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Abstract
With the rapid growth of backbone networks 

and data center networks, ensuring network robust-
ness under various failure scenarios has become a 
key challenge in network design. The combinatorial 
nature of failure scenarios in data plane, control 
plane, and management plane seriously challenges 
existing practice on robust network design, which 
often requires verifying the designed network’s per-
formance by enumerating all possible failure com-
binations. Meanwhile, machine learning (ML) has 
been applied to many networking problems and 
has shown tremendous success. In this article, we 
show a general approach to leveraging machine 
learning to support robust network design. First, we 
give a selective overview of current work on robust 
network design and show that failure evaluation 
provides a common kernel to improve the tracta-
bility and scalability of existing solutions. Then we 
propose a function approximation of the common 
kernel based on graph attention network (GAT) to 
efficiently evaluate the impact of various potential 
failure scenarios and identify critical failures that 
may have significant consequences. The function 
approximation allows us to obtain new models of 
three important robust network design problems 
and to solve them efficiently by evaluating the solu-
tions against a pruned set of critical failures. We 
evaluate our approach in the three use cases and 
demonstrate significant reduction in time-to-solution 
with minimum performance gap. Finally, we discuss 
how the proposed framework can be applied to 
many other robust network design problems.

Introduction
As networks grow in scale and complexity, failures 
are becoming a common and frequent event in 
both wide area networks (WANs) and data center 
networks (DCNs) [1]. The combination of vari-
ous failures (including hardware faults, software 
bugs in the control plane, and misconfiguration 
by the network operator) may cause unpredict-
able paralysis of the entire network [2]. Recent-
ly, increasing research efforts have considered 
tackling the problem from different aspects. Some 
studies consider the network planning stage [3, 4] 
that minimizes the upgrade cost for optical and 
IP layer while ensuring network availability under 
possible failure scenarios. Some studies focus 
on the traffic engineering perspective [5–8] that 

makes fault-tolerant traffic management decisions 
against diverse failure combinations. There are 
also research efforts on robust network valida-
tion [9] that quantifies worst-case network perfor-
mance given a set of possible failures. We jointly 
name these problems, including but not limited to 
robust network planning, robust traffic engineer-
ing, and robust network validation, as robust net-
work design problems. In order to support robust 
network design, existing approaches often rely on 
model-based mixed-integer optimization, which is 
hard to scale to large-scale modern networks.

In robust network design, ensuring network 
availability under diverse failure scenarios is cru-
cial but computationally challenging due to the 
exponential growth of failure scenarios with net-
work size [6, 9, 10]. Model-based solutions often 
use approximation and relaxation techniques to 
reduce the failure space, but these may not be 
suitable for all problems and can lead to per-
formance issues. In this article, we show that 
machine learning can offer a new approach to 
address the core challenge in robust network 
design by identifying critical failures that signifi-
cantly impact network performance from a large 
set of possible failure scenarios. By accurately 
and efficiently evaluating failure impacts, machine 
learning provides a common kernel that can ben-
efit many robust network design problems.

Graph neural networks (GNN) are deep learn-
ing models for processing graph data and have 
shown success in extracting network features [3] 
and modeling network performance [11]. This 
article proposes using graph attention networks 
(GAT) [12], a state-of-the-art GNN model, for effi-
cient and accurate failure impact evaluation. The 
GAT-based approach allows for one-shot infer-
ence, avoiding time-consuming network behavior 
simulations. With this approach, many computa-
tionally prohibitive robust network design prob-
lems can be recast and accelerated.

The main contributions of this article are high-
lighted as follows:
•	 Failure evaluation is identified as a common 

kernel to enhance current large-scale robust 
network design problems based on the 
selective overview of existing approaches.

•	 A GAT-based failure evaluation function that 
takes network topology, traffic demand, rout-
ing decisions, and target failure scenarios as 
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inputs and generates failure impact predic-
tions in a one-shot calculation is proposed in 
a high-scalable fashion.

• With the GAT-based failure evaluation func-
tion, several robust network design prob-
lems, including robust network validation, 
network upgrade optimization, and fault-tol-
erant traffi  c engineering, are recast and sig-
nifi cantly accelerated.

• Broader applications of ML-based failure eval-
uation in robust network design are discussed.
We organize the remainder of this paper as 

follows. The next section presents a selective over-
view of existing work on robust network design 
and identifies the common kernel. Then, we 
introduce our proposed approach that leverages 
GATs to develop and implement the common 
kernel of failure evaluations, enabling us to recast 
three important robust network design problems. 
Finally, we present evaluation results and discuss 
future directions.

robust nEtWork dEsIgn

A sElEctIvE ovErvIEW
Designing a robust network is challenging due 
to hardware failures, configuration, and soft-
ware bugs, which are inevitable even with good 
engineering practices [2]. Multiple failures in 
the network can cascade and cause severe and 
unpredictable effects, making it difficult to pro-
tect the network from all possible failure combi-
nations. Link failures and router/switch failures are 
common considerations in existing work, while 
data consistency and control plane failures are 
also considered in recent research. We present 
the representative research eff orts of robust net-
work design as follows.

Robust network validation is crucial for iden-
tifying potential weaknesses and guiding future 
network upgrades. However, validating all pos-
sible failure scenarios is infeasible for large-scale 
networks with numerous combinations of failures. 
Existing research has attempted to solve this prob-
lem, such as using a two-stage max-min optimiza-
tion problem to fi nd worst-case performance [9]. 
However, scalability and optimality remain chal-
lenges for large-scale networks. Another approach 
is to prune the failure space using routing strat-
egies and failure probability models [13], but a 
scalable algorithm that can be applied to various 
scenarios is still lacking.

Robust traffic engineering aims to find the 
best traffic management strategy while ensuring 
availability. Most existing approaches enumer-
ate potential failure scenarios and consider each 
one separately, resulting in high time costs for 
large-scale networks [7]. Some approaches relax 
integer variables into continuous ones and use 
approximation methods [10, 14], but this incurs 
significant computation overhead or perfor-
mance degradation [5, 6]. Additionally, existing 
approaches have only been successful in opti-
mizing specifi c problems rather than providing a 
general solution.

Robust network planning determines short-
term and long-term future network designs, 
including optical and IP layers, according to traffi  c 
forecasts [4]. Large-scale WAN planning problems 
are usually solved with ILP minimizing network 

cost while ensuring availability under a set of fail-
ure combinations [3]. However, robust network 
planning considers each failure scenario separate-
ly in the optimization model, limiting the number 
of failure scenarios that can be protected due to 
the quickly-growing complexity of their combina-
tions within the ILP problem.

chAllEngEs And A coMMon kErnEl
Recent works [2, 3] by Microsoft and Facebook 
show that modern wide-area-network (WAN) 
are becoming larger and larger with thousands 
of routing nodes and are capable of taking larg-
er-scale traffi  c fl ow. Moreover, the topology size 
keeps growing at a rate of 20% per year with 
no end in sight [3]. Large and complex network 
topology makes it diffi  cult to design a robust net-
work under millions of failure scenarios. In this 
section, we fi rstly show that the huge failure space 
is the key challenge to robust network design. 
Then, we show that evaluating failure impacts effi  -
ciently and focusing on the critical failures with 
great impact on the network could be a common 
kernel to overcome the key challenge of robust 
network design problems.

Existing works for robust network design usu-
ally build an optimization model to optimize the 
network performance under various failure sce-
narios. In particular, robust network validation 
solves multi-commodity fl ow (MCF) problems for 
all the possible failure scenarios, while robust net-
work planning and robust traffi  c engineering solve 
LP or ILP problems with congestion-free con-
straints for each failure scenario. However, the 
number of failure combinations grows exponen-
tially with the size of the network, which makes 
many robust network design problems unsolv-
able. For instance, many recent proposals stud-
ied ensuring the network performance under f
simultaneous link failures. For a network topology 
with m links, only considering f simultaneous link 
failure combinations would bring O(mf)failure sce-
narios under consideration, causing a super-linear 
growth in the LP/ILP problems with the network 
scale. Moreover, the solution time to such LP/
ILP problems also increases super-linearly with 
the number of decision variables and constraints 
[4]. The two factors mentioned above jointly 
make robust network design problems hard to 
solve with increasingly large and complex net-
work topologies and failure scenarios in the real 

FIGURE 1. Distribution of MLU increase on large-scale network topology 
under 2 simultaneous link failures. MLU under failure scenarios are 
normalized by the MLU under the worst-case failure scenario.
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Fig. 1. Distribution of MLU increase on large-scale network topology under
2 simultaneous link failures. MLU under failure scenarios are normalized by
the MLU under the worst-case failure scenario.

the network congestion level [9]. Thus MLU increase indicates
the degree of congestion increase in the network under failure
scenarios, and is independent of the input traffic load level
since it is normalized by MLU in the non-failure scenario.
We note that such a metric for failure impact is representative
of many robust network design problems, and can be extended
to a unified measure of failure impact like latency, throughput,
etc. We analyze the failure impact and find that only a
small subset of failure scenarios greatly impact the large-
scale network. Fig. 1 shows the distribution of failure impact
(i.e., MLU increase) for three large-scale real-world network
topologies with more than 100 nodes. It turns out that only
0.19%, 0.03%, and 3.43% failure scenarios on Ion, Interoute,
and DialtelecomCz, respectively, cause significant impact (i.e.,
more than 80% of worst-case failure impact) on the network
availability. It implies that by providing an approximation of
the failure impact evaluation function, we could prune many
unimportant failure scenarios and focus only on a small subset
of critical failure scenarios with great failure impacts in robust
network design.

Unfortunately, modeling the failure impact is quite a chal-
lenging task. For instance, in a theoretically optimal setting
we need to solve an MCF problem for each failure scenario
to simulate the failure impact. Moreover, practical network
failures may be caused by a combination of failures in the data
plane, control plane, and management plane, which makes it
even more difficult to model the impact of a failure combina-
tion. The complexity and the huge number of possible failure
combinations make it quite difficult to figure out the critical
failure scenarios that cause significant impacts on the network.
In this paper, we explore the potential of machine learning in
resolving the common core of evaluating the failure impact and
detecting critical failure scenarios for robust network design.

III. ENHANCING ROBUST NETWORK DESIGN WITH
MACHINE LEARNING-BASED FAILURE EVALUATION

A. General Perspective

In this article, we show a general approach to resolve
robust network design problems using machine learning-based
failure evaluation. We show the general perspective of our

approach in Fig. 2. In the general perspective, we resolve a
robust network design problem in two steps. First, we design
a machine learning-based function to predict the impact of
target failure scenarios and figure out critical failure scenarios
with significant impacts. In general, the failure impact under
a given failure scenario is determined by network topology,
traffic demand, and routing decision. The machine learning-
based function takes the target failure scenarios, network
topology, traffic demand, and routing decision as input, and
outputs predicted impact of the target failure scenarios. With
the failure evaluation results, we can select a small subset of
critical failure scenarios from the full failure set. Such a failure
evaluation algorithm should have the characteristics described
in the following:

• High computational efficiency: The algorithm should
have low time cost and memory use, and keep a low
overhead increase when the topology scale increases.

• High accuracy: The algorithm should accurately predict
the impact of target failure scenarios, especially for
potentially critical failure cases.

• Good generalization: The algorithm should have good
generalization to unseen network topologies, traffic de-
mands, different failure types, and other possible appli-
cation scenarios.

Second, we recast three typical robust network design
problems using the failure impact function and then enhance
the tractability of the recast problems with the selected critical
failure scenarios.

To simplify the problem, we aim to evaluate the impact of
multiple link failure scenarios and design networks robust to
such link failures in this article. However, we note that such a
general framework can be extended to solve many other robust
network design problems with diverse types of failures.

B. A Deep Learning Mechanism for Link Failure Evaluation

In this section, we propose a generalizable failure evaluation
approach [15] based on a graph attention network (GAT) for
multiple link failures. We intuitively show the major insights
to design a generic failure impact model and then illustrate
the design of the proposed GAT-based model.

1) Major Insights to Failure Impact: With the analysis
to the rerouting process for different routing schemes (e.g.,
optimal MCF and OSPF), we show some key insights to failure
impact in the following:

• Critical indicators: The link utilization and traffic vol-
ume passing through the link under non-failure routing
decision are two important features indicating a critical
link failure. In particular, a link with higher link utiliza-
tion and traversed traffic volume may cause a greater
impact on the network.

• Locality: Network topology and traffic demand in current
real world WAN are clustered locally. When a failure
occurs, finding a reroute locally to bypass the failed
link could save the overall network capacity and cause
a smaller impact on the network. Thus, a local under-
standing of the topology structure near a failed link is
important to predict the impact of the failed link.

Existing works for robust 
network design usually 

build an optimization model 
to optimize the network 

performance under various 
failure scenarios. 
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world. In particular, even for a 100-node network, 
the time to solve a fault-tolerant traffi  c engineer-
ing problem via linear programming (LP) could 
take several weeks, making it unacceptable in any 
dynamic environment where network topology 
and traffi  c characteristics are time-varying. Further-
more, the combination of failures could be much 
more complicated in practice. The complicated 
failures make it even harder to enumerate all the 
failures and guarantee the availability under fail-
ures in a typical LP/ILP problem.

Although the number of possible failure com-
binations is huge, we could prune the failure 
space based on some key indicators. For instance, 
some existing research [13] only considers the 
failure combinations with high occurring probabil-
ity. Unfortunately, obtaining the exact probabilis-
tic models of network components in practice is 
often diffi  cult. In this article, we show that failure 
impact could be an effective indicator to figure 
out the critical failure scenarios and prune the 
considering failure space.

Most existing robust network design problems 
validate/optimize the worst-case network per-
formance (e.g., maximum link utilization (MLU)) 
under failure scenarios. In other words, they focus 
on improving the network availability under the 
failure scenarios that greatly impact the network. 
In this article, we use the increase of MLU under a 
failure scenario to measure the failure impact. MLU 
is a popular performance metric in existing works 
for robust network design to measure the network 
congestion level [9]. Thus MLU increase indicates 
the degree of congestion increase in the network 
under failure scenarios, and is independent of 
the input traffic load level since it is normalized 
by MLU in the non-failure scenario. We note that 
such a metric for failure impact is representative 
of many robust network design problems, and can 
be extended to a unifi ed measure of failure impact 
like latency, throughput, etc. We analyze the failure 
impact and fi nd that only a small subset of failure 
scenarios greatly impact the large-scale network. 
Fig.ure 1 shows the distribution of failure impact 
(i.e., MLU increase) for three large-scale real-world 
network topologies with more than 100 nodes. 
It turns out that only 0.19%, 0.03%, and 3.43% 
failure scenarios on Ion, Interoute, and Dialtele-
comCz, respectively, cause signifi cant impact (i.e., 
more than 80% of worst-case failure impact) on 
the network availability. It implies that by providing 
an approximation of the failure impact evaluation 
function, we could prune many unimportant fail-
ure scenarios and focus only on a small subset of 

critical failure scenarios with great failure impacts in 
robust network design.

Unfortunately, modeling the failure impact is 
quite a challenging task. For instance, in a theo-
retically optimal setting we need to solve an MCF 
problem for each failure scenario to simulate the 
failure impact. Moreover, practical network fail-
ures may be caused by a combination of failures 
in the data plane, control plane, and manage-
ment plane, which makes it even more diffi  cult to 
model the impact of a failure combination. The 
complexity and the huge number of possible fail-
ure combinations make it quite diffi  cult to fi gure 
out the critical failure scenarios that cause sig-
nificant impacts on the network. In this paper, 
we explore the potential of machine learning in 
resolving the common core of evaluating the fail-
ure impact and detecting critical failure scenarios 
for robust network design. 

EnhAncIng robust nEtWork dEsIgn WIth MAchInE 
lEArnIng-bAsEd fAIlurE EvAluAtIon

gEnErAl pErspEctIvE
In this article, we show a general approach to 
resolve robust network design problems using 
machine learning-based failure evaluation. We 
show the general perspective of our approach 
in Fig. 2. In the general perspective, we resolve 
a robust network design problem in two steps. 
First, we design a machine learning-based func-
tion to predict the impact of target failure scenar-
ios and figure out critical failure scenarios with 
signifi cant impacts. In general, the failure impact 
under a given failure scenario is determined by 
network topology, traffic demand, and routing 
decision. The machine learning-based function 
takes the target failure scenarios, network topolo-
gy, traffi  c demand, and routing decision as input, 
and outputs predicted impact of the target failure 
scenarios. With the failure evaluation results, we 
can select a small subset of critical failure scenar-
ios from the full failure set. Such a failure evalu-
ation algorithm should have the characteristics 
described in the following:
• High computational efficiency: The algo-

rithm should have low time cost and mem-
ory use, and keep a low overhead increase 
when the topology scale increases. 

• High accuracy: The algorithm should accu-
rately predict the impact of target failure 
scenarios, especially for potentially critical 
failure cases.

FIGURE 2. General perspective of our proposed machine learning-based approach for robust network design.
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• Long flow reroute: In situations where large and long
flows encounter a failed bottleneck link, rerouting them
locally may not be enough. Instead, a global understand-
ing of the network and traffic routes is needed to assess
the impact of rerouting the flow through longer alternative
paths.

Network failures can cause congestion in both neighboring
and distant parts of the network due to traffic rerouting. To
accurately estimate the impact of these failures, it is important
to consider global network information such as topology and
capacity variations. To address this issue, we have designed
a GAT-based model that uses critical indicators as input and
employs local and global attention mechanisms to provide a
comprehensive understanding of the network state.

2) Graph Attention Networks: The Graph Attention Net-
work (GAT) [12] is a type of graph neural network that
leverages attention mechanisms to process graph data. Specif-
ically, GATs embed input states into a directional graph,
where each node in the graph is associated with a feature
vector that represents information such as link capacity, link
utilization, flow traffic demand, and node type. The key idea
behind GATs is neighborhood aggregation, which involves
computing a linear combination of the feature vectors of a
central node and its neighbors for each node in the graph. The
GAT accomplishes this by using an attention mechanism to
learn weights that determine the importance of each neighbor’s
features for the central node.

The attention mechanism in GATs is based on computing a
set of attention coefficients eij that indicate the importance of
node i’s features for the central node j’s. These coefficients

are obtained by taking the dot product of a shared parameter
vector, which serves as trainable parameter in the GAT model,
and a concatenation of node i’s features and node j’s features.
This produces a single scalar value, which is then passed
through a softmax function to ensure that the coefficients sum
to 1 across all of node j’s neighbors.

Once the attention coefficients have been computed, the
GAT uses them to compute a weighted sum of the feature
vectors of the central node and its neighbors. This weighted
sum is then passed through a non-linear activation function to
obtain the final output for the central node.

GATs’ ability to capture the influence of each node’s
neighbors in the graph makes it suitable for embedding and
representing network features in failure evaluation. It enables
identification of key information of local network structure
and traffic assignments (represented as graph data), e.g., how
neighboring links are affected by a failed link in the network.

GATs offer the advantage of handling graphs of varying
sizes and structures, adapting to different topologies by learn-
ing to focus on relevant parts through its attention mechanism.
As a result, GATs are powerful tools for learning graph-
structured data representations and have the potential for
various applications, including robust network design and
failure impact evaluation.

3) Failure Evaluation Model Design: In this article, we
embed the correlation between traffic flows, routing paths,
links and target failures in the network into a graph. Then,
we leverage GAT and its attention mechanism to weigh the
influence from neighboring nodes in the input graph and
to represent the key information for inferring the failure
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• Good generalization: The algorithm should 
have good generalization to unseen network 
topologies, traffic demands, different failure 
types, and other possible application scenarios.
Second, we recast three typical robust network 

design problems using the failure impact function 
and then enhance the tractability of the recast 
problems with the selected critical failure scenarios.

To simplify the problem, we aim to evaluate 
the impact of multiple link failure scenarios and 
design networks robust to such link failures in this 
article. However, we note that such a general 
framework can be extended to solve many other 
robust network design problems with diverse 
types of failures. 

A dEEp lEArnIng MEchAnIsM for lInk fAIlurE EvAluAtIon
In this section, we propose a generalizable fail-
ure evaluation approach [15] based on a graph 
attention network (GAT) for multiple link failures. 
We intuitively show the major insights to design 
a generic failure impact model and then illustrate 
the design of the proposed GAT-based model. 

Major Insights to Failure Impact: With the anal-
ysis to the rerouting process for different routing 
schemes (e.g., optimal MCF and OSPF), we show 
some key insights to failure impact in the following:
• Critical indicators: The link utilization and 

traffi  c volume passing through the link under 
non-failure routing decision are two import-
ant features indicating a critical link failure. 
In particular, a link with higher link utiliza-
tion and traversed traffi  c volume may cause 
a greater impact on the network. 

• Locality: Network topology and traffic 
demand in current real world WAN are clus-
tered locally. When a failure occurs, fi nding 
a reroute locally to bypass the failed link 
could save the overall network capacity and 
cause a smaller impact on the network. Thus, 
a local understanding of the topology struc-
ture near a failed link is important to predict 
the impact of the failed link. 

• Long fl ow reroute: In situations where large 
and long flows encounter a failed bottle-
neck link, rerouting them locally may not 
be enough. Instead, a global understanding 
of the network and traffic routes is needed 
to assess the impact of rerouting the flow 
through longer alternative paths. 
Network failures can cause congestion in both 

neighboring and distant parts of the network due 
to traffic rerouting. To accurately estimate the 
impact of these failures, it is important to consider 
global network information such as topology and 
capacity variations. To address this issue, we have 

designed a GAT-based model that uses critical 
indicators as input and employs local and global 
attention mechanisms to provide a comprehen-
sive understanding of the network state.}

Graph Attention Networks: The Graph Atten-
tion Network (GAT) \cite{brody2021attentive} 
is a type of graph neural network that leverages 
attention mechanisms to process graph data. Spe-
cifically, GATs embed input states into a direc-
tional graph, where each node in the graph is 
associated with a feature vector that represents 
information such as link capacity, link utilization, 
fl ow traffi  c demand, and node type. The key idea 
behind GATs is neighborhood aggregation, which 
involves computing a linear combination of the 
feature vectors of a central node and its neigh-
bors for each node in the graph. The GAT accom-
plishes this by using an attention mechanism to 
learn weights that determine the importance of 
each neighbor’s features for the central node.

The attention mechanism in GATs is based on 
computing a set of attention coefficients eij that 
indicate the importance of node i’s features for the 
central node j’s. These coefficients are obtained 
by taking the dot product of a shared parameter 
vector, which serves as trainable parameter in the 
GAT model, and a concatenation of node i’s fea-
tures and node j’s features. This produces a single 
scalar value, which is then passed through a soft-
max function to ensure that the coeffi  cients sum 
to 1 across all of node j’s neighbors.

Once the attention coefficients have been 
computed, the GAT uses them to compute a 
weighted sum of the feature vectors of the central 
node and its neighbors. This weighted sum is then 
passed through a non-linear activation function to 
obtain the fi nal output for the central node.

GATs’ ability to capture the infl uence of each 
node’s neighbors in the graph makes it suitable 
for embedding and representing network features 
in failure evaluation. It enables identification of 
key information of local network structure and 
traffic assignments (represented as graph data), 
e.g., how neighboring links are aff ected by a failed 
link in the network.

GATs off er the advantage of handling graphs 
of varying sizes and structures, adapting to diff er-
ent topologies by learning to focus on relevant 
parts through its attention mechanism. As a result, 
GATs are powerful tools for learning graph-struc-
tured data representations and have the potential 
for various applications, including robust network 
design and failure impact evaluation.

Failure Evaluation Model Design: In this arti-
cle, we embed the correlation between traffic 
fl ows, routing paths, links and target failures in the 

FIGURE 3. Overall structure of GAT-based failure impact prediction model.
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• Long flow reroute: In situations where large and long
flows encounter a failed bottleneck link, rerouting them
locally may not be enough. Instead, a global understand-
ing of the network and traffic routes is needed to assess
the impact of rerouting the flow through longer alternative
paths.

Network failures can cause congestion in both neighboring
and distant parts of the network due to traffic rerouting. To
accurately estimate the impact of these failures, it is important
to consider global network information such as topology and
capacity variations. To address this issue, we have designed
a GAT-based model that uses critical indicators as input and
employs local and global attention mechanisms to provide a
comprehensive understanding of the network state.

2) Graph Attention Networks: The Graph Attention Net-
work (GAT) [12] is a type of graph neural network that
leverages attention mechanisms to process graph data. Specif-
ically, GATs embed input states into a directional graph,
where each node in the graph is associated with a feature
vector that represents information such as link capacity, link
utilization, flow traffic demand, and node type. The key idea
behind GATs is neighborhood aggregation, which involves
computing a linear combination of the feature vectors of a
central node and its neighbors for each node in the graph. The
GAT accomplishes this by using an attention mechanism to
learn weights that determine the importance of each neighbor’s
features for the central node.

The attention mechanism in GATs is based on computing a
set of attention coefficients eij that indicate the importance of
node i’s features for the central node j’s. These coefficients

are obtained by taking the dot product of a shared parameter
vector, which serves as trainable parameter in the GAT model,
and a concatenation of node i’s features and node j’s features.
This produces a single scalar value, which is then passed
through a softmax function to ensure that the coefficients sum
to 1 across all of node j’s neighbors.

Once the attention coefficients have been computed, the
GAT uses them to compute a weighted sum of the feature
vectors of the central node and its neighbors. This weighted
sum is then passed through a non-linear activation function to
obtain the final output for the central node.

GATs’ ability to capture the influence of each node’s
neighbors in the graph makes it suitable for embedding and
representing network features in failure evaluation. It enables
identification of key information of local network structure
and traffic assignments (represented as graph data), e.g., how
neighboring links are affected by a failed link in the network.

GATs offer the advantage of handling graphs of varying
sizes and structures, adapting to different topologies by learn-
ing to focus on relevant parts through its attention mechanism.
As a result, GATs are powerful tools for learning graph-
structured data representations and have the potential for
various applications, including robust network design and
failure impact evaluation.

3) Failure Evaluation Model Design: In this article, we
embed the correlation between traffic flows, routing paths,
links and target failures in the network into a graph. Then,
we leverage GAT and its attention mechanism to weigh the
influence from neighboring nodes in the input graph and
to represent the key information for inferring the failure
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network into a graph. Then, we leverage GAT and 
its attention mechanism to weigh the influence 
from neighboring nodes in the input graph and to 
represent the key information for inferring the fail-
ure impact in each failure scenario. We also intro-
duce an attention mechanism to weigh the failure 
influence from a broader aspect. In addition to 
aggregating information from neighbors in stan-
dard GAT, a global attention mechanism enables 
each link to further aggregates information and 
weigh the failure infl uence from all the other links 
in the network. Thus, the resulting model could 
better evaluate the impact of failures by combin-
ing global and local information.

We first exhibit the transformation process 
to convert the input network topology, traffic 
demand, routing decisions, and target failure 
scenarios as a graph-based input state. Then we 
use GATs to extract key features of network state 
(e.g., network structure and fl ow assignment) for 
each failure scenario and infer the failure impact 
based on the extracted features. 

Model Input: To construct a suitable input 
graph for our GAT-based algorithm, we begin 
by transforming the original network topology, 
as shown in Fig. 3. First, each link in the original 
topology is transformed into a node, and a link 
is added between two nodes in the transformed 
graph if their corresponding links share a com-
mon endpoint in the original topology. Second, 
we model traffi  c demand and the routing decision 
of each fl ow under a non-link-failure scenario on 
the transformed graph. For each flow, we build 
up edges between the fl ow node and the corre-
sponding path nodes, representing the routing 
paths of a fl ow. Further, for each routing path, we 
build up edges between the path node and the 
corresponding link nodes. Finally, we model the 
target failure scenarios. For each failure scenario, 
we build up the edges from the nodes of corre-
sponding failed links to the failure node. The fail-
ure nodes aggregate link states for the fi nal failure 
impact prediction. For the four types of nodes in 
the input graph, we design the initial state craftily 
to embed the link attributes, input traffi  c demand, 
and routing decision into the input graph. 

Model Design: GATs provide a natural 
approach for estimating failure impacts through 
function approximation. Our proposed estimator, 
as illustrated in Fig. 3, comprises an input embed-
ding layer, fi ve local-global attention layers, and a 

readout layer. }Initially, the input states undergo 
embedding via a two-layer fully-connected deep 
neural network. The embedded input state then 
passes through five local-global layers consecu-
tively, where feature extraction and failure impact 
modeling take place. Each local-global attention 
layer employs a graph attention mechanism to 
obtain a local understanding of the graph-based 
input. This one-hop attention process captures 
the local graph structure information and facili-
tates the link node in estimating the failure impact 
using the local understanding. Moreover, we have 
a global attention mechanism that estimate the 
link failure influence and aggregate information 
among all the link nodes with no neighbor con-
straints, enabling the link node to benefi t from the 
global understanding of the input network state. 
The local and global attention layers’ output is 
combined using a fully-connected layer. We incor-
porate residual and normalization mechanisms 
in each local-global attention layer to support a 
stack of more layers. Finally, the attention layers’ 
aggregated representations of the failure combi-
nation nodes serve as the input for the readout 
layer to predict the failure impact.

Training and Inference: We train a general 
model over a large dataset containing a number of 
diff erent network topologies. With the trained GAT-
based model, we could evaluate the impact of all 
the target failure scenarios in a one-shot inference 
and choose the critical failure scenarios effi  ciently.

ApplIcAtIon scEnArIos
In this section, we show how to use ML-based fail-
ure evaluation to recast and solve three important 
robust network design problems, namely network 
robust validation [9], network upgrade optimization 
[4, 9], and fault-tolerant traffi  c engineering [14].

Robust network validation: Robust network 
validation needs to find the worst-case failure 
scenarios that have the most severe impact on 
certain network performance objectives. We can 
directly use the proposed failure impact function 
to identify such critical failures for scalable net-
work validation.

Network upgrade optimization: Network 
upgrade optimization aims to minimize the cost of 
necessary link capacity upgrades subject to network 
congestion constraints under link failures. In fact, 
only failure scenarios that cause network congestion 
need to be considered in the network upgrade opti-

FIGURE 4. Performance of ML-enhanced approach on three robust network problems. Each dot in the figure represents a topology in the testing dataset. The worst-case congestion (i.g., MLU) is normal-
ized by the results of the baseline optimization approach, and the speed-up ratio is obtained by dividing the time overhead of baseline optimization problem by the time overhead of our proposed 
ML-enhanced algorithm: a) robust network validation; b) network upgrade optimization; c) fault-tolerant traff ic engineering.
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Fig. 4. Performance of ML-enhanced approach on three robust network problems. Each dot in the figure represents a topology in the testing dataset. The
worst-case congestion (i.g., MLU) is normalized by the results of the baseline optimization approach, and the speed-up ratio is obtained by dividing the time
overhead of baseline optimization problem by the time overhead of our proposed ML-enhanced algorithm.

link capacities in real world, the link capacity of each link
is randomly selected from 1, 2, 3, and 4 units for each data
piece. We solve the MCF optimization problem to obtain the
failure impact under each single and double simultaneous link
failure of each data piece. We implement three optimization
models with gurobi, an off-the-shelf optimizer, as baselines.
For robust network validation, refer to [9]; for network up-
grade optimization, refer to [9]; and for fault-tolerant traffic
engineering, refer to [14].

We train a general failure impact evaluation model with
train dataset for ten days on a server with an RTX2080
GPU, and evaluate the ML-enhanced approach in three robust
network design problems over test1 and test2 dataset. The
results are shown in Fig. 4. In robust network validation
problem, the ML-enhanced algorithm estimates the worst-case
network performance accurately by verifying the selected criti-
cal failure scenarios according to ML-based failure evaluation
results. In network upgrade optimization problem, the ML-
enhanced algorithm provides more than 10x time reduction
over most topologies, and up to 200x time reduction in some
medium-sized topologies while obtain the optimal solution on
most test cases. In fault-tolerant traffic engineering problem,
the ML-enhanced algorithm achieves up to 9x speed up for
some medium-sized topologies while providing comparable
performance to the optimization solution. Besides the results
above, we could also improve the model performance by a
domain specific (e.g., a specific topology) fast second-phase
training based on the pre-trained general model, which will
be discussed in our future work. Further, we note that the
ML-enhanced algorithm requires much less memory and could
calculate the solution for the topologies with up to 80 (107)
links for network upgrade optimization (fault-tolerant traffic
engineering), while the optimization problem will exceed the
256 GB sever memory limit for the topologies with more than
45 (70) links.

V. OUTLOOK

In this article, we have shown that a GAT-based function
approximation could accurately predict the failure impact,
detect the critical failure scenarios, and enhance the scalability
of three important classes of robust network design problems.
We further note that such an approach using deep learning

to evaluate failure impact could benefit many other robust
network design problems in real world. We discuss some
future directions following our proposed approach.

Incorporating multiple failure types is crucial for robust
network design. Failures can happen in various network parts
and layers, from router line cards to control plane software.
However, modeling and understanding the impact of different
failure types together can be challenging. Nevertheless, a
learning-based solution can still be applied. By using function
approximation and deep learning, we can efficiently predict
failure impact across multiple types through one-shot inference
and identify critical failure scenarios.

Considering probabilistic failures is important for robust
network design. In addition to the direct impact on network
performance, the probability of different failure scenarios
plays a significant role [7]. To incorporate failure probability,
we can filter out low-probability scenarios from our predicted
critical failures. However, obtaining the probabilistic model,
especially in cases with joint failure probabilities, can be
challenging. Embedding a probabilistic failure model into the
machine learning-based framework could become an alterna-
tive choice that requires further exploration.

More application scenarios can benefit from our learning-
based approach. Although this paper focuses on three repre-
sentative use cases, robust network design has a wide range
of potential applications. For example, our approach could be
applied to different routing strategies, such as tunnel-based
TE [10], or various network performance metrics like total
throughput or 99% high latency. New common cores can be
identified and implemented with the support of deep learning
methods. Our vision is to develop a unified framework that
leverages a spectrum of function approximations as shared
common cores for supporting many network design and opti-
mization problems that need scalable solutions.

VI. CONCLUSION

This work provides a nnew perspective that applies machine
learning to resolve a common kernel, i.e., failure evaluation, to
enhance robust network design problems. To resolve the com-
mon kernel, we propose a GAT-based algorithm to evaluate
the failure impact and figure out the critical failure scenarios
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mization problems. With such a simple pruning of 
non-essential failure scenarios, we can significantly 
reduce the size of the original optimization problem 
with little impact on the solution results.

Fault-tolerant traffic engineering: Besides 
pruning the candidate failure scenarios of the 
original problem, we can also design a new 
fault-tolerant traffic engineering algorithm using 
the prediction results of our proposed GAT-based 
failure evaluation function. In particular, we focus 
on protecting a small subset of critical failure sce-
narios while considering a vanilla load balance 
factor that can be modeled efficiently without 
concerning the vast number of failure combina-
tions. Instead of enumerating all failure scenarios, 
it features a nearly-optimal rerouting strategy over 
a small set of critical failure scenarios while opti-
mizing basic load balancing objectives.

We hasten to emphasize that all the three use 
cases are based on the GAT-based function for 
scalable failure evaluation. It allows robust net-
work design problems to be formulated with 
respect to only a small subset of failure scenarios 
that have significant impacts on robustness. 

Evaluation
In this section, we evaluate the performance of 
our proposed ML-enhanced approach in the 
three use cases mentioned before. We train and 
evaluate our model with both 100 randomly gen-
erated small topologies and real-world topologies 
from topology zoo. In order to test the generaliza-
tion of our proposed ML-enhanced approach on 
unseen topologies, we split the topologies above 
into two parts. The major part are placed in train 
and test1 dataset while the others are in test2 
dataset. We randomly generate several demand 
matrices for each topology using the gravity 
model. We combine a topology, a traffic matrix, 
and a set of link capacities as a piece of training 
data. In order to simulate the heterogeneous link 
capacities in real world, the link capacity of each 
link is randomly selected from 1, 2, 3, and 4 units 
for each data piece. We solve the MCF optimiza-
tion problem to obtain the failure impact under 
each single and double simultaneous link failure 
of each data piece. We implement three optimi-
zation models with gurobi, an off-the-shelf opti-
mizer, as baselines. For robust network validation, 
refer to [9]; for network upgrade optimization, 
refer to [9]; and for fault-tolerant traffic engineer-
ing, refer to [14].

We train a general failure impact evaluation 
model with train dataset for ten days on a server 
with an RTX2080 GPU, and evaluate the ML-en-
hanced approach in three robust network design 
problems over test1 and test2 dataset. The results 
are shown in Fig. 4. In robust network validation 
problem, the ML-enhanced algorithm estimates 
the worst-case network performance accurately 
by verifying the selected critical failure scenarios 
according to ML-based failure evaluation results. 
In network upgrade optimization problem, the 
ML-enhanced algorithm provides more than 10x 
time reduction over most topologies, and up 
to 200x time reduction in some medium-sized 
topologies while obtain the optimal solution on 
most test cases. In fault-tolerant traffic engineering 
problem, the ML-enhanced algorithm achieves up 
to 9x speed up for some medium-sized topologies 

while providing comparable performance to the 
optimization solution. Besides the results above, 
we could also improve the model performance by 
a domain specific (e.g., a specific topology) fast 
second-phase training based on the pre-trained 
general model, which will be discussed in our 
future work. Further, we note that the ML-en-
hanced algorithm requires much less memory and 
could calculate the solution for the topologies 
with up to 80 (107) links for network upgrade 
optimization (fault-tolerant traffic engineering), 
while the optimization problem will exceed the 
256 GB sever memory limit for the topologies 
with more than 45 (70) links.

Outlook
In this article, we have shown that a GAT-based 
function approximation could accurately predict 
the failure impact, detect the critical failure scenar-
ios, and enhance the scalability of three important 
classes of robust network design problems. We 
further note that such an approach using deep 
learning to evaluate failure impact could benefit 
many other robust network design problems in 
real world. We discuss some future directions fol-
lowing our proposed approach.

Incorporating multiple failure types is crucial 
for robust network design. Failures can happen 
in various network parts and layers, from router 
line cards to control plane software. However, 
modeling and understanding the impact of dif-
ferent failure types together can be challenging. 
Nevertheless, a learning-based solution can still 
be applied. By using function approximation and 
deep learning, we can efficiently predict failure 
impact across multiple types through one-shot 
inference and identify critical failure scenarios.

Considering probabilistic failures is important 
for robust network design. In addition to the direct 
impact on network performance, the probability of 
different failure scenarios plays a significant role [7]. 
To incorporate failure probability, we can filter out 
low-probability scenarios from our predicted crit-
ical failures. However, obtaining the probabilistic 
model, especially in cases with joint failure proba-
bilities, can be challenging. Embedding a probabi-
listic failure model into the machine learning-based 
framework could become an alternative choice 
that requires further exploration.

More application scenarios can benefit from 
our learning-based approach. Although this paper 
focuses on three representative use cases, robust 
network design has a wide range of potential 
applications. For example, our approach could be 
applied to different routing strategies, such as tun-
nel-based TE [7], or various network performance 
metrics like total throughput or 99% high latency. 
New common cores can be identified and imple-
mented with the support of deep learning meth-
ods. Our vision is to develop a unified framework 
that leverages a spectrum of function approxi-
mations as shared common cores for supporting 
many network design and optimization problems 
that need scalable solutions.

Conclusion
This work provides a nnew perspective that 
applies machine learning to resolve a common 
kernel, i.e., failure evaluation, to enhance robust 
network design problems. To resolve the com-
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mon kernel, we propose a GAT-based algorithm 
to evaluate the failure impact and figure out the 
critical failure scenarios among multiple link fail-
ures, and apply our proposed GAT-based algo-
rithm to solve three typical recast robust network 
design problems. We apply our approach to three 
common robust network design problems and 
test it on over 100 real-world network topologies, 
demonstrating its efficiency and versatility. Our 
approach has potential for future applications 
with different types of failures and scenarios.
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