centers, where a
finite bandwidth from central storage servers is shared by a
large number of VM checkpoints. This does not pose a prob-
lem for peer-to-peer checkpointing, because checkpoint
traffics may be distributed over local links at low-level
switches, which also scale up when data center size
increases. Therefore, this approach is much more.

3 JOINT RELIABILITY OPTIMIZATION

3.1 Problem Formulation

In this paper, we focus on how to determine optimal check-
point scheduling and routing under I/O and network
capacity constraints. In our model, checkpoint scheduling is
decided by periodic checkpoint intervals Tv;i and initial
time offset hi, while checkpoint routing is determined by
the selection of checkpoint destination nodes and traffic
routing among peers, collectively denoted by P.

We use a utility function Uið�Þ to model the reliability
requirement of task i. A survey [2] showed that 45 percent of
cloud users are satisfiedwith a 99.9 percent reliability guaran-
tee (i.e., 45 minutes unplanned downtime per month), while

14 percent would pay at least 25 percent more to get a 99.99
percent reliability guarantee (i.e., approximately 4 minutes
unplanned downtime per month), and only 6 percent would
pay at least 50 percent more to go beyond 99.99 percent.
Therefore, UiðRiÞ is assumed to be an increasing function of
Ri. For instance, we can choose UiðRiÞ ¼ �wi log 10ð1�RiÞ,
wherewi are user-specificweights.

In order to create a checkpoint, only a delta disk [7] that
contains incremental VM changes after the last checkpoint
has to be saved and transferred, once the first checkpoint is
done. This process considerably reduces the time needed to
make the checkpoint. Therefore, we consider variable VM
image sizes, as a non-decreasing function of checkpoint
interval, e.g., a logarithm function IiðTv;iÞ ¼ alog ðTv;iÞ þ b
where a; b are appropriate constants. The time to take a
checkpoint and transfer its images, Tn;i and Tb;i, can be
computed by delta disk size IiðTv;iÞ and allocated I/O Oi,
bandwidth Bi:

Tn;i ¼
IiðTv;iÞ
OiDt

� �
and Tb;i ¼

IiðTv;iÞ
BiDt

� �
: (5)

For VM checkpointing, it is easy to see that task i generates
periodic I/O usage for all

t 2 ½hi þ kTv;i; hi þ kTv;i þ Tn;i�; 8k 2 Zþ; (6)

as well as periodic network traffic for all

t 2 ½hi þ kTv;i þ Tn;i; hi þ kTv;i þ Ts;i�; 8k 2 Zþ: (7)

Therefore, increasing checkpoint frequency (i.e., reducing
Tv;i) increases checkpoint traffic proportionally.

Network Constraints. Consider a data center with L
links, indexed by l ¼ 1; . . . ; L, each with a fixed capacity

Cb
l . We define a checkpoint routing vector Xi of length L

for task i by

Xi;l ¼
x; if x VM images of task i transverse link l;
0; otherwise.

�

We assume that this checkpoint routing vector Xi remains
unchanged for the entire duration of task i. Let Bi be the
checkpoint network bandwidth assigned to each VM of task
i. Combining (Eq. (7)) and the definition of checkpoint rout-
ing vector Xi, we can formulate a network capacity con-
straint as follows:

Gb þ
Xn
i¼1

BiXi1
b
iðtÞ � Cb; 8t; (8)

where Cb ¼ ½C1; . . . ; CL� is a set of link capacity constraints,

and 1biðtÞ is an indicator function defined by

1biðtÞ ¼ 1ft2½hiþkTv;iþTn;i;hiþkTv;iþTs;i�;8kg: (9)

Here Gb ¼ ½Gb
1; . . . ; G

b
L� is a background traffic vector, repre-

senting the link capacities set aside for normal task traffic.
An empirical measurement study in [11] shows that average
traffic per VM is stable at large time-scales. Thus, we treat

Gb as a time-invariant vector, where Gb
l denotes the aggre-

gate task traffic on link l.

494 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2017

I/O Constraints. Similarly, consider J hosts, indexed by
j ¼ 1; . . . ; J , each with a fixed I/O capacity Co

j . We define a

VM placement vector Yi of length J for task i by

Yi;j ¼
y; if y VMs of task i are placed on host j;
0; otherwise.

�

Let Oi be the checkpoint I/O assigned to each VM of task
i. Combining (6) and Yi, we can formulate an I/O capacity
constraint as follows:

Go þ
Xn
i¼1

OiYi1
o
i ðtÞ � Co; 8t; (10)

where 1oi ðtÞ is an indicator function defined by the time
interval for saving local checkpoints:

1oi ðtÞ ¼ 1ft2½hiþkTv;i;hiþkTv;iþTn;i�;8kg: (11)

Here Go ¼ ½Go
1; . . . ; G

o
J � is a background I/O vector, rep-

resenting the I/O capacities set aside for normal task traffic.
Combining (2), (5), (8), (9) (10), and (11), we then formu-

late the Joint Checkpoint Scheduling and Routing (JCSR)
problem under network and I/O capacity constraints:

maximize (12)

Xn
i¼1

UiðRiÞ; (13)

subject to (14)

Ri ¼ 1� Tn;i

Tv;i
� hi�

Tv;i

2
þ Tr þ Ts;i

� �
; (15)

Gb þ
Xn
i¼1

BiXi1
b
iðtÞ � Cb; 8t; (16)

Go þ
Xn
i¼1

OiYi1
o
i ðtÞ � Co; 8t; (17)

Ts;i ¼ Tn;i þ Tb;i; (18)

variables (19)

hi; Tv;i 2 T ; Bi; Oi;Xi 2 P: (20)

Here we only allow users to choose Tv;i from a finite set of
checkpoint intervals, T ¼ fT1; T2; . . . ; Tzg. Similarly, we use
P to denote the set of all feasible checkpoint routing vectors.
Constraints (16) and (17) ensures that the required check-
point and task traffic can be supported. Tn;i and Tb;i are
determined by VM image sizes and I/O, network band-
width assignments Oi;Bi, respectively. The VM placement
Yi is an input parameter. Our optimization problem formu-
lation uses a general system model, where any nodes and
switches (both top-of-rank and aggregate switches) can be
used for VM checkpointing. In particular, Xi and Yi are the
checkpoint routing vector and the VM placement vector of
task i. Whether a link, a switch or a node is chosen for
checkpointing depends on the optimal solution of our pro-
posed optimization.

3.2 Finding Interference-Free Schedule is NP Hard

In this section, we prove that the JCSR problem is NP-hard
in general and present a few special cases in which the prob-
lem can be solved optimally.

Lemma 3. The JCSR problem is NP-hard.

Proof. We show that if the JCSR problem can be solved in
polynomial time, then the f-edge coloring problem for mul-
tigraphs can also be solved in polynomial time, which
results in a contradiction to the NP-hardness of f-edge col-
oring problem. Toward this end, we consider a special case
of the JCSR problemwith the following simplifications:

� the tasks are identical, each with a single VM (i.e.,
hi ¼ 1)

� checkpoint interval (Tv) is the same for all tasks
� the link bandwidth (B) allocated to each task is

the same, i.e., Tb;i ¼ Tb 8i
� the I/O (O) allocated to each task is the same, i.e.,

Tn;i ¼ Tn 8i
� there exists sufficient bandwidth and I/O capac-

ity except for the links directly connecting hosts
and switches

� the checkpoint destination for each task is fixed
and known.

In this special case, all tasks are homogeneous, and
should receive the same checkpoint interval Tv. For each
value of Tv, we can calculate Tn and Tb. Together with Tr,
h ¼ 1, and �, we can calculate the reliability R and utility
UðRÞ. Thus, the JCSR problem is reduced to a verification
problem: whether we can schedule the checkpoints for
all tasks within a particular Tv (by choosing a proper off-
set hi for each task i).

According to our assumption that there exists suffi-
cient bandwidth and I/O capacity except for the links
directly connecting hosts and local switches, the only con-
straints in the JCSR problem are the link bandwidth avail-
able between hosts and local switches. Based on the
bandwidth (B) assigned to each task, and the available
bandwidth of each link, there is an upper bound on the
number of checkpoints images that can be sent/received
by each host j at each time slot, which we denote as zj. We
argue that problem JCSR is in NP, since given a collection
of hi, it can be efficiently checked that whether the hi val-
ues are feasible according to zj of each host j and Tv (given
Tb and Tn). Now it only remains to prove that if the JCSR
problem in this special case can be solved in polynomial
time, so is the f-edge coloring problem formultigraphs.

We consider a given instance of f-edge coloring prob-
lem and converts it into an equivalent JCSR problem. Let
GðV;EÞ be a graph, f be an integer function on V with
fðvÞ defined for each vertex v 2 V . An f-edge coloring
problem asks whether it is possible to color the edges of
G using at most k different colors such that each color
appears at vertex v at most fðvÞ times. It is well known as
an NP-hard problem [16], [17]. Given an f-edge coloring
problem, we convert it into an instance of the JCSR prob-
lem as follows: Each vertex v inG is represented by a host
j in the data center. If there is an edge between two ver-
texes v1 and v2 in G, then there exists a VM (task) hosted
by j1 whose checkpointing destination is host j2. Next, for

ZHAO ETAL.: ELASTIC RELIABILITYOPTIMIZATION THROUGH PEER-TO-PEER CHECKPOINTING IN CLOUD COMPUTING 495

a vertex v with value fðvÞ, we set the bandwidth between
host j and its edge switch as fðvÞB (i. e., zj ¼ fðjÞ). This
construction can be done in polynomial time based on the
size of the given f-edge coloring problem.

Finally, it is easy to show that if we can solve the JCSR
problem with Tv � Tbkþ Tn, then we can also solve the f-
edge coloring problem with k colors. Suppose that a fea-
sible solution to the JCSR problem is found. For all the
tasks have same h, we assign the corresponding edges
with the same color. Thus, each color appears at vertex v
at most fðvÞ ¼ zj times. Since each task takes Tb time slots
to transfer checkpoint image, Tv � Tbkþ Tn means that
for each host, there are at most k tasks with different h
values (with that host as the tasks’ VM placement or as
their checkpoint destination). Therefore, the correspond-
ing vertex v is assigned at most k different colors. Since
the f-edge coloring problem is NP-hard, we conclude
that the JCSR problem is also NP-hard. tu

While a general solution to the JCSR problem cannot be
obtained in polynomial time, we present a few special cases
where the JCSR problem can be solved optimally.

Remark 1. Consider the special case introduced in the proof
of Lemma 3, where all tasks are homogeneous and have
the same checkpoint interval, I/O and bandwidth alloca-
tion. Each task has only a single VM and its checkpoint
destination is fixed. There are sufficient bandwidth and I/
O capacity except for the links directly connecting hosts
and local switches. In addition, we assume that all hosts in
the data center are partitioned into two disjoint sets, one
consisting of (computing) hosts only serving VMs, the
other consisting of (storage) hosts only used as checkpoint
destinations. In this case, the problem can be solved as f-
edge coloring for bipartite graphs, which can be optimally
solved in polynomial time using algorithms such as [16].

Remark 2. Again, consider the special case introduced in
the proof of Lemma 3. In addition, we assume that the
bandwidth for checkpointing on the links are divided
into two parts - one dedicated to transmitting checkpoint
image to checkpoint destination and the other dedicated
to receiving checkpoint image from VM placement (i.e.,
out-going and incoming bandwidth). Then, the JCSR
problem can also be optimally solved as f-edge coloring
for bipartite graphs.

Remark 3. Consider a special case with only I/O con-
straints and only one VM per task. The offset hi is
assumed to be zero for all tasks. Then the VM placements
are independent with each other. Since link bandwidth
are sufficiently large, we have Tb;i=1 slot for each task i.

For each node j, we only need to decide the Oj
i allocated

to each task i at node j to have the maximum aggregate
utility. The problem can be solved under three separate
conditions: (i) If all the tasks have same and fixed check-
pointing interval Tv (in turn, the same checkpoint image
size I), then the maximum summation of utility U is a

function of the Oj
i (Eq. (15)), as

P
i I=O

j
i decreases, U

increases, and
P

i O
j
i � Co. The optimal value is obtained

when Co are equally allocated to all tasks i. (ii) If the
sizes of checkpointing images for the tasks are different,

then U is a function of
P

i Ii=O
j
i . Let Qi ¼ Ii=O

j
i (i.e.,

Oj
i ¼ Ii=Qi), so we want to minimize

P
i Qi with con-

straint
P

i Ii=Qi � Co . The optimal value is obtained
when all the Qi are same for all tasks i, i.e.,
Qi ¼ Co=

P
i Ii. (c) If each task has multiple VMs xi, and

they are placed on the same node, then this case can be
derived easily by assigning each task a new I 0i ¼ Iixi,
then use I 0i instead of Ii in cases (a and b).

4 SOLVING THE JOINT CHECKPOINT SCHEDULING

AND ROUTING PROBLEM

4.1 Our Solution Using Dual Decomposition

The problem (13) is a non-convex and combinatorial optimi-
zation and there is no computationally-efficient solution
even in a centralized manner. In this paper, we leverage the
technique of dual-decomposition in [12], [44] to obtain a
sub-optimal solution. Among many choices of heuristic
methods, the one we develop below has the advantage of
allowing a distributed implementation without cooperation
of different tasks.

Let M be the least common multiple of all feasible check-
point intervals in T ¼ fT1; T2; . . . ; Tzg. Due to our model of
periodic checkpointing, it is sufficient to consider the net-
work capacity constraint in (16) over ½0;M�. Let VðtÞ and
WðtÞ be Lagrangian multipliers vector for the network and
I/O capacity constraints, which are both time-dependent.
We derive the Lagrangian for the joint checkpoint schedul-
ing and routing problem in Eq. (21) on next page.

L ¼
Xn
i¼1

UiðRiÞ �
XM
t¼0

VðtÞT Gb þ
Xn
i¼1

BiXi1
b
iðtÞ � Cb

" #

�
XM
t¼0

WðtÞT Go þ
Xn
i¼1

OiYi1
o
i ðtÞ � Co

" #
:

(21)

The other two constraints (15) and (18) can be easily
substituted in the Lagrangian above and are suppressed for
a simple presentation.

SinceM is an integer multiple of Tv;i, we have

XM
t¼0

VðtÞT
Xn
i¼1

BiXi1
b
iðtÞ

" #

¼
Xn
i¼1

Bi

XM
t¼0

VðtÞTXi1
b
iðtÞ

¼
Xn
i¼1

IiðTv;iÞ
Tb;iDt

XM
t¼0

VðtÞTXi1
b
iðtÞ;

(22)

where the last step uses IiðTv;iÞ ¼ BiTb;iDt in (5). Similarly,
we have

XM
t¼0

WðtÞT
X
i

OiYi1
o
i ðtÞ

" #

¼
Xn
i¼1

Oi

XM
t¼0

WðtÞTYi1
o
i ðtÞ

¼
Xn
i¼1

IiðTv;iÞ
Tn;iDt

XM
t¼0

WðtÞTYi1
o
i ðtÞ;

(23)

where the last step uses IiðTv;iÞ ¼ OiTn;iDt in (5).

496 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2017

Plugging (22) and (23) into the Lagrangian Eq. (21), we
obtain

L ¼
Xn
i¼1

UiðRiÞ � IiðTv;iÞ
1

Tb;iDt
�VT
i Xi þ

1

Tn;iDt
�WT

i Yi

� �� �

þ
XM
t¼0

VðtÞT Cb �Gb
	

þ
XM
t¼0

WðtÞT Co �Go½ �;

where

�VT
i ¼

XM
t¼0

VðtÞT1biðtÞ

�WT
i ¼

XM
t¼0

WðtÞT1oi ðtÞ:
(24)

Now, for given Lagrangian multipliers VðtÞ and WðtÞ,
the optimization of L over checkpoint scheduling and rout-
ing is decoupled into n individual sub-problems:

max
hi;Tv;i;Bi;Oi;Xi

UiðRiÞ � IiðTv;iÞ

1

Tb;iDt
�VT
i Xi þ

1

Tn;iDt
�WT

i Yi

� �
; 8i:

(25)

Here, the checkpoint sequence offset hi only affects aver-

age congestion prices �VT
i and �WT

i , while Bi, Oi and Xi are
determined by checkpoint routing/placement decisions.
Thus, to solve (25) sub-optimally, we can iteratively opti-
mize it over two sets of variables: Bi; Oi;Xif g, and

hi; Tv;i

� �
, respectively. This results in the design of a heu-

ristic and distributed algorithm for solving problem (13),
if the Lagrangian multipliers VðtÞ and WðtÞ are updated
by a gradient method:

Vgþ1ðtÞ ¼ VgðtÞ þ mg Gb þ
Xn
i¼1

BiXi1
b
iðtÞ � Cb

 !" #þ
; 8t;

(26)

Wgþ1ðtÞ ¼ WgðtÞ þ mg Go þ
Xn
i¼1

OiYi1
o
i ðtÞ � Co

 !" #þ
; 8t;

(27)

where g is the iteration number and mg is a proper step-size.
The initial values of V andW are set as

V0ðtÞ ¼ Cb

Cb �Gb

� �þ
; 8t; (28)

W0ðtÞ ¼ Co

Co �Go

� �þ
; 8t: (29)

4.2 Algorithm Solution for Reliability Optimization

We next present a heuristic algorithm that finds a sub-opti-
mal solution for the joint checkpoint scheduling and routing
problem, leveraging the dual decomposition method pre-
sented above. The key idea is to iteratively compute the
individual-user optimization problem in (25) and the price
vector update in (26) and (27). To reduce search complexity,
we further break down the individual-user optimization
problem in (25) into two sub-problems, over Bi;Oi;Xif g,

and hi; Tv;i

� �
, respectively. The Dijkstra algorithm is used to

find the optimal routing vector Xi with link cost �Vi and host

cost �Wi. For a chosen tolerance �, the proposed algorithm is
summarized in Algorithm 1.

Algorithm 1. Joint Checkpoint Scheduling and Routing
to Maximize Reliability

Step 1:
1. Initialize random interval Tv;i and offset hi
2. Initialize random routing vector Xi and feasible bandwidth
Bi;Oi

3. Initialize V andW

V ¼ Cb

Cb�Gb

h iþ
,W ¼ Co

Co�Go

	
þ
Step 2: Solve individual-user optimization problem in (25):
for 0 � i � n do
Step 2.a: Solve optimal Bi, Oi and Xi:
Calculate �Vi and �Wi according to (24)
Treat �Vi as link costs, �Wi as host costs
Xi Dijkstra for all VMs
for Tn;i 2 ½1; Tv;i � 1� do
for Tb;i 2 ½1; Tv;i � Tn;i� do
Oi ¼

IiðTv;iÞ
Tn;iDt

and Bi ¼
IiðTv;iÞ
Tb;iDt

check if Oi and Bi resources are available according to
Yi, Xi, hi, Tn;i and Tb;i

find Tn;i;opt and Tb;i;opt to maximize

UiðRiÞ � IiðTv;iÞ 1
Tb;iDt

�VT
i Xi þ 1

Tn;iDt
�WT

i Yi

 �
end for

end for
Tn;i Tn;i;opt, Tb;i Tb;i;opt

Step 2.b: Search for optimal Tv;i and hi:
Calculate �Vi and �Wi according to (24).
for Tv;i 2 T do
for hi 2 ½0; Tv;i� do
Find Tv;i;opt and hi;opt to maximize

UiðRiÞ � IiðTv;iÞ 1
Tb;iDt

�VT
i Xi þ 1

Tn;iDt
�WT

i Yi

 �
end for

end for
Tv;i Tv;i;opt, hi hi;opt

end for
Step 3: Update price vector VðtÞ andWðtÞ:
1. VðtÞ Vgþ1ðtÞ according to (26).
2.WðtÞ Wgþ1ðtÞ according to (27).
Step 4:
1. Record current reliability R0

i Ri

2. Compute new Ri according to (15)

if
P

i Ri �R0
i

�� �� > � then

Goto Step 2.
end if

Let us denote by N the number of nodes (including hosts
and switches) in the topology; E the number of unidirec-
tional links in the network;H the number of hosts in the net-
work; n the number of tasks; T 0 the longest checkpoint
interval (in time slots); M 0 the least common multiple of
checkpoint intervals (in time slots); W the maximum num-
ber of VMs of each task; G the number of checkpointing
interval choices; and I the number of iterations before the
algorithm terminates. The time complexity of Algorithm 1
is analyzed as follows. Step 1 is called only once, while
Steps 2-4 are called per iteration. The time complexities of

ZHAO ETAL.: ELASTIC RELIABILITYOPTIMIZATION THROUGH PEER-TO-PEER CHECKPOINTING IN CLOUD COMPUTING 497

Steps 1-4 are OðnT 02ðM 0E þWN logN þWEÞÞ, OðnðWN log

N þWE þ T 02M 0E þGT 0EÞÞ, OðnM 0EÞ, and OðnÞ respec-
tively, which make the total time complexity of the

Algorithm 1 as OðnðT 02WN logN þ T 02WE þ IWN logNþ
IWE þ IT 02M 0E þ IGT 0EÞÞ, which is linear in the number
of tasks n.

5 NUMERICAL EXAMPLES

5.1 Prototype Implementations

To demonstrate potential benefits of coordinated check-
points, we constructed a 11-node local testbed with a single
node serving 4 tasks, and conducted some preliminary tests
on pipeline and parallel checkpoint scheduling. In this test,
assuming that all tasks require equal reliability, pipeline
scheduling shown in Fig. 4 allows checkpoints to be taken
one after another and the image transfer time may be over-
lapped to transmit at the same time. In this case, each task
can take full advantage of available I/O and bandwidth
resources and achieve much higher reliability. On the other
hand, in optimized parallel scheduling, the tasks may
decide to take checkpoints at the same time, which would
introduce performance interference as VM checkpointing
consumes shared physical resources such as CPU and I/O.
This in turn may also increase service downtime and result
in lower reliability. As shown in Fig. 4, pipeline scheduling
achieves significant reliability improvement as task VM-
memory sizes vary from 0.25 GB to 2 GB.

5.2 Simulation Setup

In remaining of this section, we evaluate our design for joint
checkpoint scheduling and routing on a Fat-tree topology
[18], which consists of a collection of edge and aggregation
switches that form a complete bipartite graph (see Fig. 3 as an
example of fat-tree topologies). While data center traffic
traces are generally proprietary and unavailable, recent
studies [19], [20], [21] provide us a good characterization of
traffic patterns inside data centers. The major objective of our
evaluation is to move a step further than analysis and obtain
empirically-validated insights about the feasibility/efficiency
of providing reliability as a service in practical settings.

We construct a 1024-node Fat-tree topology. The nodes
are connected to high speed switches (similar to Cisco Cata-
lyst 4948 Switch), which offer a link capacity of Cl ¼ 10Gbps
for l ¼ 1; ; L [43]. Each node represents a quad-core machine

and can host up to 4 VMs. The total write I/O capacity of
each host is about 80 MB/s. The part set aside for check-
pointing is 25 or 50 percent. Dt is set as 5 seconds.

To incorporate task heterogeneity, we define two types
of tasks: elephant tasks that comprise mi ¼ 20 VMs and
generate large peer-wise flows uniformly distributed in
½50; 150�Mbps, and mice tasks that comprise mi ¼ 5 VMs
and generate small peer-wise flows uniformly distributed
in ½0; 50�Mbps. We randomly generate n ¼ 300 tasks, each
being an elephant task with probability 20 percent and a
mice task with probability 80 percent. Background traffic
vector G is constructed by randomly placing all VMs in the
data center and employing a shortest-path algorithm to
determine their traffic routing.

Each task is associated with a utility function, given by

UiðRiÞ ¼ �wi log 10ð1�RiÞ; (30)

where wi is a user-specific weight uniformly distributed in
½0; 1�. A larger weight implies a higher reliability demand
and budget. We model checkpoint image size IiðTv;iÞ
as increasing and convex functions of checkpoint interval
Tv;i, i.e., IiðTv;iÞ ¼ ð143 � log 10Tv;i � 254ÞMB, the VM-mem-
ory sizes are obtained/tuned through measurements from a
real implementation of checkpointing policies shown in
Fig. 4. Further, we assume an average annual failure rate of
one per node, which happens in most computing data cen-
ters [38], [39], a rollback time Tr ¼ 20 seconds [40], and
checkpoint interval Tv;i is selected from T ¼ f20; 000; 30; 000;
40; 000; 50; 000g seconds, so that checkpointing would be fre-
quent enough to keep reasonable reliability level, and also
not be too frequent to bring in longer downtime; numbers in
this range are also validated to be appropriate given the fail-
ure rates in real cloud environments [41], [42].

5.3 Simulation Results

To provide benchmarks for our evaluations, we consider
two heuristic algorithms with random selection of check-
point intervals and checkpoint destinations. For each task i,
offset hi is uniformly distributed in ½0; Tv;i�. If the bandwidth
or I/O resource are not sufficient at some time slots, the cor-
responding scheduled checkpoint event is canceled. The
bandwidth Bi and I/O Oi are allocated to maximize the
number of task i’s checkpoint events, while minimizing Tn;i

and Tb;i is the second objective (i.e., if there is a tie, the val-
ues of Bi and I/O Oi are selected to minimize Tn;i and Tb;i,
respectively). A modified Dijkstra algorithm is employed to
find maximum flow with bandwidth Bi.

1) A centralized checkpointing scheme. There is a cen-
tralized storage server for saving all tasks’ check-
point images. The link connecting the central storage
server and core switches has a capacity of Cs ¼ 100
Gbps [43].

2) A peer-to-peer checkpointing scheme. All links have
capacity Cl ¼ 10 Gbps.

We have shown that problem JCSR is NP hard; now in
order to show how far our algorithm’s performance devi-
ates from the optimal solution, we have compared reliability
from our algorithm with the assumptions described in the
optimal solution of Case 1, and the optimal solution of Case

Fig. 4. Pipeline scheduling outperforms parallel scheduling when all
tasks require the same reliability.

498 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2017

1 through the bipartite graph. Reliability is measured by the
number-of-nines.2 The simulation has 300 tasks running for
the two algorithms, and we decrease link capacity and I/O
capacity respectively. Fig. 5 shows the comparison of reli-
ability from the two algorithms. Even when link capacity
and I/O capacity become very limited, our algorithm has
an error percentage of less than 4 percent on average com-
pared to the optimal solution, and this error percentage
decreases even more as resource capacity increases. This
means that our JCSR algorithm can obtain near-optimal sol-
utions. The runtime (on a machine with Intel(R) Core(TM)
i7-3537U CPU@2.00 GHz 2.5 GHz, and 8 GB memory) and
number of iterations for different numbers of tasks are listed
in Table 2. Even on such a vanilla machine, the runtime is
much smaller than the typical checkpointing interval, such
as f40; 000; 50; 000g seconds as reported in [41], [42]. We
would also like to point out that in practice, the checkpoint
schedule only needs to be updated at a much larger time-
scale than the checkpoint interval itself, because the same
scheduling/routing decisions will be used during the exe-
cution of a given set of tasks (often consisting of many
checkpoint intervals).

Impact of Checkpoint Scheme. In Section 3 we have intro-
duced the peer-to-peer checkpointing mechanism to avoid
the bottleneck of link capacity in centralized checkpointing.
Now we will show how this peer-to-peer checkpointing out-
performs centralized mechanism in the view of reliability.
Again we have 300 tasks running for each checkpoint mech-
anism, centralized scheme has a link capacity (between cen-
tral storage server and the switch) of 100 Gbps, peer-to-peer
checkpointing has bandwidth capacity of 10 Gbps on each
link, in both mechanism each node has a I/O capacity of 80
MB/s. Fig. 6 shows the cumulative distributed function
(cdf) of reliability, for the two baseline schemes and our pro-
posed reliability optimization algorithm. From which we
can see that peer-to-peer checkpointing with random
parameters outperforms centralized scheme when multiple

tasks are running, i.e., number of nines in reliability
increases from 3.25 to 3.75 on average, this is because peer-
to-peer checkpointing utilizes higher bandwidth by distrib-
uting checkpoint traffic over all links. And our proposed
algorithm with peer-to-peer checkpointing shows even
more significant reliability improvement: it improves reli-
ability by roughly one order of magnitude over the central-
ized scheme, from 99:9 percent (i.e., three nines) to
99:99 percent (i.e., four nines). Such an improvement is due
to the coordination of checkpoint traffics, which becomes
nearly orthogonal in temporal or spatial domain.

Impact of Link Capacity. Problem JCSR has two capacity
constraints, based on that checkpoint times consists of Tn,
which depends on I/O resources on the host, and Tb,
depending on link bandwidth. We’ll study how these con-
straints affect our solution. First we go with link capacity, fix
I/O capacity at 80 MB/s at each node, decreasing bottleneck
link capacity Cs by 30 and 60 percent in centralized check-
pointing mechanism, and decreasing each link capacity Cl

by 30 and 60 percent in peer-to-peer checkpointing, 300 tasks
running. Scaling down all link capacity expectantly reduces
reliability, because it causes higher congestion in the net-
work. Fig. 7 shows that our proposed algorithm with peer-
to-peer checkpointing outperforms the centralized scheme
even when bottleneck link capacity is Cs ¼ 100 Gbps and
peer-to-peer scheme only has an link capacity of 4 Gbps.
Peer-to-peer checkpointing and our algorithm for joint

Fig. 5. Comparison of reliability in optimal solution and our JCSR
algorithm of optimal Case 1, with 300 tasks running, when varying link
and I/O capacity. Our algorithm has an error percentage less than 4 per-
cent on average compared to optimal solution, and the error percentage
decreases even more as resource capacity increases.

TABLE 2
JCRS Algorithm Run Time

Number
of Tasks

Runtime Iterations

100 1768:94 12
200 3136:6 13
300 5499:57 13
400 5967:07 14
500 8278:25 13

Fig. 6. Comparison of joint reliability of 300 tasks on centralized/Fat-tree
topology. Centralized scheme has a bandwidth capacity at the switch of
100 Gbps, distributed checkpointing has link capacity of 10 Gbps on each
link. Peer-to-peer checkpointing outperforms centralized scheme when
multiple jobs are included. And our proposed algorithm with peer-to-peer
checkpointing shows evenmore significant reliability improvement.

2. Reliability Ri can be equivalently measured by the number-of-
nines, i.e., �log 10ð1�RiÞ. For instance, four nines correspond to a reli-
ability of 99.99 percent.

ZHAO ETAL.: ELASTIC RELIABILITYOPTIMIZATION THROUGH PEER-TO-PEER CHECKPOINTING IN CLOUD COMPUTING 499

checkpoint scheduling and routing provide a link-cost-effec-
tive solution for achieving reliability. It mitigates the cost of
deploying high capacity links in data centers.

Impact of I/O Capacity.Next, wewill study the impact of I/
O capacity on reliability with the two checkpointing schemes
(centralized and peer-to-peer). Now we fix link capacity
Cs ¼ 100 Gbps in centralized scheme and Cl ¼ 10 Gbps in
peer-to-peer checkpointing. Varying I/O capacity at each
node from 50MB/s to 100MB/s. In Fig. 8we can see that reli-
ability decreases as available I/O capacity decreases in both
checkpointing mechanisms, since with the same number of
tasks running, lower I/O capacity means more congestion in
saving checkpoint image, which increases service downtime.
The figure also shows that our proposed algorithm with
peer-to-peer checkpointing outperforms the centralized
scheme even when centralized I/O has a capacity of
100 MB/s while peer-to-peer only has 50 MB/s at each node.

This validates that peer-to-peer checkpointing and our JCSR
algorithm can also mitigates the cost of I/O resources on
host machines, which provides another I/O-cost-effective
solution for achieving reliability as well.

Impact of Task Size. The number of tasks running in algo-
rithm JCSR also affects the solution on reliability, we show
the sum of utility of all tasks running in the three check-
pointing mechanisms in Fig. 9, where link capacity for peer-
to-peer checkpointing is 10 Gbps and that for centralized
checkpointing is Cs ¼ 100 Gbps, I/O capacity at each node
is 80 MB/s, we calculate the sum of utility as a function of
reliability: UiðRiÞ ¼ �wi log 10ð1�RiÞ, with wi ¼ 1, i.e., util-
ity of task i yields to number of nines in reliability. The
number of tasks running in algorithm JCSR ranges from the
set {100, 200, 300, 400}. Fig. 9 shows that sum of utility
increases as number of tasks increases, which is intuitive.
However, we can also see from the figure that in centralized
checkpointing scheme, this increase is less than linear com-
pared to the other two peer-to-peer checkpointing schemes,
this is because as number of tasks increases, congestion at
the bottleneck link will be more severe, which leads to reli-
ability loss. The increase in number of tasks running has the
least impact on our optimized peer-to-peer checkpointing,
whose sum utility increase is roughly linear as shown in the
figure as the number of tasks increases linearly. This also
validates that our JCSR algorithm with joint checkpoint
scheduling and routing is scalable to large tasks sets.

6 CONCLUSION AND FUTURE WORK

This paper proposes a novel approach to providing elastic
reliability optimization in cloud computing. Relying on
peer-to-peer checkpointing, the problem of joint reliability
maximization is formulated as an optimization, in which
data center operators need to find checkpoint scheduling
and make routing/placement decisions in order to maxi-
mize an aggregate utility of reliability. The resulting optimi-
zation problem, which is shown to be non-convex and
combinatorial, is efficiently solved using a distributed algo-
rithm based on dual decomposition. Numerical examples
with synthesized traffic trace shows that our solution signif-
icantly improves reliability by an order of magnitude over

Fig. 7. Impact of changing link capacity: fix I/O capacity at 80 MB at each
node, decreasing bandwidth capacity (Cs and Cl) by 30 and 60 percent
in both centralized/distributed typologies. Reliability decreases as band-
width capacity decreases in both cases. Our proposed algorithm with
peer-to-peer checkpointing outperforms the centralized scheme even
when bottleneck link capacity is Cs ¼ 100 Gbps and peer-to-peer
scheme only has an link capacity 60 percent off 10 Gbps (4 Gbps).

Fig. 8. Impact of changing I/O capacity: fix link capacity Cs ¼ 100Gbps in
centralized scheme and Cl ¼ 10Gbps in peer-to-peer checkpointing.
Varying I/O capacity at each node. Reliability decreases as I/O capacity
decreases in both topologies. Our proposed algorithm with peer-to-peer
checkpointing outperforms the centralized scheme even when central-
ized I/O has a capacity of 100 MB/s while peer-to-peer only has 50 MB/s
at each node.

Fig. 9. Sum of utility of all tasks. Different number of tasks running: {100,
200, 300, 400} in the three checkpointing schemes. Our proposed algo-
rithm outperforms the other two in reliability, and the improvement is
more significant as number of tasks increases.

500 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2017

both random peer-to-peer and centralized checkpointing
mechanisms.

In ongoing work we are looking at providing reliability
maximization under dynamic job arrivals and departures,
as well as for non-Poisson failure models. We are also
working on reliability optimization algorithms which not
only allow time-varying checkpoint scheduling (e.g., non-
deterministic checkpoint intervals), but also incorporate
dynamic routing/placement algorithms. We hope that the
results presented in this paper provide fuel to under-
standing and prototyping reliability services in cloud
computing.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their helpful suggestions, and Nakharin Limrungsi for
many helpful discussions on initial simulation setup. This
work is supported in part by US National Science Founda-
tion grant 1320226, and CAREER Award CNS-1350766.

REFERENCES

[1] Amazon, “We promise our EC2 cloud will only crash once a
week,” Amazon, Seattle, Washington, USA, Tech. Rep., Oct. 2008,
http://www.businessinsider.com/2008/10/amazon-we-prom-
ise-our-ec2-cloud-will-only-crash-once-a-week-amzn-

[2] RackSpace, “Software as a service perceptions survey,” Rack-
Space, Windcrest, TX, USA, Tech. Rep. Mar. 2007. [Online]. Avail-
able: www.rackspace.com/downloads/surveys/SaaSSurvey.pdf

[3] VMware, “Protecting mission-critical workloads with VMware
fault tolerance,” Tech. Rep., [Online]. Available: www.vmware.
com/files/pdf/resources/ft_virtualization_wp.pdf, Feb. 2009.

[4] P. Ta-Shma, G. Laden, M. Ben-Yehuda, and M. Factor, “Virtual
machine time travel using continuous data protection and
checkpointing,”ACM SIGOPS Operating Syst. Rev., vol. 42,
pp. 127–134, 2008.

[5] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand,
“Parallax: Managing storage for a million machines,” in Proc. 10th
Workshop Hot Topics Operating Syst., Jun. 2005, pp. 4–4.

[6] R. Badrinath, R. Krishnakumar, and R. Rajan, “Virtualization
aware job schedulers for checkpoint-restart,” inProc. 13th Int.
Conf. Parallel Distrib. Syst., Dec. 2007, pp. 1–7.

[7] I. Goiri, F. Juli‘a, J. Guitart, and J. Torres, “Checkpoint-based fault-
tolerant infrastructure for virtualized service providers,” in Proc.
IEEE/IFIP Netw. Operations Manage. Symp., Aug. 2010, pp. 455–462.

[8] M. Zhang, H. Jin, X. Shi, and S. Wu, “VirtCFT: A transparent VM-
level fault-tolerant system for virtual clusters,” in Proc. Int. Conf.
Parallel Distrib. Syst., Dec. 2010, pp. 147–154.

[9] Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun,
and S. L. Scott, “An optimal checkpoint/restart model for a large
scale high performance computing system,” in Proc. Int. Symp.
Parallel Distrib. Process., Apr. 2008, pp. 1–9.

[10] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instan-
ces via checkpointing in the amazon elastic compute cloud,” in
Proc. IEEE 3rd Int. Conf. Cloud Comput., Jul. 2010, pp. 236–243.

[11] S. kandula, J. padhye, and V. bahl, “Flyways to De-Congest Data
Center Networks,” in 8th ACM Workshop Hot Topics Networks.,
Oct. 2009, http://research.microsoft.com/apps/pubs/default.
aspx?id=136452.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
UK: Cambridge Univ. Press, 2005.

[13] R. Miller, “When The Power Goes Out at Google,” 2010. [Online].
Available: http://www.datacenterknowledge.com/archives/
2010/03/08/when-the-power-goes-out-at-google/

[14] P. Thibodeau, “Amazon cloud outage was triggered by configura-
tion error,” 2011, http://www.computerworld.com/article/
2508335/cloud-computing/amazon-cloud-outage-was-triggered-
by-configuration-error.html

[15] Z. Guo, et al., “Failure recovery: When the cure is worse than the
disease,” in Proc. 14th Workshop Hot Topics Operating Syst., 2013,
p. 8.

[16] X. Zhou and T. Nishizeki, “Edge-coloring and f-coloring for vari-
ous classes of graphs,” in Proc. 5th Int. Symp. AlgorithmsComput.,
1994, pp. 199–207.

[17] S. Nakano, X. Zhou, and T. Nishizeki, “Edge-coloring algo-
rithms,” in Computer Science Today: Recent Trends and Developments,
Ed. Jan Van Leeuwen, Berlin, Germany: Springer-Verlag, 1995,
pp. 172–183.

[18] R. Mysore, A. Pamboris, and A. Vahdat, “Portland: A scalable
fault-tolerant layer 2 data center network fabric,” in Proc. ACM
SIGCOMM Conf. Data Commun., 2009, pp. 39–50.

[19] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network
traffic in a cluster-based, multi-tier data center,” in Proc. 27th Int.
Conf. Distrib. Computi. Syst., 2007, pp. 59–69.

[20] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C.R. Das, “Towards
characterizing cloud backend workloads: Insights from Google
compute clusters,” SIGMETRICS Perform. Eval. Rev., vol. 37,
pp. 34–41, Mar. 2010.

[21] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” ACM SIGCOMM Comput. Com-
mun. Rev., vol. 40, pp. 92–99, Jan. 2010.

[22] E. G. Coffman, M. R. Garey, D. S. Johnson, and A. S. LaPaugh,
“Scheduling file transfers in a distributed network,” in Proc. 2nd
Annu. ACM Symp. Principles Distrib. Comput., 1983, pp. 254–266.

[23] Y. Cai and M. C. Kong, “Nonpreemptive scheduling periodic
tasks uni-multiprocessor systems,” Algorithmica, vol. 15, no. 6,
pp. 572–599, Jun. 1996.

[24] A. Chowdhury and P. Tripathi, “Enhancing cloud computing reli-
ability using efficient scheduling by providing reliability as a serv-
ice,” in Proc. Int. Conf. Parallel, Distrib. Grid Comput., Dec. 2014,
pp. 99–104.

[25] A. Zhou, S.Wang, Z. Zheng, C.Hsu,M. Lyu, and F. Yang, “On cloud
service reliability enhancement with optimal resource usage,” IEEE
Trans. Cloud Comput., Doi: 10.1109/TCC.2014.2369421.

[26] D. Tiwari, S. Gupta, and S.S. Vazhkudai, “Lazy checkpointing:
exploiting temporal locality in failures to mitigate checkpointing
overheads on extreme-scale systems,” in Proc. 44th Annu. IEEE/
IFIP Int. Conf. Dependable Syst. Netw., Jun. 2014, pp. 25–36.

[27] Rahul Singh, David Irwin, Prashant Shenoy, and K. K. Ramak-
rishnan, “Yank: Enabling green data centers to pull the plug,”
in Proc. 10th USENIX Symp. Netw. Syst. Des. Implementation,
Apr. 2013, pp. 142–156.

[28] S. Ren and M. A. Islam, “Colocation demand response: Why do i
turn off my servers?,” presented at the 11th Int. Conf. Autonomic
Computing, Philadelphia, PA, USA, Jun. 2014.

[29] C. Stewart, A. Chakrabarti, and R. Grifth, “Zoolander: Efficiently
meeting very strict, low-latency SLOs,” presented at the 10th Int.
Conf. Autonomic Computing, San Jose, CA, USA, Jun. 2013.

[30] K. Gardner, S. Zbarsky, E. Hyytia, and A. Scheller-Wolf,
“Reducing latency via redundant requests: Exact analysis,” SIG-
METRICS ’15, Jun. 2015, New York, NY, USA.

[31] B. Mills, R. E. Grant, K. B. Ferreira, and R. Riesen, “Evaluating
energy savings for checkpoint/restart,” in Proc. 1st Int. Workshop
Energy Efficient Supercomput., 2013, Art. no. 6.

[32] P. Hoenisch, S. Schulte and S. Dustdar, “Workflow scheduling
and resource allocation for cloud-based execution of elastic proc-
esses,” in Proc. IEEE 6th Int. Conf. Serv.-Oriented Comput. Appl.,
2013, pp. 1–8.

[33] Z. Wu, X. Liu, Z. Ni, D. Yuan and Y. Yang, “A market-oriented
hierarchical scheduling strategy in cloud workflow systems,” J.
Supercomputing, vol. 63, no. 1, pp. 256–293, Jan. 2013.

[34] S. W. Kwak, B. J. Choi and B. K. Kim, “An optimal checkpointing-
strategy for real-time control systems under transient faults,”
IEEE Trans. Rel., vol. 50, no. 3, pp. 293–301, Sep. 2001.

[35] Zhang, Y. and K. Chakrabarty, “Energy-aware adaptive check-
pointing in embedded real-time systems,” in Proc. Des., Autom.
Test Eur. Conf. Exhib., 2003, p. 10918.

[36] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho, “Using replication
and checkpointing for reliable task management in computational
Grids,” in Proc. Int. Conf. High Perform. Comput. Simul., Jun. 2010,
pp. 125–131.

[37] H. R. Faragardi and R. Shojaee, “An analytical model to evaluate
reliability of cloud computing systems in the presence of QoS
requirements,” in Proc. IEEE/ACIS 12th Int. Conf. Comput. Inform.
Sci., Jun. 2013, pp. 315–321.

[38] S. Fu and C. Z. Xu, “Proactive resource management for failure
resilient high performance computing clusters”, in Proc. Int. Conf.
Availability, Rel. Security, 2009, pp. 257–264.

ZHAO ETAL.: ELASTIC RELIABILITYOPTIMIZATION THROUGH PEER-TO-PEER CHECKPOINTING IN CLOUD COMPUTING 501

[39] R. S. Matos, Jr, P. R. M. Maciel, F. Machida, D. S. Kim and K. S.
Trivedi, “Sensitivity analysis of server virtualized system
availability,” IEEE Trans. Rel., vol. 61, no. 4, pp. 994–1006,
Dec. 2012.

[40] D. Lorenzoli and G. Spanoudakis, “Predicting software service
availability: Towards runtime monitoring approach,” in Proc.
IEEE Int. Conf. Web Serv., 2011, pp. 736–737.

[41] Prabhat and Quincey Koziol, High Performance Parallel I/O.
London, U.K: Chapman and Hall, Oct. 2014, pp. 284–286.

[42] T. Wang, W. Yu, S. Oral, B. W. Settlemyer, and S. Atchley, “An
efficient distributed burst buffer for Linux,” in Proc. Lustre User
Group Conf., Miami, United States, 2014.

[43] Cisco Catalyst 4948 Switch Data Sheet. (2014, Jan.). [Online].
Available: http://www.cisco.com/c/en/us/products/collateral/
switches/catalyst-4900-series-switches

[44] D. Xu, Y. Li, M. Chiang, and A. R. Calderbank, “Elastic service
availability: Utility framework optimal provisioning,” IEEE J. Sel.
Areas Commun., vol. 26, no. 6, pp. 55–65, Aug. 2008.

Juzi Zhao received the MS and PhD degrees
from the Department of Electrical and Computer
Engineering, The George Washington University
in 2009 and 2014, respectively. She is with the
Department of Electrical and Computer Engineer-
ing at University of Massachusetts-Lowell. Her
current research interests include optical and
data center networks.

Yu Xiang received the BASc degree from Harbin
Institute of Technology in 2010, and the PhD
degree from George Washington University in
2015, both in electrical engineering. She is now
a senior inventive scientist at AT&T Labs-
Research. Her current research interests include
cloud resource optimization, distributed storage
systems, and cloud storage charge-back.

Tian Lan received the BASc degree from the
Tsinghua University, China, in 2003, the MASc
degree from the University of Toronto, Canada, in
2005, and the PhD degree from the Princeton
University in 2010. He is currently an assistant
professor of electrical and computer engineering
at the George Washington University. His
research interests include cloud resource optimi-
zation, distributed systems, and cyber security.
He received the 2008 IEEE Signal Processing
Society Best Paper Award, the 2009 IEEE

GLOBECOM Best Paper Award, and the 2012 INFOCOM Best Paper
Award. He is a member of the IEEE.

H. Howie Huang received the PhD in computer
science from the University of Virginia. He is an
associate professor in the Department of Electri-
cal and Computer Engineering, George Washing-
ton University. His research interests include the
areas of computer systems and architecture,
including cloud computing, big data, and high-
performance computing. He was a recipient of
the NSF CAREER award, NVIDIA Academic
Partnership Award, and IBM Real Time Innova-
tion Faculty Award. He is a senior member of
the IEEE.

Suresh Subramaniam received the PhD degree
in electrical engineering from the University of
Washington, Seattle, in 1997. He is a professor in
the Department of Electrical and Computer
Engineering, George Washington University,
Washington, DC. His research interests include
the architectural, algorithmic, and performance
aspects of communication networks, with current
emphasis on optical networks, cloud computing,
and data center networks. He has published
more than 150 peer-reviewed papers in these

areas, and has co-edited 3 books on optical networking. He has served
as TPC chair for several conferences including Globecom 2006 and
2016 ONS, LANMAN 2014, INFOCOM 2013, ANTS 2008, and ICC
2007 ONS. He is or has been on the editorial boards of seven journals
including the IEEE/ACM Transactions on Networking and the IEEE/OSA
Journal of Optical Communications and Networking. He is a recipient of
Best Paper Awards at ICC 2006 ONS and at the 1997 SPIE Conference
on All-Optical Communication Systems. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

502 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2017

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

