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Abstract—Providing provable performance guarantees in ve-
hicular network routing problems is crucial to ensure safely and
timely delivery of information in an environment characterized
by high mobility, dynamic network conditions, and frequent
topology changes. While Reinforcement Learning (RL) has shown
great promise in network routing, existing RL-based solutions
typically support decision-making with either peak constraints
or average constraints, but not both. For network routing in
intelligent transportation, such as advanced vehicle control and
safety, both peak constraints (e.g., maximum latency or minimum
bandwidth guarantees) and average constraints (e.g., average
transmit power or data rate constraints) must be satisfied.
In this paper, we propose a holistic framework for RL-based
vehicular network routing, which maximizes routing decisions
under both average and peak constraints. The routing problem
is modeled as a Constrained Markov Decision Process and
recast into an optimization based on Constraint Satisfaction
Problems (CSPs). We prove that the optimal policy of a given
CSP can be learned by an extended Q-learning algorithm while
satisfying both peak and average latency constraints. To improve
the scalability of our framework, we further turn it into a
decentralized implementation through a cluster-based learning
structure. Applying the proposed RL algorithm to vehicular
network routing problems under both peak and average latency
constraints, simulation results show that our algorithm achieves
much higher rewards than heuristic baselines with over 40%
improvement in average transmission rate, while resulting in zero
violation in terms of both peak and average constraints.

Index Terms—Constrained Markov Decision Process, Peak and
Average Latency Constraints, Vehicular Network Routing

I. INTRODUCTION

Vehicular networks as a key enabler for intelligent trans-
portation have received growing attention from both industry
and academia in recent years [1], [2]. It is expected that
an unprecedented amount of data will be shared through
real-time communications between vehicles and infrastructure
to support various new services such as advanced vehicle
control and safety. Traffic routing in vehicular networks that
are characterized by high-mobility nodes, dynamic channel
conditions, and frequent topology changes requires solving a
challenging online optimization problem [2]–[10]. To this end,
learning techniques – especially reinforcement learning (RL) –
have been employed for online decision making in vehicular
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network routing problems and showed great promise [11]–
[14].

Vehicular network routing must consider two distinct classes
of design objectives/constraints – one focusing on long-term
average performance metrics or utilities (such as average
download bandwidth and average latency [2], [15]) and the
other focusing on peak constraints and guarantees (such as
minimum necessary data-rate and maximum-allowable latency
[4]). However, existing RL algorithms often focus on either
optimization problems with peak constraints (e.g., [16]–[19])
or average constraints (e.g., [20]–[25], but not both. We note
that meeting both peak and average constraints is crucial for
supporting a wide range of future intelligent transportation
applications, in order to achieve diversified and complex
performance requirements.

To this end, we propose a holistic framework that (i)
develops a novel reinforcement learning algorithm to handle
both peak and average constraints, and (ii) optimizes vehicular
network routing with respect to both data rate and latency ob-
jectives. In particular, an RL agent (i.e., a network controller)
is trained by interacting with an environment (i.e., a vehic-
ular network) – the agent observes environment states (e.g.,
network statistics), takes actions (i.e., routing decisions) ac-
cording to the current policy, obtains the resulting reward (i.e.,
optimization objectives), and self-teaches to learn the optimal
policy. RL algorithms can efficiently exploit the underlying
patterns in the available data and learn the optimal stochastic
policy, making them well-suited for vehicular network routing
problems. However, existing RL algorithms lack the ability to
cope with both peak and average constraints.

We consider the downlink transmission in vehicular net-
works, where vehicles can establish connections with base
stations through Vehicle-to-Infrastructure (V2I) links, as well
as proximate vehicles through Vehicle-to-Vehicle (V2V) links.
The routing problem is to decide how to deliver data from base
station to each individual vehicle – either through a direct
V2I link or through a neighboring vehicle as a V2V relay,
with the goal of maximizing the long-term average utility of
transmission data rates (e.g., the proportional fairness utility).
A key feature of our framework is that we consider the routing
problem under both peak and average latency constraints. That
is, the long-term average transmission latency with respect to
all vehicles should not exceed a given bound, resulting in an
average latency constraint similar to [20], while the maximum
latency experienced by any vehicle at any time should also
satisfy a peak latency constraint [16].
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We note that it is challenging to straightforwardly deal
with both the peak and average constraints together due to
their very different mathematical forms. In this paper, a new
RL algorithm is proposed to solve the constrained vehicu-
lar network routing problem while both peak and average
constraints are provably satisfied. To this end, we model the
routing problem as a Constrained Markov Decision Process
(CMDP) and recast it into an optimization based on Constraint
Satisfaction Problems (CSPs). CSP aims at finding a feasible
solution which (i) makes the objective value of the routing
problem no smaller than a target value and (ii) satisfies both
the peak and average constraints, allowing the solution of the
routing problem to be approximated by solving a sequence
of CSPs. To solve a CSP, first, the peak constraints are
absorbed into the average constraints of the CSP through the
use of constraint-sensitive functions [16], [17], which generate
a penalty whenever any peak constraints are violated. Next,
the transformed CSP with only average constraints is solved
through an equivalent zero-sum Markov-bandit game solvable
by an extended Q-learning algorithm [20]. Finally, we prove
that the optimal policy of a CSP can be learned by the
algorithm while satisfying both peak and average constraints.

To improve its scalability in large-scale vehicular networks,
we further turn the proposed algorithm into a decentralized
implementation. Vehicles are partitioned into clusters similar
to [2], [26], [27]. Each cluster is then modeled as an individual
learning agent that makes independent routing decisions based
on only local network information. In particular, different
reward structures are developed for intra-cell clusters located
in a single cell and for inter-cell clusters traversing multi-
ple cells, in order to permit a minimum level of necessary
coordination for vehicles in inter-cell clusters. We note that
the use of multiple agents allows us to amortize the training
overhead through the use of a multiple Q-table structure
for effectively reducing the state and action space of the
learning problem. Finally, we evaluate the proposed algorithm
by conducting extensive numerical simulations, which show
that our approach achieves much higher rewards than some
heuristic baselines for vehicular network routing with over
40% improvement in average transmission rate, while resulting
in zero violation in terms of both peak and average constraints.

The key contributions of our paper are as follows:

• We propose a holistic framework for vehicular network
routing with the goal of optimizing data-rate utilities
under both peak and average latency constraints.

• A new RL algorithm is developed to recast the optimiza-
tion problem (under peak and average constraints) into an
optimization based on CSPs that can be optimally solved
by an extended Q-learning algorithm.

• The proposed algorithm yields a decentralized implemen-
tation through the design of different reward structures for
intra-cell and inter-cell clusters.

• Our evaluation results show significant reward and trans-
mission rate improvement over heuristic baselines, while
satisfying both peak and average latency constraints.

Next, we introduce the related work in Sec. II and the

problem formulation in Sec. III. We describe the proposed
algorithm in Sec. IV. The algorithm is turned into a decen-
tralized manner in Sec. V. Finally, we do evaluation in Sec.
VI and conclude the paper in Sec. VII.

II. RELATED WORK

Routing algorithms in vehicular networks. Lots of rout-
ing algorithms have been developed for vehicular networks,
including cooperative routing by coordinating V2I and V2V
communication [2], [3], [28], traffic routing in vehicular ad hoc
networks [4]–[6], and association problems of vehicles [7], [8],
[15]. In particular, the authors in [2] propose a decentralized
vehicle cluster management algorithm to maximize the overall
transmission rate, while a software-defined network (SDN)
structure to enhance the vehicles’ cooperation to maximize
the number of vehicles that retrieve their requested data is
proposed in [3]. Then the authors in [4] present a class of
routing protocols for vehicular ad hoc networks (VANETs)
in city environments based on the effective selection of road
intersections through which a packet must pass to reach the
gateway to the Internet. For secure routing, the authors in
[5] propose a novel secure and reliable multi-constrained QoS
aware routing algorithm for VANETs, which uses ant colony
optimization (ACO) technique to compute feasible routes in
VANETs subject to multiple QoS constraints determined by
the data traffic type. An adaptive quality-of-service (QoS)-
based routing protocol is considered in [6] for VANETs called
AQRV, which adaptively chooses the intersections to satisfy
the QoS constraints and fulfill the best QoS in terms of three
metrics. The authors in [15] propose a scheme for a road
side unit placement problem that reduces network latency
while ensuring good network capacity. However, the existing
approaches either ignore latency limitations [2], [3], [28]
or consider only one kind of latency constraints/objectives
[4]–[6], [15]. Besides, routing in highly dynamic vehicular
networks is usually recognized as a very challenging online
optimization problem. In this paper, we consider the routing
problem with both peak and average latency constraints, which
have never been solved efficiently. We propose an RL-based
approach with theoretical performance guarantees to solve it.
ML in vehicular networks. There are already some explo-
rations of leveraging ML techniques to solve vehicular net-
work problems such as resource allocation [1], [29], network
security [30], [31], energy saving [32], [33], routing opti-
mization [11]–[14]. For routing problems, existing work [11]–
[14] mainly focuses on performance improvement without
considering QoS (e.g., latency) constraints. To the best of our
knowledge, we are the first to leverage RL to develop routing
algorithms under both peak and average latency constraints in
vehicular networks.
Constrained RL algorithms. Previous RL algorithms either
focus on optimization problems with peak constraints [16]–
[19], or consider the problems with average constraints [20]–
[25], but not both. There are no RL-based algorithms for
dealing with both peak and average constraints with theoretical
guarantees, to the best of our knowledge. In this paper, we
develop a new RL algorithm for this purpose and prove that
it yields an optimal policy.
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Figure 1: An illustration of the vehicular network routing. The
orange vehicles belong to an intra-cell cluster, and the blue vehicles
belong to an inter-cell cluster. The path b0 → v1 → v0 is assigned to
v0 for a higher transmission rate. The path b1 → vc → va is assigned
to va for load balancing among cells and small transmission latency.
The other vehicles are connected through the direct V2I links.

III. PROBLEM FORMULATION

A. Vehicular Network Model

We focus on the downlink transmission in vehicular net-
works. Data can be delivered from base station to each
individual vehicle – either through a direct V2I link or through
a neighboring vehicle as a V2V relay. Next, we present our
model for vehicular network routing.

We consider a vehicular network with B base stations,
where each base station b covers a service area (called a cell)
and has an amount of Wb cellular resource (e.g., time slots
or bandwidth) for V2I communication. Any vehicle v in a
cell can establish a cellular V2I link with the corresponding
base station. The downlink transmission capacity cb,v of the
V2I link between b and v is typically modeled based on the
Shannon rate, i.e.,

cb,v = Wb,v log(1 + SINRb,v), (1)

where Wb,v means the cellular resource allocated to v by base
station b and SINRb,v denotes the signal-to-interference-plus-
noise ratio (SINR) perceived by v associated to b [2]. We
define V2I link latency db,v as the time needed to deliver data
from the base station b to the connected vehicle v.

The vehicles in the network are grouped into clusters similar
to [26], [27]. Particularly, the clusters located in a single cell
are called intra-cell clusters, and those traversing multiple
cells are called inter-cell clusters. The vehicles in the same
cluster can establish V2V links with each other. Since V2V
and V2I links often utilize different sets of wireless resources
and protocols, we assume that there is no interference between
them. The capacity cv′,v of the V2V link between v′ and v is
also modeled based on the Shannon rate, i.e.,

cv′,v = Wv′,v log(1 + SINRv′,v), (2)

where Wv′,v means the fixed resource allocated to v′ and
SINRv′,v denotes the SINR of the V2V link. V2V link la-
tency dv′,v is defined as the time needed to transmit data from
one vehicle v′ to another vehicle v through their established
V2V link.

For the vehicle v choosing the direct V2I link for data
transmission, it is served by its associated base station b, and
its achievable downlink transmission rate xv can be computed
by Eq. (1) directly, i.e., xv = cb,v . For the vehicle v using a
relay path consisting of the V2I link between v′ and its serving

base station b′, as well as the V2V link between v and v′, its
data rate is determined by the minimum of its V2I and V2V
link rates, and thus we have xv = min{cb′,v′ , cv′,v}, where
cb′,v′ and cv′,v are computed by Eq. (1) and (2), respectively.
In this paper, we assume each base station b allocates cellular
resources evenly to the vehicles served by b either directly
or indirectly following [2]. Let nb denote the total number
of vehicles served by base station b. The vehicles served by
b can obtain an equal amount of resource, i.e., Wb

nb
, for data

transmission. We assume each V2V link is assigned a fixed
bandwidth resource for communication, while V2I and V2V
communications use different resource pools. Finally, to model
the latency, we denote dv as the downlink transmission latency
of vehicle v. For v using direct connection,

dv = db,v.

For v using indirect connection, dv is simply computed by

dv = db′,v′ + dv′,v,

which is a combination of the V2I and V2V link latencies.
In our vehicular network model, both link capacity and

latency could be time-varying and driven by the underlying
physical network. In this work, we focus on the vehicular
network routing problem with dynamic capacity and latency. A
similar model is also used in papers such as [2], [34], [35]. We
note that the cooperative V2I and V2V communication model
enables flexible routing decisions and thus improved perfor-
mance. Fig. 1 shows the operations of our proposed solution.
In particular, our RL-based algorithm observes states of the
vehicular network (e.g., connectivity, network conditions, and
latency) and generates a routing decision for each vehicle, with
the goal of optimizing certain performance objectives under
average and peak constraints. For instance, the orange vehicles
belong to an intra-cell cluster, and the blue vehicles belong to
an inter-cell cluster. In the intra-cell cluster, the downlink data
to v0 is delivered through path b0 → v1 → v0 for improving
transmission rate since SINRb0,v1 and SINRv1,v0 along the
path are both greater than SINRb0,v0 of vehicle v0. In the
inter-cell cluster, va is connected by path b1 → vc → va either
for load balancing between cells or if the path has a smaller
latency db1,vc + dvc,va than that of the direct V2I link. The
other vehicles are connected through direct V2I links. Under
the above routing decisions, nb0 = nb1 = 3, and every vehicle
gets 1

3 MHz resource from the base station serving it.

B. Formulating the Routing Problem as CMDP

In this paper, we model the routing problem with both peak
and average latency constraints as a CMDP with the goal of
maximizing the long-term average utility of transmission rates.

Formally, the CMDP with finite state and action space can
be described by a tuple (S,A,P, γ, r), where S is the state
space, A is the action space, P is the transition between states,
γ ∈ (0, 1) is the discount factor, and r : S × A → R is the
reward function. The CMDP is a discrete decision process. Let
π be the policy such that π(at|st) specifies the probability of
choosing action at ∈ A (i.e., routing decisions) in state st ∈ S
(e.g., network statistics) at time slot t. The reward under pair
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(st, at) is the received utility r(st, at) = U(st, at). In this
paper, we use the current state of the vehicular network as the
input state of CMDP (e.g., current data rate, latency, and traffic
routing), while the actions of CMDP are defined as routing
decisions (e.g., the selection of relay node) for the next time
slot. We focus on the logarithm utility that is shown to achieve
proportional fairness [36], while our framework is general and
can incorporate other utilities. The chosen utility function is
used to define the rewards of the CMDP. More details of the
policy model design is shown in Section V-A. The reward is
computed by

r(st, at) =
∑
v

log(xv(st, at) + ϵ), (3)

where ϵ is a small positive constant (e.g., 10−50 in the paper)
for dealing with the extreme case where transmission rate
xv(st, at) = 0. The goal of the agent is to find a stationary
policy π so as to maximize the cumulative discounted reward
Φ, which is defined as

Φ = Eπ

[ ∞∑
t=0

γtr(st, at)

]
.

Different from previous work, our CMDP is modeled under
both peak and average latency constraints. In particular, the
maximum transmission latency experienced by any vehicle at
any time should satisfy a peak latency constraint. Formally,

∀v, t : uv − dv(st, at) ≥ 0, (4)

where uv is the upper latency bound of vehicle v. We define uv

as the peak bound. Besides, the long-term average transmission
latency with respect to all vehicles should not exceed a given
bound. Let d̄(st, at) be the average transmission latency of all
the vehicles at time slot t. The average constraint is∑

t≥0

γt(ū− d̄(st, at)) ≥ 0, (5)

where ū is the upper bound for d̄(st, at). Correspondingly, ū
is defined as the average bound.

Then, our CMDP problem can be formulated as

PA-CMDP: max
π

Φ, s.t. Eq. (4) and Eq. (5).

For brevity, we refer to the CMDP problem with peak and
average constraints as the PA-CMDP problem.

Solving the PA-CMDP problem is very challenging, and
the existing RL algorithms cannot handle the existence of
both peak and average constraints. In this paper, we propose
a new RL algorithm with theoretical guarantees for the PA-
CMDP problem in Sec. IV. Then, we turn the algorithm into
a decentralized implementation in Sec. V.

IV. CONSTRAINED RL AND CONVERGENCE ANALYSIS

Our key idea is to approximate the solution to the PA-
CMDP problem by solving a sequence of CSPs. First, the
PA-CMDP problem with both peak and average constraints is
converted into an optimization based on CSPs. Second, given
a CSP, the peak constraints are absorbed into the average

constraints through the use of constraint-sensitive functions,
which yields a modified CSP with only average constraints.
Next, the modified CSP is solved through an equivalent
zero-sum Markov-bandit game using an extended Q-learning
algorithm. Finally, we prove that the policy learned by the
algorithm is optimal to the original CSP while both peak and
average constraints can be satisfied.

A. Constraint Satisfaction Problem

Finding an optimal solution for the CMDP problem, includ-
ing long-term average constraints is difficult [20]. We choose
to transform the PA-CMDP problem into an optimization
based on CSPs where the objective function is converted
into an average constraint by setting a target objective value.
By searching the best target objective value through some
searching methods, the optimal solution can be approximated
by solving a sequence of CSPs.

Firstly, the PA-CMDP problem can be generalized as:

max
π

Eπ

[ ∞∑
t=0

γtr(st, at)

]
s.t. f i(st, at) ≥ 0, ∀t ≥ 0, i ∈ [I], (6)

Eπ

[ ∞∑
t=0

γthj(st, at)

]
≥ 0, ∀j ∈ [J ], (7)

where [I] = {1, 2, ..., I} and [J ] = {1, 2, ..., J}. So there are
I peak constraints and J average constraints. The functions
f i and hj return the values with respect to the pair (st, at).
The peak constraints of Eq. (4) and the average constraint of
Eq. (5) in the PA-CMDP problem can be easily formulated as
the formation of Eq. (6) and Eq. (7), respectively.

The above problem can be converted to a CSP for finding
a feasible policy π which (i) makes the objective value no
smaller than a target value δ and (ii) satisfies both the peak
and average constraints. Formally, the CSP can be shown as

CSP: Find π

s.t. f i(st, at) ≥ 0, ∀t ≥ 0, i ∈ [I],

Eπ

[ ∞∑
t=0

γtr(st, at)

]
≥ δ, (8)

Eπ

[ ∞∑
t=0

γthj(st, at)

]
≥ 0, ∀j ∈ [J ]. (9)

The main difference from the generalized PA-CMDP problem
is that the objective function is converted into an average
constraint of Eq. (8). So, there are total of 1 + J average
constraints in the CSP. It is worth noticing that the new average
constraint of Eq. (8) has the same form of (9) if we define

h0(st, at) = r(st, at)− (1− γ)δ.

Suppose the PA-CMDP problem is feasible, and let Φ∗ be
the optimal objective value of the PA-CMDP problem. For a
CSP where δ = Φ∗, obviously, the optimal solution of the
CSP is also an optimal solution to the PA-CMDP problem.
However, Φ∗ is not known in advance. We find that if the
CSP is feasible for a given δ, a feasible solution can be found,
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otherwise, there is no feasible solution. This allows us to
approximate the optimal solution of the PA-CMDP problem
by running an existing searching method (e.g, the Bisection
method) for setting δ and solving a sequence of corresponding
CSPs.1 In the following parts of this section, we mainly show
how to solve a CSP for a given δ.

B. Modified Constraint Satisfaction Problem

To deal with the peak constraints, we propose constraint-
sensitive functions by folding the peak constraints into the
average constraint functions, which is similar to [16]. Par-
ticularly, a penalty will be added to hj (j ∈ {0} ∪ [J ])
whenever any peak constraints are violated. The constraint-
sensitive functions denoted by h̃j are expressed as

h̃j(st, at) = hj(st, at)− β · 1∑I
i=1[f

i]−<0,∀j ∈ {0} ∪ [J ],

(10)

where [f i]− is defined as [f i]− = min{0, f i} and 1 is the
indicator function. When any peak constraints are violated,∑I

i=1[f
i]− < 0 will hold and a penalty −β (β > 0) will be

punished to each hj . Obviously, h̃j = hj when all the peak
constraints are satisfied.

By using the constraint-sensitive functions, we transform
the CSP into a modified CSP (M-CSP):

M-CSP: Find π

s.t. Eπ

[ ∞∑
t=0

γth̃j(st, at)

]
≥ 0, ∀j ∈ {0} ∪ [J ].

In the next subsection, we present the learning algorithm to
solve the M-CSP optimally. Our convergence analysis will
show that the learned optimal policy of the M-CSP is optimal
to the CSP problem while both peak and average constraints
can be satisfied.

C. Zero-Sum Markov-Bandit Game and Learning Algorithm

The solution of an M-CSP is obtained by solving an equiv-
alent zero-sum Markov-Bandit game where the agent solves a
Markov decision process problem and its opponent tackles a
bandit optimization problem. Formally, the zero-sum Markov-
Bandit game can be described by the tuple (S,A,O,P, R),
where S,A, and P are same as the definitions in our CMDP
described in Sec. III-B. O = {0} ∪ [J ] is a finite action space
for the agent’s opponent, and the opponent action o ∈ O. The
reward function R : S × A × O → R is decided not only
by the state and action but the opponent action. The reward
function R(st, at, o) is defined as

R(st, at, o) := h̃o(st, at), ∀o = j ∈ {0} ∪ [J ]. (11)

We define the value function with any stationary policy π
as

V (s) = min
o∈O

Eπ

[ ∞∑
t=0

γtR(st, π(st), o)

]
(12)

1A heuristic δ-search method will be proposed in Section V-A for the
practical deployment of our framework in real networks.

Algorithm 1 Constrained Q-learning (CQL) Algorithm

Input: Learning rate αt(s, a, o) for all (s, a, o) ∈ S ×A×O,
Initial state s0. Output: Q(st, at, ot)

1: Q(s, a, o)← 0; Initialize a0 randomly;
2: for Iteration t = 0, ... do
3: Take action at and observe next state st+1;
4: (πt+1, ot) = argmax

πt+1

min
ot∈O

Q(st+1, πt+1(st+1), ot);

5: Q(st, at, ot) ← (1 − αt(st, at, ot))Q(st, at, ot) +
αt(st, at, ot)[R(st, at, ot) + γE[Q(st+1, πt+1(st+1), ot)];

6: Sample at+1 from the distribution πt+1(·|st+1);

for the initial state s0 = s ∈ S . According to the definition
of R(st, at, o), maximizing V (s) is actually maximizing the
minimum margin of the average constraints in M-CSP. Here,
the margin of an average constraint is defined as the left hand
of the average constraint. So, for a feasible M-CSP, a policy
π resulting in the largest V (s) must be an optimal solution of
the M-CSP.

Let Q(s, a, o) be the Q-table (i.e., the state-action value
function) which takes action a initially and continues with the
policy π. Formally,

Q(s, a, o) = R(s, a, o) +Eπ

[ ∞∑
t=1

γtR(st, π(st), o)

]
= R(s, a, o) + γEπ[Q(s+, π(s+), o)], (13)

where s+ denotes the new state after the execution of a under
s. Let Q∗ be the optimal Q-table resulting in the maximum
value of V (s). We can obtain the optimal policy π∗ by solving
the max-min problem modeled as

π∗ = argmax
π

min
o∈O

E [Q∗(s, π(s), o)] . (14)

Under π∗, the maximum value of V (s) can be achieved. The
key to getting π∗ lies in how to obtain Q∗.

The Constrained Q-learning (CQL) algorithm for learning
Q∗ is presented in Algorithm 1. The input includes Q(s, a, o)
with each value set by 0, the learning rates αt(s, a, o), and
the initial state s0. Line 1 takes the initial action randomly.
Line 3 takes action at and observes the next state st+1.
Line 4 computes the policy πt+1 and the opponent action ot
by solving a max-min problem. Line 5 updates the Q-table.
Finally, line 6 samples the next action at+1 from the policy
πt+1 gotten from line 4.

The following theorem shows that the optimal Q-table Q∗

can be learned through Algorithm 1.

Theorem 1. Suppose the Markov decision process (S,A, P )
in the zero-sum Markov-Bandit game is unichain and that R
is bounded. Let αt(s, a, o) satisfy

0 ≤ αt(s, a, o) < 1,

∞∑
k=0

αt(s, a, o) =∞,

∞∑
k=0

α2
t (s, a, o) <∞, ∀(s, a, o) ∈ S ×A×O.

Algorithm 1 converges to Q∗ with probability 1.
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Theorem 1 can be proved following the same argument
as Theorem 1 proposed in [20]. Briefly, the proof relies on
the proposition that the random process {∆t} ({∆t} takes
values in R and is defined as ∆t(x) = (1 − αt(x))∆t(x) +
αt(x)Ft(x)) converges to zero with probability 1 under some
assumptions on αt(x), Ft, and ∆t. Here, x denotes the tuple
of (s, a, o) in our problem, and Ft is the sigma algebra
σ(∆τ , Fτ−1, ατ−1, τ ≤ t). Then, under our assumptions,
∆t = Qt−Q∗ satisfies all the conditions of the proposition and
thus converges to zero with probability 1, i.e., Qt converges to
Q∗ with probability 1. Due to page limitations, we opt not to
repeat the proof and refer the readers to [20] for more details.

According to Theorem 1, the optimal policy π∗ of the zero-
sum Markov-bandit game can be obtained by Eq. (14) and
Eq. (13). Since V (s), the minimum margin of the average
constraints in M-CSP, is maximized under π∗, π∗ is also an
optimal policy of M-CSP.

D. Convergence Analysis

Now, we prove that π∗ learned by Algorithm 1 is an optimal
feasible solution to the CSP. First, we give a theorem about
average constraints, which is shown as follows:

Theorem 2. If the M-CSP is feasible for a given δ, π∗

learned by Algorithm 1 is a feasible solution, and the average
constraints in both the M-CSP and the corresponding CSP can
be satisfied under π∗.

Proof. If the M-CSP is feasible, then, by the definition of the
M-CSP, there is a policy π such that for all o ∈ O

E

[ ∞∑
t=0

γtR(st, π(st), o)

]
≥ 0,

which means that V (s) = min
o∈O

E

[∑∞
t=0 γ

tR(st, π(st), o)

]
≥

0. Since π∗ achieves the maximum value of V (s) according
to Eq. (12) and Eq. (14), it is obvious that V (s) ≥ 0 under π∗

and the average constraints are all satisfied. According to the
definition of h̃j , we have hj ≥ h̃j (∀j ∈ {0}∪ [J ]). Thus, the
average constraints in the CSP can also be satisfied when the
average constraints in the corresponding M-CSP are fulfilled,
which completes the proof.

Next, we show the theoretical results of peak constraints.
Let Π be the set of feasible policies for the M-CSP, and any
policy π ∈ Π satisfies the average constraints. Obviously, the
optimal policy π∗ learned by Algorithm 1 belongs to Π if the
M-CSP is feasible. We define policy set Π+ ⊆ Π, and any
policy π ∈ Π+ always generates actions that satisfy the peak
constraints in the CSP. We also define policy set Π− ⊆ Π,
and any policy π ∈ Π− will output actions violating at least
one peak constraint at some time. Obviously, Π+ ∪Π− = Π.
We can get the following theorem, whose detailed proof is
provided in Appendix A.

Theorem 3. Suppose for a given δ, the CSP problem is
feasible and the conditions in Theorem 1 are satisfied. Let
|hj(st, at)| < ur (∀j ∈ {0} ∪ [J ]). If β satisfies

β ≥ 2ur

1− γ
, (15)

π∗ for the M-CSP belongs to Π+ such that the peak constraints
of the CSP will always be satisfied under π∗.

Theorem 3 show that π∗, the optimal policy learned by
Algorithm 1 for the M-CSP, is a feasible solution to the CSP
(i.e., both the peak and average constraints are satisfied).

Next, we show that π∗ also results in the optimal value
function of the CSP. We define V ∗ as the optimal value
function of the M-CSP under π∗. Similar to Eq. (12), we define
the value function of the CSP as

V̂ (s) = min
j∈{0}∪[J]

Eπ

[ ∞∑
t=0

γthj(st, π(st))

]
.

Let V̂ ∗ be the optimal value function of the CSP with both
the peak and average constraints satisfied. Then, we have the
following theorem:

Theorem 4. Suppose Theorem 3 holds. The optimal policy
π∗ for the M-CSP is also optimal for the CSP, and we have
V̂ ∗ = V ∗.

Proof. Let π∗
CSP denote the CSP’s optimal policy correspond-

ing to V̂ ∗. We have

V̂ ∗ = min
j∈{0}∪[J]

Eπ∗
CSP

[ ∞∑
t=0

γthj(st, at)

]

= min
o∈{0}∪[J]

Eπ∗
CSP

[ ∞∑
t=0

γtR(st, at, o)

]
= Vπ∗

CSP
≤ V ∗,

where Vπ∗
CSP

denotes the value function of M-CSP under
π∗
CSP . The first and the third equalities hold according to the

definition of V̂ and V , respectively. The second equality holds
because under π∗

CSP , all the peak constraints in the CSP are
satisfied. The inequality holds as V ∗ is the optimal V .

Similarly, we can have

V ∗ = V̂π∗ ≤ V̂ ∗.

where V̂π∗ is the value function of the CSP under the optimal
policy π∗ of the M-CSP. Combining the above two results,
we have V̂ ∗ ≤ V ∗ ≤ V̂ ∗. We conclude that V̂ ∗ = V ∗, which
completes the proof.

According to Theorem 2, Theorem 3, and Theorem 4, the
optimal policy of CSP can be obtained by Algorithm 1 while
both the peak and average constraints are satisfied.

V. DECENTRALIZED ALGORITHM IMPLEMENTATION

In this section, we turn the algorithm proposed in Sec. IV
into a decentralized implementation to improve the scalability
of our framework in large-scale vehicular networks. Besides,
we propose a multiple Q-table structure for effectively reduc-
ing the state and action space of the learning agents.
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A. Distributed CQL Algorithm Implementation

Recall that vehicles can act as relays only for other vehicles
within the same cluster. Therefore, the routing subproblems of
individual clusters have independent action space, while the
actions jointly determine the rewards received. We capitalize
on the observation and propose a decentralized CQL (DCQL)
algorithm. Particularly, we divide the routing problem of the
entire network by modeling each cluster as an individual
agent. Each agent focuses on optimizing the local objective
and learns to satisfy the local peak and average constraints
with respect to local vehicles. We design the state space,
action space, and reward function with respect to the cluster-
based agents carefully, which is critical to the success of the
DCQL algorithm. Since the agents for intra-cell and inter-cell
clusters have different impacts on cellular resource allocation
of V2I communication, we develop the two kinds of agents
differently. Our detailed designs are as follows:
State space: In our design, each vehicle has two states: using
direct V2I link for data delivery and using a combination
of V2I and V2V communication for data delivery. The state
space of an agent is a combination of states of all the local
vehicles, and we do not assume access to more fine-grained
vehicle/network state information.
Action space: Agent actions decide whether each vehicle
uses a relay and which relay is selected. Although a vehicle
can establish V2V links with any of the local vehicles, not
every local vehicle is suitable to be a relay. In real vehicular
networks, whether a vehicle can be a candidate relay depends
on many factors, such as channel quality (e.g., SINR), moving
direction, and moving speed [26]. In our design, we consider
choosing a fixed number of candidate relays for each cluster
based on the SINR of both V2I links and V2V links. For intra-
cell clusters, we choose the top y% (e.g., 80%) of potential
relays from the local vehicles based on each vehicle’s smallest
SINR of its V2V links, and then find the first nr potential
vehicles with the largest V2I link SINR as candidate relays.
For inter-cell clusters, we pick nr/2 relays using the same
way from the vehicles (of this cluster) located in each serving
cell.2 Such a method provides the opportunity of achieving
load balancing and having inter-cell transmission paths among
the cells serving this cluster. The setting of nr introduces
a tradeoff between potential network performance and the
overhead of the learning algorithm. A larger nr value provides
more routing choices but induces larger action space. A larger
action space usually causes the model to take more time to
converge. In this paper, we set nr = 4 because the marginal
gain of using a higher nr value quickly diminishes in our
evaluation. That is, a larger nr brings little performance
improvement but at the cost of more convergence steps.
Reward function: Recall that the cellular resource available
at each base station is evenly apportioned among all vehicles
served by the base station (either directly or indirectly). It
is not hard to see that the routing decisions made by intra-
cell and inter-cell clusters have different impacts on cellular

2If less than nr/2 vehicles of the cluster are located in a serving cell, we
pick the maximum number of relays available while selecting the remaining
relays evenly from other serving cells.

resource allocation – the actions taken by vehicles in intra-cell
clusters do not affect how cellular resources are apportioned
(as the traffic paths are always contained in the cell), while
actions by inter-cell clusters affect the load at connected base
stations (as the traffic paths may traverse multiple serving
cells). Therefore, we develop different reward structures for
the two kinds of clusters in order to permit a minimum level
of necessary coordination for vehicles in inter-cell clusters.
Particularly, for an intra-cell cluster c, we compute the reward
of c’s agent by using Eq. (3) directly but with respect to only
local vehicles, i.e., rlocalc =

∑
v∈c log(xv + ϵ). In contrast,

the agents for inter-cell clusters need to cooperate for load
balancing among the relevant base stations. We propose a
reward structure that allows inter-cell clusters c sharing the
same cells to exchange local rewards rlocalc computed by Eq.
(3) and to obtain their final reward rcooperativec by calculating
the average value of the received local rewards.

In the above distributed implementation, each agent only
considers local peak and average constraints because they can
only obtain local network information directly. Particularly,
the constraint-sensitive function values of any cluster c will
be computed by Eq. (10) with respect to local vehicles (also
local constraints), which is similar to the process of calculating
local rewards for c.

As described previously, we design to take a search method
to find the optimal δ and solving a sequence of CSPs to
approximate the optimal solution of the original routing prob-
lem. However, such a method may take much time to train
the agents and thus limits the efficiency of our decentralized
framework in real networks. It is expected that the learning
algorithm can learn the optimal δ and the corresponding policy
π∗ self-adaptively. Actually, if we can obtain E[r(s, a)], we
can set δ = E[r(s, a)]/(1 − γ) during the learning process,
which can satisfy the above requirement. In practice, we take
a heuristic δ-search algorithm by setting

δt = η · δt−1 + (1− η) · rt/(1− γ) (16)

at each time step, where η ∈ [0, 1] is an adjustable parameter.
Note that, each agent will estimate its own δt according to
local rewards.

B. The Design of Q-table

We observe that the state and action spaces of each in-
dividual agent can still be large even when a decentralized
implementation approach has been taken. More precisely, the
sizes of state and action spaces increase exponentially with the
size of clusters (i.e., # of the vehicles in clusters). Large state
and action spaces will lead to the explosion of Q-table size,
and in turn, have slow convergence for large-size problems.

To address the issue, we propose a Multiple Q-table (MQ-
table) structure, which can efficiently reduce state and action
spaces. Particularly, instead of using one Q-table in an agent,
we maintain a Q-table for each individual vehicle in the
corresponding cluster. Each Q-table only considers the state
space and action space of the corresponding vehicle, so each
Q-table requires a small space for storing values. As a result,
the state and action spaces of each MQ-table increase linearly
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with the size of clusters. Reduced state and action spaces will
lead to faster and better convergence of the learning algorithm.

The Q-tables in an agent are updated together using the
same method shown in Algorithm 1, and the constraint-
sensitive function values need to be computed with respect to
local peak constraints for table updates. Recall that a penalty
will be added to the constraint-sensitive function when any
of the local peak constraints are violated. For each agent, the
Q-table of a vehicle has to be updated using a small constraint-
sensitive function value when any other vehicles in the same
cluster violate the peak constraints regardless of the vehicle’s
own peak constraint. Since Q-tables have independent action
space of individual vehicles, a wrong penalty may lead to
some good actions not being chosen thereafter. To address the
issue, we propose to compute the constraint-sensitive function
values for updating Q-tables separately by considering only
the peak violation of individual vehicles. More precisely, let
hj
c (j ∈ {0} ∪ [J ]) be the local constraint-sensitive function

values of a cluster c. When updating the Q-table of vehicle v,
we compute the constraint-sensitive function value h̃j

c,v by

h̃j
c,v = hj

c − β · 1fv<0,

where fv denotes the peak constraint function of vehicle v.
We can find the violation part only indicates the violation of
v’s own peak constraint.

VI. SIMULATIONS

We conduct numerical simulations with environment dy-
namics (e.g., dynamic link latency and cluster movement) to
evaluate the performance of our proposed algorithm.

A. Simulation Setup

1) Network Generation: We consider a network with three
cells (also three base stations). Any two of them are neighbors.
The base stations’ cellular resource available for V2I com-
munication is 1 MHz, 2 MHz, and 3 MHz, respectively. We
consider different amounts of cellular resources here for sim-
ulating unbalanced communication loads among base stations.
For each V2V link, we assigned a fixed bandwidth resource,
i.e., 10 kHz. By default, there are 50 clusters in the whole
network. To simulate a dynamic environment for the vehicular
network, we consider a number of sources of randomness and
vary the configurations in real time during our experiment. The
size of clusters follows a uniform distribution, i.e., [15, 20].
The SINR of V2I links and V2V links is uniformly distributed
within [0, 30] (dB) and [15, 30] (dB), respectively. We choose
four candidate relays as described previously. According to
previous researches [37], [38], network latency usually follows
a long-tail distribution. In our simulation, we leverage Log-
Normal distribution Log-N(µ, σ) and uniformly distributed
noise U(·, ·), to generate latencies of V2I links and V2V links
and simulate latency dynamics. Particularly, at the beginning,
we randomly set the initial latency of a V2I link and a V2V
link to 10 + Log-N(µ = 3.5, σ = 0.5) (ms) and 10 +
Log-N(µ = 3.0, σ = 0.5) (ms), respectively. Then, at each
time slot, a V2I/V2V link latency is randomly set to d·(1 +

Table I: The default settings of network generation.
Description Setting

# of cells (base stations) 3, any two are neighbors
Cellular resource 1 MHz, 2 MHz, and 3 MHz, resp.

Resource of each V2V link 10 kHz
# of clusters 50

Size of clusters uniform distribution [15, 20]
SINR of V2I links uniform distribution [0, 30] (dB)
SINR of V2V links uniform distribution [15, 30] (dB)

Ratio of intra-cell clusters 70%
# of candidate relays 4

Initial latency of V2I links 10 + Log-N(µ = 3.5, σ = 0.5) (ms)
Initial latency of V2V links 10 + Log-N(µ = 3.0, σ = 0.5) (ms)

Dynamic latency model d·(1 + U(−10%, 10%)

Table II: The default settings of our algorithm.
Parameter Setting

Peak bound uv identically 100 ms
Average bound ū 60 ms

T 10k
γ 0.5
αt 1 · t−

2
3

β a large value satisfying Eq. (15)
η 0.999

U(−10%, 10%)) (ms) for simulating latency dynamics, where
d indicates the initial link latency generated at the beginning.

Next, we need to scatter these clusters across the network.
In our simulations, 70% of the generated clusters are intra-
cell clusters, and the others are inter-cell clusters. An intra-
cell cluster is located at each cell with identical probability,
i.e., 1/3. Each inter-cell cluster is assumed to traverse two
cells. Note that, there are three shared edges between any two
hexagon cells. An inter-cell cluster is located at each border
edge of two cells with identical probability, i.e., 1/3. Vehicles
in an inter-cell cluster are located at each side of the border
randomly, but there should be at least one vehicle at each side
of the border. The default settings for generating the vehicular
networks in our evaluation are listed in Table I. We note
that the default settings of the environment in this paper are
consistent with the real world vehicular network. For instance,
the spectrum settings of base stations are similar to [10], and
the vehicular network settings are similar to [9].

Further, we evaluate the effect of a different number of
candidate relays on the performance of DCQL and show the
results in Table. III. We note that a small set of candidate
relays will limit the action space of the DCQL. Thus, the
model may not be able to satisfy all constraints. However, if
the set of candidate relays is too large, it may cause the model
to be more difficult to converge, resulting in performance
degradation. In this work, we set the number of candidate
relays to 4 to balance the model convergence and optimality.

2) Algorithm Settings: The default settings of our algorithm
can be found in Table II. To make agents converge quickly, we
leverage ε-greedy for action explorations. We also discretize
policies to accelerate the process of solving max-min problems
in Algorithm 1 [20].

3) Baselines: We compare the distributed algorithm (i.e.,
DCQL) with five representative baselines.

• Direct-V2I: Downlink data is delivered to the destination
vehicle through the directly connected V2I link.

• Max-SINR: Each vehicle chooses the vehicle with the
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Figure 4: The margin of avg. constraint as
a function of the number of clusters.

largest SINR in the same cluster as the relay. This routing
algorithm provides a good transmission rate without
considering latency.

• DCRA [2]: A state-of-the-art decentralized coopera-
tive relaying algorithm where each cluster optimizes
relay choices iteratively. The objective is to improve the
transmission rate with the consideration of proportional
fairness.

• Min-latency: Each vehicle chooses the relay that results
in the smallest transmission latency.

• QL: A Q-learning based vehicular network routing algo-
rithm without considering peak and average constraints.

We do not compare performance with existing constrained RL
algorithms [16]–[23]. They focus on either peak or average
constraints, but not both, in the paradigm of single-agent
RL. It is not straightforward to extend them to a multi-agent
implementation under both peak and average constraints for
scalable vehicular network routing.

4) Metrics: We consider four metrics. First, we compare
the reward defined in Eq. (3). Second, we evaluate the
Geometric Mean of transmission rates (GM of Rates) with
respect to all the vehicles in the network. We note that GM
of Rates reflects the average transmission rate of a vehicle
in the vehicular network. Since the reward function of Eq.
(3) is the summation of the logarithm of each vehicle’s rate
(known as the proportional-fair utility function), maximizing
this reward is equivalent to maximizing GM of Rates. Third,
we compare peak violation which denotes the total number
of violated peak constraints at the same time. The fourth
metric is the left hand of the average constraint in Eq. (5),
i.e.,

∑
t≥0 γ

t(ū − d̄(st, at)), which is named as the margin
of average constraint. We note that the margin of average
constraint reflects the average latency of the vehicles in a
period of time. More precisely, the margin of the average
constraint equals to 2 times the difference between the average
latency and the average latency constraint. It is estimated by
an extra Q-table similar to the typical Q-learning algorithm. A
non-negative margin value implies that the average constraint
is satisfied. Note that, all numbers reported in our evaluation
are the average of 10 independent simulation results.

B. Simulation Results

1) We first evaluate the effectiveness of our algorithm by
varying the numbers of clusters: Fig. 2 shows the reward as
a function of the number of clusters. We can see the reward

Table III: The results of different settings of the number of
candidate relays.

Number of Candidate Relays 2 4 6 8 10

Reward 9191 9147 9082 9033 9003
GM of Rates (Kbps) 46.04 43.74 40.53 38.28 36.97

Peak Violation 4 1 0 0 0
Margin of Avg. Constraint 7.65 7.19 9.76 10.61 11.12

values increase when there are more clusters in the network.
This is because of the monotonicity of the reward function
defined in Eq. (3) for a fixed amount of cellular resources.
We hasten to point out that the reward improvement achieved
by DCQL should be interpreted in the “decibel” sense. This
is because of the use of log functions in the reward function,
and thus the y-axis is actually in log scale. More detailed
comparisons will be presented later through the analysis of
breakdown numbers listed in Table IV.

Fig. 3 shows the peak violation as a function of the number
of clusters. We can see that the peak violation of DCQL and
Min-latency is zero for all the settings. Direct-V2I that uses
direct V2I links still violates peak constraints since some V2I
links may sometimes have a large latency. Max-SINR and
DCRA achieve the worst performance. For example, when
there are 80 clusters, the peak violation of Max-SINR and
DCRA is around 220, implying that 15.7% of vehicles cannot
meet their peak constraints.

Fig. 4 shows the value of average constraint as a function
of the number of clusters. We can find that Direct-V2I, Min-
latency, and DCQL get constraint margins larger than zero,
and thus the average constraint is satisfied. In contrast, the
average constraint is violated by Max-SINR and DCRA since
they only focus on transmission data rate improvement and
ignore latency constraints. Evaluation of DCQL with tighter
latency constraints is provided in Appendix B.

2) We also evaluate the effectiveness of our algorithm by
setting different sizes of clusters: The results are shown in
Fig. 5-7. The x-axis is the range of the uniform distribution
of the number of vehicles in a cluster. We can have similar
observations to those in Fig. 2-4. Particularly, both peak and
average constraints can be satisfied under DCQL.

3) We finally observe the convergence process under en-
vironment dynamics induced by cluster movement: At the
beginning of the convergence test, the agents learn their
policies from scratch. At the 10 thousandth update step, the
environment changes, and the agents have to re-converge.
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When the environment dynamic happens, 10% of intra-cell
clusters become inter-cell clusters randomly, and 10% of inter-
cell clusters become intra-cell clusters randomly. Besides,
the SINR values and link latencies in these clusters are
regenerated. Fig. 8-10 show the convergence of reward, peak
violation, and the margin of average constraint, respectively.
We can find that all the three metrics can converge well within
5,000 steps when the agents are trained from scratch. Note
that, the reward value decreases with the increment of update
steps, which is because some rate performance has to be
sacrificed for satisfying the constraints. After the environment
changes, the agents can update policies quickly. Particularly,
peak violation becomes zero within 1,000 steps, which is much
faster than that in the initial learning process.

We also evaluate the time efficiency and storage efficiency
of DCQL during the training process for future implementation
in physical reality. We find that it takes 385.72s for the initial
training process (10,000 steps) and 39.76s for the conver-
gence after environment dynamics (1000 steps). We also note
that when the environment changes, we suffer an acceptable
performance degradation before the agents converge again.
Moreover, the whole training process only requires 72MB of
physical memory. We note that with the decentralized Q-table,
one vehicle only needs to maintain a small Q-table. Such a
decentralized Q-table design enables us to deploy our approach
on vehicles with negligible memory cost.

VII. CONCLUSION

In this paper, we propose a holistic routing framework
which maximizes the long-term average utility of transmission
rates under both peak and average latency constraints. A
new RL algorithm is proposed to solve the problem through
an optimization based on Constraint Satisfaction Problems.
We turn the algorithm into a decentralized implementation
to improve the scalability of our framework. Simulation re-
sults show that our algorithm achieves much higher rewards

than heuristic baselines while resulting in zero violation in
terms of both peak and average constraints. We note that the
proposed framework can be applicable to a wide range of
routing problems and network utility optimization problems
with different design objectives. For instance, integrating the
proposed framework with cellular network optimization and
vehicle mobility models will be considered in our future work.

Moreover, we consider reducing the cost of training and
implementing our RL-based approach as future directions of
this work, as well as cross-layer optimization of vehicular net-
work. Using RL for network routing often requires training the
algorithms with large data. There are separate lines of research
training RL from small data and leveraging transfer learning
techniques. We also believe a decentralized implementation
would be needed to improve the scalability of the algorithm.
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APPENDIX A
PROOF OF THEOREM 3

We consider a general decision process of the agent in the
M-CSP. Let t0 ≥ 0 be a general time point during the decision
process, and the actions taken before t0 do not violate any peak
constraints in CSP. So, R(st, at, j) = h̃j(st, at) = hj(st, at)
when t < t0. We denote the total discounted reward before the
step t0 as Vt<t0 = min

o
E[

∑t0−1
t=0 γtR(st, at, o)]. Particularly,

Vt<t0 = 0 when t0 = 0.
Next, we consider two cases. Case i): For t ≥ t0, the agent

takes actions that always satisfy the peak constraints. Let V +

be the total discounted reward of the M-CSP in the first case.
Then we have

V + (a)
= Vt<t0 +min

o
E

[ ∞∑
t=t0

γtR(st, at, o)

]
(b)
> Vt<t0 +

∞∑
t=t0

γt(−ur)

= Vt<t0 − γt0
ur

1− γ
.

where step (a) holds according to the definition of V and step
(b) holds due to R(st, at, j) = h̃j(st, at) = hj(st, at) > −ur

for j ∈ {0} ∪ [J ].
Case ii): For t = t0, the agent takes an action that violates

at least one of the peak constraints, and for t > t0, the agent
takes actions that may or may not violate the peak constraints.
Let V − be the total discounted reward of M-CSP in the second
case. Then we have

V − = Vt<t0 +min
o

E

[ ∞∑
t=t0

γtR(st, at, o)

]
(a)
< Vt<t0 + γt0(ur − β) +

∞∑
t=t0+1

γtur

= Vt<t0 + γt0(
ur

1− γ
− β)

(b)

≤ Vt<t0 − γt0
ur

1− γ
(17)

where step (a) holds because for j ∈ {0}∪[J ], R(st0 , at0 , j) =
hj(st0 , at0) − β < ur − β and R(st, at, j) < ur (t > t0).
Step (b) comes from the requirement of β directly. The above
equations obtain an upper bound of V − when at least one
peak constraint is violated at t = t0.

Combining the above two cases, we have V + > V −. Since
t0 ≥ 0 is a general time point in the decision process of M-
CSP, we conclude that for any given π ∈ Π− there always
exists a π ∈ Π+ that gets a larger total discounted reward
value than the given π ∈ Π−. Consider that π∗ is the optimal
policy of the M-CSP and results in the largest V . We have
π∗ ∈ Π+. That is to say, the actions outputted by π∗ always
satisfy the peak constraints of the CSP, which completes the
proof.

APPENDIX B
DCQL PERFORMANCE WITH TIGHTER LATENCY

CONSTRAINTS

In this section, we will validate how DCQL performs when
we consider tighter latency constraints, i.e., setting the peak
bound and the average bound to relatively smaller values.
By default, we set the peak bound and the average bound to
100 ms and 60 ms, respectively. Now, we consider two other
settings of (peak bound, average bound): (100 ms, 55 ms)
and (95 ms, 60 ms), respectively. Table IV shows some result
numbers of our simulations. Our observations are as follows:

• Reward. Similar to the results in Fig. 2 and Fig. 5, all the
approaches get similar rewards. DCQL has larger rewards
than Direct-V2I and Min-latency but gets smaller rewards
than DCRA, Max-SINR, and QL, because unlike DCRA,
Max-SINR and QL, DCQL has to satisfy both latency
constraints simultaneously. DCRA achieves the largest re-
ward and particularly outperforms Max-SINR. Compared
with Max-SINR, DCRA enables load balancing among
base stations and results in better fairness. Besides, we
can find that DCQL gets smaller rewards when we set a
smaller peak bound (95 ms) or a smaller average bound
(55 ms). This is because the agents have to sacrifice some
rate performance to satisfy the constraints.

• GM of Rates. Although DCQL suffers some loss of
transmission rate due to the latency constraints, it still
improves the GM of rates by 43.6% and 44.4% under
the default bound settings compared to Direct-V2I and
Min-latency, respectively.

• Peak Violation. We get similar results to Fig. 3 and Fig.
6. DCQL and Min-latency satisfy peak constraints for
all the three settings. Max-SINR, DCRA, and QL lead
to very large peak violations. For example, the peak
violation of Max-SINR and DCRA is around 173 when
the peak bound is set to 95 ms, which means there are
averagely 173 vehicles (out of 875 vehicles on average
in total) whose transmission latency exceeds the required
threshold.

• Margin of Avg. Constraint. The results are similar to
those shown in Fig. 4 and Fig. 7. Direct-V2I, Min-latency,
and DCQL satisfy the average constraint for all the three
settings. However, DCQL gets the margin values much
closer to zero compared with Direct-V2I and Min-latency,
and thus DCQL does not lose too much performance for
meeting the latency objectives. In contrast, Max-SINR,
DCRA, and QL violate the average constraint all the time
since they greedily choose the relays with the goal of
improving data rate objective only.
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Table IV: The results of different settings of the average bound and the peak bound.
Metric Reward GM of Rates (Kbps) Peak Violation Margin of Avg. Constraint

Peak Bound (ms) 100 100 95 100 100 95 100 100 95 100 100 95
Avg. Bound (ms) 60 55 60 60 55 60 60 55 60 60 55 60

Direct-V2I 8,666 27.56 22 22 27 25.16 15.16 25.29
Max-SINR 9,297 58.08 147 144 181 -37.19 -47.01 -36.94

DCRA 9,378 63.76 140 137 175 -36.27 -46.07 -35.89
Min-latency 8,667 27.69 0 0 0 38.19 28.19 38.20

QL 9,076 44.67 108 109 139 -21.32 -31.04 -20.42
DCQL 8,924 8,890 8,907 37.35 35.86 36.60 0 0 0 7.89 1.48 10.38

* Results marked in green mean the constraint(s) is/are satisfied.


