
Journal of Parallel and Distributed Computing 157 (2021) 280–286

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Preemptive scheduling on unrelated machines with fractional
precedence constraints

Vaneet Aggarwal ∗, Tian Lan, Dheeraj Peddireddy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 May 2019
Received in revised form 25 February 2021
Accepted 13 July 2021
Available online 24 July 2021

Keywords:
Fractional precedence constraints
Preemptive scheduling
Unrelated machines
Birkhoff-von Neumann decomposition

Many programming models, e.g., MapReduce, introduce precedence constraints between the jobs. This
paper formalizes a notion of precedence constraints, called fractional precedence constraints, where
the progress of follower jobs only has to lag behind (fractionally) their leads. For a general set of
fractional precedence constraints between the jobs, this paper provides a new class of preemptive
scheduling algorithms on unrelated machines that have arbitrary processing speeds. In particular, for a
given makespan, we establish both sufficient and necessary conditions on the existence of a feasible job
schedule, and then propose an efficient scheduling algorithm based on a novel matrix decomposition
method, if the sufficient conditions are satisfied. The algorithm is shown to be a Polynomial-Time
Approximation Scheme (PTAS), i.e., its solution is able to achieve any feasible makespan with an
approximation bound of 1 + ε, for an arbitrary ε > 0.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Scheduling jobs on distributed servers is a widely studied area
in operations research and computer science [17,10]. Many pro-
gramming models and applications in real world introduce some
form of precedence constraints between the jobs, meaning that the
processing of some (follower) jobs are required to wait until the
completion of other (lead) jobs. An example of such precedence
constraints can be found in the popular MapReduce framework [8],
which consists of two successive phases – map phase and reduce
phase – where a reduce phase cannot begin to process until its
related map phase is completed to some extent. Job scheduling
under precedence constraints has been studied in [17] and ap-
proximation algorithms have been provided under a number of
different conditions [11,12,15,6,9,14,3]. However, in the presence
of precedence constraints, optimally scheduling jobs on unrelated
machines that have arbitrary processing speeds is still an open
problem.

In this paper, we consider a new form of precedence con-
straints, called fractional precedence constraints, where the percent-
age progress of follower jobs must always stay behind (fractionally)
lead jobs. We focus on the optimal job scheduling problem on
multiple unrelated machines under general fractional precedence
constraints. In particular, we represent the precedence constraints
by a directed acyclic graph, in which each vertex denotes a job
and each arc denotes a fractional precedence constraint between

* Corresponding author.
E-mail address: vaneet@purdue.edu (V. Aggarwal).
https://doi.org/10.1016/j.jpdc.2021.07.010
0743-7315/© 2021 Elsevier Inc. All rights reserved.
a pair of dependent jobs. The constraint between the jobs j and
j′ , represented as j ≺ j′ , implies that the completion percentage
of (lead) job j must be greater than or equal to the comple-
tion percentage of (follower) job j′ at any given time t . This re-
laxes the strict precedence constraints considered in prior work
such as [15], where job j′ cannot begin to process until job j
has completely finished. Not only does fractional precedence con-
straints introduce a new model for scheduling dependent jobs, it
is also strongly motivated by the development in practical systems,
e.g., the Hadoop MapReduce framework [1] that allows reduce
phase to follow map phase by a tunable gap parameterized by the
mapred.reduce.slowstart.completed.maps field. More precisely, re-
duce tasks can process in parallel and utilize the results available
from map tasks, while their progress must lag behind to satisfy
the causality requirement. The proposed fractional precedence con-
straint formalizes the notion of such job dependence in the context
of scheduling and illuminates new design opportunities beyond the
assumption of strict precedence constraints.

Our main contribution is to provide a 1 +ε-approximation algo-
rithm for preemptive scheduling under fractional precedence con-
straints on unrelated machines, with the aim of minimizing the
makespan. By unrelated machine, we do not assume any relation
between the processing time of a job on different machines and
consider a practical system model, where machines can have ar-
bitrary processing speeds for different jobs. Further, in this paper
we consider the preemptive scheduling strategy, since it allows for
a job to be interrupted and resumed later on the same or a dif-
ferent machine thus providing additional flexibility as compared to
non-preemptive scheduling that forbids the interruption of a job

https://doi.org/10.1016/j.jpdc.2021.07.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2021.07.010&domain=pdf
mailto:vaneet@purdue.edu
https://doi.org/10.1016/j.jpdc.2021.07.010

V. Aggarwal, T. Lan and D. Peddireddy Journal of Parallel and Distributed Computing 157 (2021) 280–286
execution until it is completed. Without precedence constraints,
optimal low-complexity algorithms for preemptive job scheduling
have been shown for the makespan as well as the weighted com-
pletion time objectives [17]. It is shown in [7] that preempting
jobs can reduce the makespan by up to 33% as compared to a non-
preemptive two-machine scheduling.

To develop an approximation algorithm for the scheduling
problem, we first establish both necessary and sufficient conditions
on the existence of a feasible job schedule under the fractional
precedence constraints. This paper also assumes that the jobs can
be readily moved between machines without any penalty, while
this may not be realistic, for instance due to the cost of job mi-
gration and data locality. For a problem with m machines and
n jobs, we show that the time-slotted scheduling problem is re-
lated to the Birkhoff-von Neumann decomposition [4] and develop
a O ({max(m, n)}4.5)-algorithm that finds a feasible job schedule
under the fractional precedence constraints, if the sufficient condi-
tions hold. Then, we prove that the gap between the necessary and
sufficient conditions can be made sufficiently small, as the time
line is divided into smaller time slots. Introducing a new matrix
decomposition method, we show that the achieved makespan by
our feasible scheduling algorithm is indeed the same as that in
the sufficient conditions. These results allow us to provide a bi-
section search algorithm to find the optimal makespan, by solving
a linear programming Problem for feasibility check. The achieved
approximation ratio is proven to be 1 + ε , with an algorithm of
complexity O (poly(1/ε)) for any ε > 0. Thus, the proposed al-
gorithm is approximately optimal for preemptive scheduling with
fractional precedence constraints on unrelated machines. The nu-
merical results also demonstrate the improvement of makespan
with fractional precedence constraints as compared to strict prece-
dence constraints.

The main contributions of this paper are summarized as fol-
lows.

1. We propose fractional precedence constraints to formalize a
novel notion of precedence constraints, where the progress of
follower jobs has to lag behind (fractionally) their leads.

2. By establishing the sufficient and necessary conditions of the
constrained job scheduling, we develop a novel matrix de-
composition algorithm to verify the feasibility of a makespan
objective.

3. An approximately optimal algorithm is provided for preemp-
tive scheduling with fractional precedence constraints on un-
related machines, with an objective of minimizing makespan.

The rest of the paper is organized as follows. Section 2 formu-
lates the problem. Section 3 describes the necessary and sufficient
conditions for the proposed problems, and provides a feasible al-
gorithm. Further, Section 3 also shows that the proposed sufficient
conditions can provide a feasible algorithm, and an algorithm to
verify the sufficient conditions. Section 4 proves the approximation
ratio of 1 + ε . Section 5 provides a numerical result comparing the
approach with strict precedence constraints. Section 6 concludes
this paper.

2. Problem formulation

We consider a set of n jobs to be scheduled on m machines. We
denote the set of jobs as J = {1, · · · , n}, and the set of machines
as I = {1, · · · , m}. The processing time of the job j on machine i is
pi, j . For the simplicity of notation, let p j be defined as p1, j . Fur-
ther, we denote the velocity of i-th machine when processing job
j by vi, j = pi, j/p j . Thus, machine 1 will have unit velocity 1 for
each job, and the velocities of other machines represent how fast
or slow they are in terms of processing job j, relative to machine
281
1. At any given time, we assume that any job j can only be pro-
cessed by at most one machine. In this paper, we consider a class
of fractional precedence constraints that are defined as follows.

Definition 1. For any two jobs j, j′ , having a fractional precedence
constraint j ≺ j′ implies that the completion percentage of (lead)
job j must be greater than or equal to the completion percentage
of (follower) job j′ at any time.

The fractional precedence constraint j ≺ j′ implies that the
progress of job j′ lags behind that of job j at all times. We employ
a directed acyclic graph (DAG) G = (J , E) to represent the frac-
tional precedence constraints of the jobs. More precisely, the set
of vertices J denote the set of jobs, and a fractional precedence
constraint j ≺ j′ is represented as an arc (j, j′) ∈ E .

We assume that the scheduling strategy is preemptive. In other
words, a job can be paused at any time and resumed later on the
same or a different machine. In the presence of general DAG frac-
tional precedence constraints and the preemptive scheduling, this
paper aims to minimize the makespan, which is defined as the
time taken to complete all the jobs on the unrelated machines.

3. Proposed algorithm

We first establish the necessary conditions for the preemptive
job scheduling problem on unrelated machines under fractional
precedence constraints. These are followed by a set of sufficient
conditions for the problem. In particular, the sufficient conditions
are proven by providing a feasible scheduling algorithm that uti-
lizes a new matrix decomposition, related to the Birkhoff-von Neu-
mann decomposition [4]. Then, a low-complexity algorithm is pro-
vided to check when the sufficient conditions hold. It enables us to
develop an overall scheduling algorithm relying on bisection search
of the makespan objective.

In the following subsections, we consider a time-slotted system,
where the time is partitioned into equal-size time slots. We denote
xi, j,t as the time fraction spent on machine i to process job j,
during time slot t . Namely, we process size xi, j,t · vi, j of job j on
machine i in time slot t . Let xi, j,0 = 0 for any job j and machine i,
initially at time t = 0.

One of the key aspects of the algorithm is to find whether there
exists a feasible schedule for a given makespan. Section 3.1 estab-
lishes necessary conditions on xi, j,t such that a feasible schedule
exists for a given makespan. Section 3.2 provides sufficient condi-
tions such that a valid schedule can be designed to achieve the
makespan. In particular, to prove that these conditions are indeed
sufficient, a scheduling algorithm is proposed in Section 3.3. This
scheduling algorithm is analyzed in Section 3.3. We give a proof
that if the sufficient conditions hold, the proposed schedule fin-
ishes the jobs by time T , thus achieving the target makespan.
Finally, even though sufficient conditions have been provided, we
require a computationally efficient algorithm to verify if these con-
ditions are satisfied, which is provided in Section 3.4. This com-
pletes the analysis of our proposed algorithm.

Having identified an algorithm, we need to verify if there is
a feasible schedule with a given makespan. To this end, a binary
search is used to find lowest makespan such that there is a feasible
schedule. After finding the minimum makespan (within ε gap), the
scheduling algorithm in Section 3.3 with that makespan can be
used. This overall algorithm is described in Section 3.5.

3.1. Necessary conditions

In this subsection, we will provide a set of necessary conditions
on xi, j,t , such that all jobs are finished by T time slots.

V. Aggarwal, T. Lan and D. Peddireddy Journal of Parallel and Distributed Computing 157 (2021) 280–286
First, every xi, j,t is non-negative:

xi, j,t ≥ 0, ∀i ∈ {1, · · · ,m}, ∀ j ∈ {1, · · · ,n}, ∀t ∈ {1, · · · , T }.
(1)

In any time slot t ∈ {1, · · · , T }, a machine i can process at most
1 fraction of content. Thus, we have

n∑
j=1

xi, j,t ≤ 1, ∀i ∈ {1, · · · ,m}, ∀t ∈ {1, · · · , T }. (2)

In any time slot t , a job j cannot be processed at the same time
by different machines. Note that

∑m
i=1 xi, j,t represents the fraction

of time taken for job j in time slot t among all machines. If this
exceeds 1, it is impossible to avoid intersection of time where dif-
ferent machines are processing job j. Therefore, we have

m∑
i=1

xi, j,t ≤ 1 ∀ j ∈ {1, · · · ,n}, ∀t ∈ {1, · · · , T }. (3)

To ensure that each job is completed, we have

T∑
t=1

m∑
i=1

xi, j,t vi, j = p j, ∀ j ∈ {1, · · · ,n}. (4)

By the definition of fractional precedence constraints, if j ≺ j′ ,
the proportion completed for j′ until the end of time t cannot
exceed the proportion completed for j until time t .

1

p j′

m∑
i=1

t∑
s=0

xi, j,s vi, j′ ≤ 1

p j

m∑
i=1

t∑
s=0

xi, j,s vi, j ∀ j ≺ j′,

∀t ∈ {1, · · · , T }. (5)

We however note that all these constraints are necessary, but
they might not give a feasible scheduling algorithm even if all the
conditions are satisfied.

3.2. Sufficient conditions

In this subsection, we will provide a set of sufficient conditions
on xi, j,t , such that the all jobs are finished by time T . The proof
of sufficiency of these conditions will be shown in the following
subsection.

The problem of minimizing makespan with fractional prece-
dence constraints can be reduced to a set of decision problems {
D(T) : T = 1, · · · , 	∑ j p j/ mini, j{vi, j}

}
, where D(T) returns

whether there exists a feasible preemptive scheduling which com-
pletes processing in time T . Note that a simple feasible scheduling
is to assign all jobs to a single machine according to a topological
ordering based on their precedence-DAG. The makespan for the
scheduling is upper bounded by 	∑ j p j/ mini, j{vi, j}
. Therefore,
the optimal makespan is at most 	∑ j p j/ mini, j{vi, j}
.

Suppose for a given T , we want to know if we are able to com-
plete all jobs in T time slots.

The necessary condition (5) can have a situation where the de-
layed job may be running on faster machine and thus there may
not exist a feasible strategy where we can split the times within
the time-slot to satisfy the fractional precedence constraint at all
times. In order to avoid such scenarios, we assume that if j ≺ j′ ,
the proportion completed for j′ until the end of time t cannot ex-
ceed the proportion completed for j until time t − 1. Namely, we
have
282
1

p j′

m∑
i=1

t∑
s=0

xi, j′,s vi, j′ ≤ 1

p j

m∑
i=1

t−1∑
s=0

xi, j,s vi, j ∀ j ≺ j′,

∀t ∈ {1, · · · , T }. (6)

Thus, we let the sufficient conditions be (1)-(4), (6). Since the
sufficient conditions are weaker than the necessary conditions,
there will be a gap. However, note that the gap is small if the
time-slot becomes small, which will be the key to prove approxi-
mate optimality of the proposed algorithm.

3.3. Proof of sufficiency

In this subsection, we will show that (1)-(4), (6) establish the
sufficient conditions on the existence of a feasible schedule. We
prove this by constructing a feasible schedule below. Suppose that
for a given T , the conditions (1)-(4), (6) are satisfied. Further, let
xi, j,t be a feasible solution that satisfies the conditions. We note
that based on our system model, a feasible schedule cannot have
multiple machines processing the same job at the same time, and
each machine can process only one job at a time.

We can represent the information in xi, j,t by a set of non-
negative matrices Xt of size m × n (for each t), where (Xt)i, j is
xi, j,t . From our model, matching constraints (that any machine can
process at most one job at a time, and any job can be processed by
at most one machine at a time) require that jobs to be processed
simultaneously cannot locate on the same row or on the same
column of matrix Xt . Therefore, a decomposition of Xt to pseudo-
permutation matrices (i.e., non-negative matrices having at most
one positive entry each row and each column) is needed. Note
that by (2)-(3), the row sum and column sum of matrix Xt is less
than or equal to 1. We want to find dt

1, · · · , dt
lt ≥ 0,

∑lt
i=1 dt

i ≤ 1,
and a set of pseudo-permutation matrices {�1, · · · , �lt }, such that
we can decompose the matrix Xt into Xt ≤ ∑lt

i=1 dt
i�i (We de-

note ≤ in matrices as the element-wise inequality). If we find
such a decomposition, we can take dt

i time fraction to process
the job-machine pairs represented in �i simultaneously for the
i-th iteration. Since

∑lt
i=1 di ≤ 1, and by the definition of pseudo-

permutation matrix, we can schedule the jobs from Xt in a unit
time slot satisfying the required matching constraints.

It is easy to see that such a problem is similar to Birkhoff-von
Neumann decomposition. Note that by Birkhoff–von Neumann the-
orem [4], the class of r × r doubly stochastic matrices (defined as
non-negative square matrices whose rows and columns sums to 1)
is a convex polytope. For any r × r doubly stochastic matrix M ,
there exists θ1, · · · , θk ≥ 0,

∑k
i=1 θi = 1 and a set of permutation

matrices {�1, · · · , �k} such that M = ∑k
i=1 θi�i .

Note that Xt may have row sum or column sum less than
one, and Xt may not be a square matrix. Thus, Birkhoff-von Neu-
mann decomposition cannot be applied directly. We note that a
non-square matrix cannot be doubly stochastic, limiting the di-
rect use of Birkhoff-von Neumann decomposition. The proposed
decomposition algorithm is summarized in Algorithm 1. In line 3,
we augment Xt to a square matrix X̂t with size r × r, where r is
the maximum of m and n. We let the entries on the first m rows
and n columns of X̂t to be the same as the entries in Xt , and let
the rest of the entries be zero.

Since (2)-(3) guarantee that both the row sum and column sum
of matrix Xt are less or equal to 1, we use a while loop in line
4-7 to modify X̂t into a square matrix with each row sum and
column sum equals to one. We achieve the goal by finding out the
entry in the location with smallest row sum and column sum in
each iteration. After each search, we add a number to the entry to
make sure that at least one of its row sum or column sum reaches
1, and both modified sums are no greater than 1. Since we turn at
least one row (or column) to reach a sum of 1 each time, and keep

V. Aggarwal, T. Lan and D. Peddireddy Journal of Parallel and Distributed Computing 157 (2021) 280–286
all row sums and column sums less or equal to 1, we can modify
X̂t to a square matrix with each row sum and column sum equals
to one on convergence.

In lines 8-18, we build up a sequence of sets At
e : e = 1, · · · , lt

to show the scheduling detail within time slot t . Each set contains
the time fraction dt

e planned to take for each job jk assigned on
each machine iq . We construct the sets At

e : e = 1, · · · , lt by de-
composing X̂t into a set of permutation matrices. By definition, a
permutation matrix is a square binary matrix that has exactly one
entry of 1 in each row and each column and 0s elsewhere. Each
permutation matrix can be interpreted as an assignment of jobs if
we only focus on its upper left m ×n submatrix. For e-th iteration,
we find the permutation matrices by building up corresponding
bipartite graphs I ∪ J to find perfect matchings. If X̂t has posi-
tive entry (X̂t)i, j , we add an edge (i, j) : i ∈ I, j ∈J with capacity
1 to the bipartite graph. Every time we find a perfect matching,
we denote the smallest time fraction (X̂t)i, j as dt

e , add the corre-
sponding (i, j) pairs (only for i = 1, · · · , m and j = 1, · · · , n) and
time fraction dt

e to At
e . After that, we update X̂t by deducting dt

e

to the corresponding entries in X̂t . We note that lines 8-18 fol-
low the Birkhoff-von Neumann decomposition, since we obtain a
square matrix which is decomposed into a convex combination of
permutation matrices. It can be seen that at least one entry of X̂t

is changed to 0 after lines 13-15, so the loop presented in lines
9-18 terminates after a maximum of O ((max(m, n))2) iterations.

Note that we have modified Xt to X̂t in line 3-7 by adding
entries and expanding the size, thus the actual fraction of time
used is less than or equal to that given by the algorithm. Thus, the
actual algorithm will use no larger fraction of time as compared to
that given by the decomposition.

Algorithm 1 Scheduling within time slot t .
1: Input: A m × n matrix Xt where (Xt)i, j is xi, j,t .
2: Output: A list of assignments {At

e : e = 1, 2, · · · , lt } with data size {dt
e : e =

1, 2, · · · , lt } to be scheduled in turn within time slot t .
3: Denote r = max{m, n}. Let X̂t be a r × r matrix where (X̂t)i, j = Xt

i, j for all i ∈ I ,
and for all j ∈J , and let (X̂t)i, j = 0 elsewhere.

4: while min{min j{∑r
i=1(X̂t)i, j, mini{∑r

j=1(X̂t)i, j}} < 1 do

5: Let i∗ = arg mini
∑r

j=1(X̂t)i, j , and j∗ = arg min j
∑r

i=1(X̂t)i, j

6: Update (X̂t)i∗, j∗ = (X̂t)i∗, j∗ + min{1 − ∑r
j=1(X̂t)i∗, j , 1 − ∑r

i=1(X̂t)i, j∗ }.
7: end while
8: Let e denotes the iteration number. Initialize e = 1.
9: while X̂t has non zero element do

10: Build a bipartite graph G = (I, J , E) where (i, j) ∈ E if (X̂t)i, j > 0. We as-
sign capacity 1 to each edge.

11: Find the maximum matching (perfect matching) in graph G . Without loss of
generality, suppose the maximum matching contains (i1, j1), · · · , (ir , jr).

12: dt
e = min{(X̂t)i1, j1 , · · · , (X̂t)ir , jr }.

13: for q = 1 to r do
14: Update (X̂t)iq , jq = (X̂t)iq , jq − dt

e .
15: end for
16: Update e = e + 1.
17: At

e = {(ik, jk) : k ∈ {1, · · · , r}, ik ∈ I, jk ∈ J }
18: end while
19: lt = e
20: for e = 1 to lt do
21: For (ik, jk) ∈ At

e assign time fraction de of job jk to machine ik simultane-
ously, if the size left for job jk is less than de , finish what is left.

22: end for

By the properties of Birkhoff-von Neumann decomposition from
Theorem 1 in [4], we have the following lemma.

Lemma 1. For the dt
e obtained as the result of Algorithm 1,

∑lt
e=1 dt

e = 1
for any time slot t. Further, the Algorithm 1 is a O (max{m, n}4.5) algo-
rithm.

Proof. We first show that the augmentation of matrix X given by
the lines 3-7 of Algorithm 1 results in a doubly stochastic matrix.
283
At the end of the while loop, we note that all the row and column
sums will be 1. So, the only possibility for the augmented matrix
to not be a doubly stochastic matrix is if the loop never terminates.
If the augmented matrix is not doubly stochastic, there is at least
a row as well as a column which does not sum to 1. Thus, we can
augment the corresponding element on the said row and column
to make the higher of the sums as 1. Since in each run, at least one
of the row or the column sums becomes 1, the while loop runs at
most 2 × max(m, n) times. Thus, the while loop runs finitely many
times and will result in a doubly stochastic matrix. Further, we
can see that the arg-min in line 5 takes O (max{m, n}) time. So,
the overall complexity for augmentation is O (max{m, n}2).

Having shown that the augmentation results in a doubly
stochastic matrix, the rest of the proof is based on the well-known
Birkhoff-von Neumann theorem [13], which states that any r × r
doubly stochastic matrix is a convex hull of the set of r × r per-
mutation matrices. Thus, for any r × r doubly stochastic matrices
M , there exist θ1, · · · , θk ≥ 0,

∑k
i=1 θi = 1 and a set of permutation

matrices {�1, · · · , �k} such that M = ∑k
i=1 θi�i . Since, lines 8-18

of Algorithm 1 follow Birkhoff-von Neumann decomposition of the
augmented matrix with dt

e being the coefficients of decomposition, ∑lt
e=1 dt

e = 1 for all t .
To understand the Birkhoff-von Neumann decomposition result,

it can be seen that the loop (line 9) terminates when all the en-
tries of the matrix X̂t are 0 resulting in row and column sums
being 0 after lt iterations. Following the lines 13-15 of Algorithm 1,
we note that sum of each row and column is decreased by dt

e at
each iteration e. Given that X̂t is a doubly stochastic matrix, it
follows that

∑lt
e=1 dt

e = 1. The complexity of the Birkhoff-von Neu-
mann decomposition is O (max{m, n}4.5), by mapping the matching
problem to the maximum flow problem. The details of this com-
plexity can also be seen in [5]. �

Similar statements can be found in Theorem 1 of [13], The-
orem 4.3 of [19], Fact 2 of [16], and Lemma 4 of [18]. Due to
augmentation and the addition of values in the terms (lines 3-7,
Algorithm 1), the actual fraction of time taken in any machine will
be at most 1, thus guaranteeing that the schedule can be com-
pleted within a timeslot.

3.4. Algorithm for verifying sufficient conditions

In this subsection, we give a polynomial time oracle D(T) to
decide whether or not there exists a feasible solution satisfying
(1)-(4), (6) for a given T . In order to do that, we form a linear pro-
gram called LP-FeasibilityChecking, whose solution will determine
whether the conditions are feasible or not.

Definition 2. For any T , we define the following linear optimiza-
tion as LP-FeasibilityChecking.

min
n∑

j=1

y j (7)

s.t.
n∑

j=1

xi, j,t ≤ 1, ∀i ∈ {1, · · · ,m}, ∀t ∈ {1, · · · , T }; (8)

m∑
i=1

xi, j,t ≤ 1 ∀ j ∈ {1, · · · ,n}, ∀t ∈ {1, · · · , T }; (9)

1

p j′

m∑
i=1

t∑
s=0

xi, j′,s vi, j′ ≤ 1

p j

m∑
i=1

t−1∑
s=0

xi, j,s vi, j

∀ j ≺ j′, ∀t ∈ {1, · · · , T } (10)

V. Aggarwal, T. Lan and D. Peddireddy Journal of Parallel and Distributed Computing 157 (2021) 280–286
T∑
t=1

m∑
i=1

xi, j,t vi, j + y j = p j, ∀ j ∈ {1, · · · ,n}, (11)

y j ≥ 0, ∀ j ∈ {1, · · · ,n} (12)

xi, j,t ≥ 0, ∀i ∈ {1, · · · ,m}, ∀ j ∈ {1, · · · ,n},
∀t ∈ {1, · · · , T } (13)

For any T , the above constraints (8)-(13) are always feasible -
since all xi, j,t = 0 and y j = p j is a solution. We solve the linear
programming problem with T and consider the optimal value for
a given T .

Definition 3. For any given T , we define f (T) as the optimal ∑n
j=1 y j achieved by solving the linear optimization problem

(7)-(13).

If f (T) = 0, then the constraints (8)-(13) have {xi, j,t} that can
be satisfied with y j = 0. In other words, {xi, j,t} is a solution for the
feasibility problem (1)-(4), and (6). If f (T) > 0, then the problem
((1)-(4), (6)) has no feasibility. Thus, we obtain the following result.

Lemma 2. We have f (T) = 0 if and only if (1)-(4) and (6) have a feasible
solution with parameter T .

Proof. Note that for any fixed T , (1)-(3) and (6) are the same as
(8)-(10), and (13). If (7)-(13) has an optimal solution with value 0,
by (12), y j = 0 : j = 1, · · · , n. Therefore (11) is equivalent to (4). In
other words, if {x j,i,t : t = 1, · · · , T } is a solution to (7)-(13) with
zero optimal value, it also satisfies (1)-(4), (6), with parameter T .

Similarly, if {xi, j,t} satisfies (1)-(4), (6), {xi, j,t} is a solution for
(7)-(13) with optimal value 0. Since zero valued objective is fea-
sible and is lowest possible due to (12), zero will be the optimal
solution. �
3.5. Proposed algorithm

In this section, we provide Algorithm 2 for the overall schedul-
ing. We assume f (0) �= 0. In lines 4-13, we use binary search to
find the minimum makespan with the help of our defined linear
programming problem. A simple feasible scheduling is to assign
all jobs to a single machine according to a topological ordering
based on their precedence-DAG. The makespan for the scheduling
is upper bounded by 	∑ j p j/ mini, j{vi, j}
. Therefore, the optimal
makespan is at most 	∑ j p j/ mini, j{vi, j}
. Note that if f (T1) = 0,
then f (T2) = 0 for any T2 ≥ T1 by keeping all of the decision vari-
ables the same and setting additional variables equal to zero. Based
on our definition of polynomial time oracle based on f (T), we
find a minimum makespan by binary search starting from inter-
val [0, 	∑ j p j/ mini, j{vi, j}
]. The interval length is decreased to
half of its previous length. If the intermediate point is feasible, we
take the left interval, else take the right interval. Once the interval
shrinks to length 1, we obtain the optimal choice of T for which a
schedule will be generated.

In line 14, we use the makespan T achieved by the binary
search above to solve the Linear Programming Problem (LP-T) de-
fined by (7)-(13). The optimal solution of LP-T, {xi, j,t : t = 1, · · · , T }
make up the matrices Xt which provide a scheduling outline (time
fraction to process each job on each machine within a time slot).
Lines 15-17 provide a detailed schedule within each time slot us-
ing Algorithm 1. At the end of the cycle, we get a sequence of
sets {At

e : t = 1, · · · , T , e = 1, · · · , lt} by decomposing the Xt into
a convex combination of permutation matrices. The coefficients of
decomposition represent the fraction of time within the time slot
t and the permutation matrices represent the job-machine pair to
284
be processed in the time fraction. For the overall scheduling, we
process these sets in the increasing order of e for all time slots.

Algorithm 2 Overall Scheduling Algorithm.
1: Input: n jobs with sizes p j for j ∈ {1, · · · , n}, m machines with velocity vi, j for

machine i ∈ {1, · · · , m}, job j ∈ {1, · · · , n}.
2: Output: Makespan T , and a list of assignments {At

e : p = 1, 2, · · · , lt , t} with
data size {dt

e : e = 1, 2, · · · , lt , t} to be scheduled in turn within each time slot
t = 1, · · · , T .

3: Let T L = 	∑ j p j/ mini, j{vi, j}

4: Binary Search for makespan T : Initialize a = 0, b = T L .
5: while b − a > 1 do
6: Let T =	(a + b)/2
, solve LP-T and find the value of f ((a + b)/2
)
7: if f ((a + b)/2
) = 0 then
8: b = 	(a + b)/2

9: else

10: a = (a + b)/2�
11: end if
12: end while
13: T = b
14: Feasible Scheduling: Solve LP-T, and suppose the optimal solution is xi, j,t : for

all i ∈ I, j ∈ J , and t = 1, · · · , T .
15: for t = 1 to T do
16: Use Algorithm 1 to schedule jobs assigned within time slot t
17: end for

The following theorem shows the feasibility that if the suffi-
cient conditions are satisfied for a makespan of T , the proposed
algorithm achieves a makespan of T .

Lemma 3. If the sufficient conditions are satisfied, with T as the
makespan, the total makespan achieved by Algorithm 2 does not exceed
T .

Proof. Note that X̂t is augmented from Xt , namely each element
of X̂t is greater or equal to the one in Xt . Within any time slot
t , we assign at most dt

e time fraction from job jk to machine ik
simultaneously for iteration e, the processing time for job assigned
on any time slot is less than or equal to 1 (from Lemma 1). Adding
the processing time for all time slots, we conclude that the total
completion time does not exceed T . �

For time complexity, note that linear programming problems
are solvable in polynomial time, (The runtime of using Karmarkar’s
algorithm is O ((mnT)3.5(mnT)2 · log(mnT) · log log(mnT))) [2].
Thus, finding solution for f (T) is polynomial time. The number of
times that the binary search is used is O (log(

∑
j p j/ mini, j{vi, j})).

Let T in line 13 be denoted as T0. By Lemma 1, the time com-
plexity of scheduling jobs within one time slot is O (max{m, n}4.5),
the complexity of scheduling on T0 time slots in lines 14-17 is
O (max{m, n}4.5T0). Since T in each binary search loop is O (T L)

and so is T0, and T L = O (
∑

j p j/ mini, j{vi, j}), we have the follow-
ing result.

Lemma 4. Algorithm 2 has a complexity of O (poly(max(m, n),
∑

j p j/

mini, j{vi, j})).

4. Approximation guarantee

We note that the constraints (1)-(5) establish necessary condi-
tions and the constraints (1)-(4), (6) establish sufficient conditions
for the existence of a feasible schedule. Given Lemma 3, we know
that with the feasible conditions being satisfied for a given T , we
can find an algorithm with a makespan of T . To prove the approxi-
mation bound of our proposed algorithm, in the following Lemma,
we characterize the gap in the number of time-slots taken by the
optimal algorithm as compared to that taken by the proposed al-
gorithm.

V. Aggarwal, T. Lan and D. Peddireddy Journal of Parallel and Distributed Computing 157 (2021) 280–286
Lemma 5. Suppose P is the number of jobs in precedence-DAG. Suppose
the optimal makespan is T1 . Then, the makespan of the proposed algo-
rithm is at-most T1 + P .

Proof. We note that since T1 is the makespan for the optimal
schedule, the corresponding schedule satisfies (1)-(5) with T = T1.
Let {xi, j,t : t = 1, · · · , T1} be the above optimal schedule.

By the topological ordering of the precedence-DAG, suppose
job j is the σ(j)-th job in the sequence. We modify {xi, j,t : t =
1, · · · , T1} to {x̃i, j,t : t = 1, · · · , T1 + P } as the following:

x̃i, j,t =

⎧⎪⎨
⎪⎩

0, t = 1, · · · ,σ (j),

xi, j,t−σ (j)+1, t = σ(j), · · · , T1 + σ(j),

0, t = T1 + σ(j), · · · , T1 + P .

{x̃i, j,t : t = 1, · · · , T1 + P } definitely satisfies (1)-(4), and (6) with
parameter T = T1 + P . �

Note that the difference between (5) and (6) is one time unit
in the summation for each precedence constraint. If we change the
size of a time slot unit, we can make the ratio (T + P)/T arbitrarily
close to 1. Thus, we have the following result.

Theorem 1. Algorithm 2 provides a feasible scheduling having 1 + ε ap-
proximation rate for any ε > 0, with a complexity of O (poly(1/ε)).

Proof. We note that the ratio gap between the optimal makespan
and the makespan for the proposed feasible solution can be re-
duced to be arbitrarily close to 1 by expanding the number of
time-slots. Further, when sufficient conditions are satisfied for any
T , there is a feasible solution achieving makespan T . For the com-
putational complexity, the loop for binary search runs O (log(1/ε))

times since the number of time-slots are O (1/ε). Solving the linear
optimization for verifying the feasibility is O (poly(1/ε)), which
proves the result as in the statement of the theorem. �
5. Numerical results

In order to see the performance of fractional precedence con-
straints, we compare the approach with two baselines; a policy
assuming strict precedence constraints over full jobs and fractional
jobs. In this case of fractional jobs, we break down each job into d
equal fractions and strict precedence constraints are assumed over
the fractions i.e. if j ≺ j′ , the number of completed (processed)
fractions of job j must be greater than that of job j′ . This will
numerically demonstrate the advantage of using fractional prece-
dence constraints over strict precedence constraints in scheduling
problems. We note that for the strict precedence constraints, it has
been shown that the scheduling is hard to approximate within a
factor of 2 − ε for any ε > 0, even for identical machines [20].
Thus, there are no known efficient solutions for scheduling prob-
lems with strict precedence constraints, and thus we implement a
heuristic strategy for the baselines.

The comparable strategy assigns the incomplete jobs with the
least processing time (LPT) on the next available machine. The LPT
rule orders the jobs in the order of increasing processing times.
Whenever a machine is freed, the shortest job ready at the time
will begin processing. This algorithm mainly adapts the least pro-
cessing time with precedence constraints and is described in Algo-
rithm 3.

In lines 4-9, we select the first job on the topologically ordered
list of all the incomplete jobs and assign it to the available machine
with the shortest processing time. In lines 10-14, we iterate over
the rest of the incomplete jobs without any precedence constraints
285
Algorithm 3 A heuristic preemptive scheduling algorithm.
1: Input: n jobs with precedence constraints, represented by a graph G = (V , E),

where |V | = n. If (j1, j2) ∈ E , the two jobs j1 and j2 has a precedence con-
straint j1 ≺ j2.

2: Output: A feasible, preemptive scheduling under strict precedence constraints.
3: while There exists at least one incomplete job do
4: List all of the incomplete jobs (we only consider the incomplete part of jobs

as the whole jobs from now on).
5: Label the k incomplete jobs with topological ordering and denote the list as

σ(1), · · · , σ(k).
6: Label all of the machines as available. Label all of the jobs in the list as uns-

elected.
7: Select the machine having least processing time of job σ(1). Label the se-

lected machine as unavailable, and label σ(1) as selected.
8: Denote t as the time needed for σ(1) to be completed on the selected ma-

chine.
9: Assign job σ(1) on the machine for time t .

10: for j = 2, · · · , k do
11: if There is no (σ (1), σ(j)) ∈ E , for all job selected then
12: Select the available machine having least processing time of job σ(j).

Label the selected machine as unavailable, and label σ(j) as selected.
13: end if
14: end for
15: end while

Fig. 1. Makespan as a function of connectivity in the job graph.

with the first job and assign them to available machines based on
their least processing times.

We assume that there are 30 jobs to be processed on eight ma-
chines. The processing task size of each job is taken uniform in
(0, 10), and the velocities of the machines are assumed to be uni-
form in (0, 1). Once the task sizes and the velocities are generated,
they are kept fixed for the experiment. To model the constraints
between the jobs, we assume that the graph is formed as a ran-
dom graph, where any two jobs are connected with probability p.
Further, the jobs are assumed to be ordered from 1 to 30, and the
direction is from the lower numbered job to the higher numbered
job indicating that the higher numbered job needs the lower num-
bered job to be finished if there is a connection between them.
This is done to avoid cyclic characteristics in the generated job
graph.

Fig. 1 shows the improved makespan for the proposed fractional
precedence constraint algorithm and compares it to the processing
time that is resulted from existing heuristic scheduling algorithms
under strict precedence constraints over full jobs [20] and frac-
tional jobs. It can be observed that the proposed algorithm per-
forms significantly better than the heuristic algorithms. However
the gap in performance is reduced as the number of fractions d
increases. Despite the performance, it should be noted that the
heuristic algorithms do not provide any formal notions of conver-
gence guarantees. We also note that as p increases (i.e., when jobs
have higher precedence dependence), the proposed approach does

V. Aggarwal, T. Lan and D. Peddireddy Journal of Parallel and Distributed Computing 157 (2021) 280–286
not result in a large increase of makespan since the proposed al-
gorithm taking into account fractional precedence constraints can
efficiently schedule the jobs and eliminate server idle times, while
this is not the case with the strict precedence algorithm where the
makespan increases significantly with p.

6. Conclusions

This paper formalizes the notion of fractional precedence con-
straints, where the progress of follower jobs has to lag behind
lead jobs. Approximation algorithms are developed to solve the
preemptive scheduling problem under fractional precedence con-
straints on unrelated machines, with an objective of minimiz-
ing makespan. The proposed algorithm achieves an approximation
bound of 1 + ε , for any ε > 0, and is thus approximately opti-
mal. This paper gives novel results for minimizing makespan with
the fractional precedence constraints assuming certain ideal condi-
tions such as ignoring some realistic constraints on data migration.
Extending the proposed model and algorithm with such practi-
cal considerations is an open problem and will be considered in
our future work. There has been limited literature on the approxi-
mate algorithms for weighted completion time objective with gen-
eral fractional precedence constraints. Considering the objective of
weighted completion time would be an interesting open problem.

CRediT authorship contribution statement

Vaneet Aggarwal: Formal analysis; Funding acquisition; Inves-
tigation; Methodology; Project administration; Writing – original
draft; Writing – review & editing. Tian Lan: Problem discussion;
Project administration; Writing – review & editing. Dheeraj Ped-
direddy: Writing – review & editing.

Declaration of competing interest

The authors certify that they have NO affiliations with or in-
volvement in any organization or entity with any financial interest
(such as honoraria; educational grants; participation in speakers’
bureaus; membership, employment, consultancies, stock owner-
ship, or other equity interest; and expert testimony or patent-
licensing arrangements), or non-financial interest (such as personal
or professional relationships, affiliations, knowledge or beliefs) in
the subject matter or materials discussed in this manuscript.

References

[1] Apache Software Foundation, Hadoop, https://hadoop .apache .org.
[2] I. Adler, M.G. Resende, G. Veiga, N. Karmarkar, An implementation of Kar-

markar’s algorithm for linear programming, Math. Program. 44 (1–3) (1989)
297–335.

[3] V. Aggarwal, M. Xu, T. Lan, S. Subramaniam, On the optimality of scheduling
dependent mapreduce tasks on heterogeneous machines, preprint, arXiv:1711.
09964, 2017.

[4] G. Birkhoff, Tres observaciones sobre el algebra lineal, Rev. Univ. Nac. Tucumn,
Ser. A 5 (1946) 147–150.

[5] C.-S. Chang, W.-J. Chen, H.-Y. Huang, On service guarantees for input-buffered
crossbar switches: a capacity decomposition approach by Birkhoff and von
Neumann, in: 1999 Seventh International Workshop on Quality of Service,
IWQoS’99 (Cat. No. 98EX354), IEEE, 1999, pp. 79–86.

[6] F.A. Chudak, D.B. Shmoys, Approximation algorithms for precedence-
constrained scheduling problems on parallel machines that run at different
speeds, J. Algorithms 30 (2) (1999) 323–343.

[7] E. Coffman Jr, M. Garey, Proof of the 4/3 conjecture for preemptive versus
nonpreemptive two-processor scheduling, Report Bell Laboratories, Murray Hill
166, 1991.
286
[8] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[9] K. Djellab, Scheduling preemptive jobs with precedence constraints on parallel
machines, Eur. J. Oper. Res. 117 (2) (1999) 355–367.

[10] M. Drozdowski, Scheduling for Parallel Processing, Springer, 2009.
[11] J. Han, R. Sadykov, F. Vanderbeck, Parallel machine scheduling with general-

ized precedence relations, in: Multidisciplinary International Scheduling Con-
ference: Theory & Applications, 2013.

[12] K. Jansen, R. Solis-Oba, Approximation algorithms for scheduling jobs with
chain precedence constraints, in: International Conference on Parallel Process-
ing and Applied Mathematics, Springer, 2003, pp. 105–112.

[13] E.L. Lawler, J. Labetoulle, On preemptive scheduling of unrelated parallel pro-
cessors by linear programming, J. ACM 25 (4) (1978) 612–619.

[14] S. Li, Scheduling to minimize total weighted completion time via time-indexed
linear programming relaxations, preprint, arXiv:1707.08039, 2017.

[15] K. Makarychev, D. Panigrahi, Precedence-constrained scheduling of malleable
jobs with preemption, in: International Colloquium on Automata, Languages,
and Programming, Springer, 2014, pp. 823–834.

[16] M.J. Neely, E. Modiano, Y.-S. Cheng, Logarithmic delay for n ×n packet switches
under the crossbar constraint, IEEE/ACM Trans. Netw. 15 (3) (2007) 657–668.

[17] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer, 2016.
[18] Z. Qiu, C. Stein, Y. Zhong, Minimizing the total weighted completion time of

coflows in datacenter networks, in: Proceedings of the 27th ACM Symposium
on Parallelism in Algorithms and Architectures, ACM, 2015, pp. 294–303.

[19] D. Shah, J.N. Tsitsiklis, Y. Zhong, On queue-size scaling for input-queued
switches, Stoch. Syst. 6 (1) (2016) 1–25.

[20] O. Svensson, Conditional hardness of precedence constrained scheduling on
identical machines, in: Proceedings of the Forty-Second ACM Symposium on
Theory of Computing, 2010, pp. 745–754.

Vaneet Aggarwal received the BTech degree from
the Indian Institute of Technology Kanpur, Kanpur,
India, in 2005 and the MA and PhD degrees from
Princeton University, Princeton, NJ, USA, in 2007 and
2010, respectively, all in Electrical Engineering. He is
currently an Associate Professor in the School of In-
dustrial Engineering, and the School of Electrical and
Computer Engineering at Purdue University. Prior to
that, he was a Senior Member of the Technical Staff

- Research for five years with AT&T Labs Research, Bedminster, NJ, USA.
Dr. Aggarwal has been an adjunct faculty at Columbia University for two
years. His research interests are in the applications of statistical, algebraic
and optimization techniques to wireless systems, machine learning, and
distributed storage systems. Dr. Aggarwal received the Princeton Univer-
sity’s Porter Ogden Jacobus Honorific Fellowship in 2009 and IEEE Jack
Neubauer Memorial Award in 2017. He is currently an Associate Editor
for IEEE Transactions on Communications, and IEEE Transactions on Green
Communications and Networking.

Tian Lan is an associate professor in the Depart-
ment of Electrical and Computer Engineering at the
George Washington University, which I joined in 2010.
I received my Ph.D. from the Department of Electrical
Engineering at the Princeton University in 2010, M.S.
from the Department of Electrical and Computer En-
gineering at the University of Toronto in 2005, and
B.A.Sc. in Electrical Engineering from the Tsinghua
University in 2003. My research areas include network

optimization and algorithms, cyber security, network protocols, cloud and
edge (fog) computing, distributed storage, and wireless networks.

Dheeraj Peddireddy is a PhD student in the School
of IE at Purdue University. His research interests are in
machine learning and distributed computing.

https://hadoop.apache.org
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibA6BA3388C6748AE918D9F119249BDDCAs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibA6BA3388C6748AE918D9F119249BDDCAs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibA6BA3388C6748AE918D9F119249BDDCAs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibA1B0422C89589671693A30F2B4C731BCs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibA1B0422C89589671693A30F2B4C731BCs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibA1B0422C89589671693A30F2B4C731BCs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib128D52EC6C6282761EFC12349AC455E9s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib128D52EC6C6282761EFC12349AC455E9s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib50D66897E6C49CB166F86CC5EF3DC098s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib50D66897E6C49CB166F86CC5EF3DC098s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib50D66897E6C49CB166F86CC5EF3DC098s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib50D66897E6C49CB166F86CC5EF3DC098s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibD890B1DEB2F7B98214D1A7EBD6C5D29Es1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibD890B1DEB2F7B98214D1A7EBD6C5D29Es1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibD890B1DEB2F7B98214D1A7EBD6C5D29Es1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib0AEB4726D199B2AD34E9000BC7E34ABEs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib0AEB4726D199B2AD34E9000BC7E34ABEs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib0AEB4726D199B2AD34E9000BC7E34ABEs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib28876D780338AA63E7BC91BCB9F3EC9Es1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib28876D780338AA63E7BC91BCB9F3EC9Es1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibFE9B83F16CD4B294590CAC9E81E34A79s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibFE9B83F16CD4B294590CAC9E81E34A79s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibD27ACEB9FB2D79CEDDB5040833E605DFs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib1E8FB307AE2A6904A2A880EE5E41A78Cs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib1E8FB307AE2A6904A2A880EE5E41A78Cs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib1E8FB307AE2A6904A2A880EE5E41A78Cs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibECB7C240ABF55675715AB5029EE057F4s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibECB7C240ABF55675715AB5029EE057F4s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibECB7C240ABF55675715AB5029EE057F4s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib7D5EEA46148923AFBD4D2B5FE234F434s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib7D5EEA46148923AFBD4D2B5FE234F434s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib9C964F899AE3133C986C454EF65B1D60s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib9C964F899AE3133C986C454EF65B1D60s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib5B8464ADBB63C886DF4A21CC56D2DFDFs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib5B8464ADBB63C886DF4A21CC56D2DFDFs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib5B8464ADBB63C886DF4A21CC56D2DFDFs1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib09A7EF7DEB87EECB738A65A6DADC989Es1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib09A7EF7DEB87EECB738A65A6DADC989Es1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibD8FB8E297F23A91F8E82C4C620646715s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib500D5C78671602B055C509825047F7B2s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib500D5C78671602B055C509825047F7B2s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib500D5C78671602B055C509825047F7B2s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibF7569B0B3A6DC05F69BB2CC9BABDDFB7s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bibF7569B0B3A6DC05F69BB2CC9BABDDFB7s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib902C9D49DCF5FE662F6D64BB5E5FD368s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib902C9D49DCF5FE662F6D64BB5E5FD368s1
http://refhub.elsevier.com/S0743-7315(21)00156-8/bib902C9D49DCF5FE662F6D64BB5E5FD368s1

	Preemptive scheduling on unrelated machines with fractional precedence constraints
	1 Introduction
	2 Problem formulation
	3 Proposed algorithm
	3.1 Necessary conditions
	3.2 Sufficient conditions
	3.3 Proof of sufficiency
	3.4 Algorithm for verifying sufficient conditions
	3.5 Proposed algorithm

	4 Approximation guarantee
	5 Numerical results
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References

