Exploring Effective Fuzzing Strategies to Analyze
Communication Protocols

ABSTRACT

In recent years, coverage-based greybox fuzzing has become pop-
ular forvulnerability detection due to its simplicity and efficiency.
However, it is less powerful when applied directly to protocol
fuzzing due to the unique challenges involved in fuzzing communi-
cation protocols. In particular, the communication among multiple
ends contains more than one packet, which are not necessarily
dependent upon each other, i.e., fuzzing single (usually the first)
packet can only achieve extremely limited code coverage. In this
paper, we study such challenges and demonstrate the limitation
of current non-stateful greybox fuzzer. In order to achieve higher
code coverage, we design stateful protocol fuzzing strategies for
communication protocols to explore the code related to different
protocol states. Our approach contains a state switching engine, to-
gether with a multi-state forkserver to consistently and flexibly fuzz
different states of an compiler-instrumented protocol program. Our
experimental results on OpenSSL show that our approach achieves
an improvement of 73% more code coverage and 2X unique crashes
when comparing against fuzzing the first packet during a protocol
handshake.
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1 INTRODUCTION

Vulnerabilities in network protocols (such as Heartbleed in OpenSSL
and Remote Code Execution in SNMP) are among the most devas-
tating security problems since their exploitation typically exposes
hundreds of thousands of networked devices to catastrophic risk.
Efforts have been made toward developing automatic and scal-
able techniques to detect vulnerabilities in large protocol codebase.
In particular, fuzzing has gained increasing popularity due to its
simplicity and efficiency in practice, as compared to other testing
techniques such as symbolic/concolic executions.

Existing protocol fuzzers can be broadly categorized into three
classes: whitebox, blackbox and greybox fuzzers. 1) A whitebox or
blackbox protocol fuzzer is typically part of the communication
chain by either directly mimicking a client/server in the protocol
or acting as a Man-In-The-Middle (MITM) proxy. It generates/in-
tercepts packets among multiple network entities, mutates and
relays them. A whitebox fuzzer assumes that the specifications
of the protocol is known while a blackbox fuzzer reverse engi-
neers the protocol by packet/program analysis. 2) The greybox
fuzzer works together with a proper testing program (TP) provided
for the network protocol. It feeds the mutated inputs to the TP,

Figure 1: Fuzzing a four-packet-flight communication proto-
col: Different packets/fields are independent, e.g., each vari-
ation of packet p2 may lead to a different subsequent packet
p3, p4. The bug can only be triggered when following the ex-
act sequence pl’ — p2’ — p3’ — p4’, driving the protocol to
progressively traverse the corresponding states and eventu-
ally reach the bug.

which is responsible for executing the protocol, while the fuzzer
stays out of the communication between clients and servers. For
example, OpenSSL has several “official” testing programs [22] for
LibFuzzer [25] and AFL [33].

Limitations: Despite recent progress on fuzzing tools, a number
of fundamental limitations still exist. While both whitebox fuzzers
(such as [1, 24]) and blackbox fuzzers (such as [3, 12, 15]) perform
“blind” fuzzing and fail to leverage some useful program execution
information, the blackbox fuzzers particularly suffer from the inac-
curacy of protocol reverse engineering. Greybox fuzzers [5, 6, 16,
19, 25, 28, 29, 31, 33] usually need a well-constructed TP with in-
put interface to perform mutation and execution. Popular greybox
fuzzers such as AFL can only fuzz the first packet by default.

Challenges: Protocol fuzzing possesses the following unique
challenges. 1) Communication protocols are typically implemented
through state machines on servers/clients with state transitions
driven by critical protocol events such as packet/message exchange.
Although proxies can be employed to mutate and fuzz packets on
the fly [4], the fuzzing is often not stateful and lacks the ability
to drive protocol to a specific state of interest, trap it in the state,
and keep replaying and fuzzing it (e.g., with different packet in-
puts). Stateful fuzzing is necessary for communication protocols.
2) A general program takes inputs when being launched, and the
execution status depends solely on the inputs (excluding irrelevant
factors such as system status and user interruptions). However, in
protocols, there are multiple rounds of message flights that contain
both independent and dependent packets/fields. Simply fuzzing one
single packet/field limits achievable code coverage, whereas mutat-
ing packets/fields together may lead to inconsistent (and invalid)
message flights. Protocol fuzzers need to identify the dependence
and adapt its fuzzing strategies accordingly.

We illustrate the inefficiency of stateless and individual-packet
fuzzing in Fig. 1. The example involves four packets in a complete
round of handshake, and the packets are partially interdependent,
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e.g., the response to p1? could be p22 or p2° and so on. The buggy
code is only executed when the packet sequence exactly follows
pl" — p2’ — p3’ — p4’. Simply fuzzing the first packet could
help us discover p1’. However, a single execution with p1’ may
not always trigger response p2’ and subsequent p3’, p4’, while
continuing to mutate the first packet can only generate different
variations of p1’, getting us no closer to p2’. On the other hand, if the
fuzzer starts fuzzing from p2 given a random p1 (say, p1?), the bug
will not be triggered either. Therefore, a protocol fuzzer needs have
the ability to trap the protocol execution inside a state right after p1”
and to keep replaying and fuzzing the state repeatedly. It enables
the protocol fuzzer to move forward in a progressive manner - by
moving into (and focusing on) a new state after finding p2’, and
then p3’, p4’ - and eventually finding the bug more efficiently.

Our proposal: A protocol fuzzer needs to be stateful. To achieve
maximum code coverage and fuzzing depth, it should be able to
identify, replicate, and switch between different protocol states
while maintaining execution consistency. In this paper, we propose
a progressive fuzzer for stateful communication protocols. In par-
ticular, our approach consists a stateful fuzzer and an instrumented
testing program (TP). The stateful fuzzer builds multiple fuzzing
states across the TP execution and identifies the corresponding
fuzzing targets (i.e., packets and fields) for different fuzzing states.
It then chooses when to replicate protocol states, progress (move
forward to the next fuzzing state), and regress (roll back to the
previous fuzzing state), based on the fuzzing yield achieved on the
fly. For example, in Fig. 1, we will first fuzz p1 to find p1’, then save
the execution state (by forking) to continue fuzzing p2 given p1’,
and continue the same process for p3’ and p4’. The fuzzing state
may move forward and backward several times during progression
and regression to identify the sweet spot for highest fuzzing yield,
until the fuzzer can no longer find interesting testcases.

In summary, this work makes the following contributions.

e We propose a novel framework for stateful protocol fuzzing.
It consists of a stateful fuzzer and an instrumented TP, which
work in concert to identify, replicate, and switch between
different protocol states while maintaining execution consis-
tency during fuzzing.

e We enable flexible power schedules! to fully capitalize the po-
tential of our fuzzer design. In this paper, we implement and
evaluate a new power schedule that continuously focuses
on fuzzing the (current) most rewarding protocol states.

e Our experimental results of fuzzing the OpenSSL library
show that we are able to achieve 1.73X code coverage and
discover 3X unique crashes (on average) compared with the
default AFL.

2 BACKGROUND

AFL [33] is a popular coverage-guided greybox fuzzer. It maintains
a queue for the file paths of the testcases. Starting from the seed
testcase provided by the user, AFL will select one testcase at a
time, map the file from disk to a memory buffer for mutation. Each
testcase will go through multiple rounds of mutation with various
mutation operations (such as bit flips, additions, replacement and

! The power schedule is the policy of assigning time to each testcase. In our approach,
power schedule also denotes the time spent on each protocol state.
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Figure 2: Simplified AFL forking workflow. FS: forkserver,
TC/TC’: testcase, TP: testing program

so on). After each mutation, the modified buffer will be written
to a file, which will be the input to the TP. Then the fuzzer will
signal TP to execute and wait for the execution to finish to collect
information such as code coverage and exit status.

Instead of blindly generating testcases to the TP, AFL utilizes
compile-time instrumentation to track the basic block transitions
in the TP. Each basic block of TP will have a unique ID and the
pair of two IDs can represent the control flow transitions (called
edges, which we will use throughout the following sections). AFL
stores the occurrence of edges in a 64KB memory (shared between
the fuzzer and TP). For each execution, TP will update the shared
memory about the edges information and the fuzzer will get such
information. If new edges occur or the numbers of edge occurences
change (counts are categorized by value range buckets), the fuzzer
will consider the current testcase as an interesting one. Such test-
cases will be appended to the queue for further mutation. Intuitively,
the testcase that can result in more code coverage will get more
attention and serve as the base for later mutations. (For binary-only
fuzzing, instead of compile time instrumentation, AFL employs
QEMU [2] to perform coverage tracking.)

Forkserver: In order to accelerate the fuzzing process, AFL
develops a forkserver to avoid repeated program initialization [34].
Without the forkserver, the fuzzer would call execve() to run the TP
every time a new testcase is generated. And the TP will have to start
from beginning, e.g., the library initialization and dynamic linking.
Such process could occupy a large ratio of the total execution time.
In fact, it is the part of code after reading the input that can affect the
code coverage in most of the programs, and such repeated program
initializations are redundant. Hence, AFL designs a forkserver to
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Figure 3: System Overview of our Stateful Fuzzer Design. FS:
forkserver, multiQ: queues for storing different types of testcases,
TP: testing program

call execve() only once. The work flow of forkserver is shown in
Fig. 2.

The fuzzer calls fork() to generate the forkserver. The fork-
server will perform some configuration first and then call execve()
to execute the TP. The TP then executes until a function called
__AFL_INIT() (which is placed at TP by users at desired positions
beforehand)?. In __AFL_INIT(), the TP will enter an infinity while
loop. Every time the fuzzer finishes one mutation of the input and
generates a new testcase, it will send a forking signal to the fork-
server to generate a cloned TP that executes the mutated input. The
fork (@ denotes the forking in fuzzer to generate forkserver and the
fork 2 denotes the forking in forkserver to generate the process
that reads inputs and executes as in normal TP. In this way, the
execve() is called only once in forkserver. After that, the forkserver
can simply clone itself from the point where program initialization
is already done.

3 SYSTEM DESIGN

Our approach achieves stateful protocol fuzzing by combining a
stateful fuzzer(Section 3.2) and an instrumented TP(Section 3.1)
as shown in Fig. 3. The fuzzer contains an array of queues and a
multi-state forkserver(FS). Each queue is used to only store the
testcases that belong to the same fuzzing stage. For the example in
Fig. 1, there will be four queues for p1, p2, p3 and p4. The fuzzer
will collect the execution status and code coverage information
after one execution of TP, then decides whether to move forward
(progression) or backward (regression). The corresponding queue
will be chosen based on such decision to store the target testcases.
Meanwhile, the fuzzer also sends such decision to the forkserver.
The forserver will then fork at the right point by moving one step
forward or backward. When the forkserver is ready, it will keep
listening to the fuzzer, waiting for signals to fork and generate a

?The function __AFL_INIT() is visible to users, it is actually a macro that
represents the function __afl manual_init(), which will call the function
__afl_start_forkserver(), where the infinite while loop truly resides. However,
to simply the description, we will use __AFL_INIT() throughout this paper.

new process of TP. We will explain each module separately in the
following subsections.

3.1 Testing program

For better understanding, we first show the changes of the TP for
protocol fuzzing, then explain how the fuzzer and forkserver work
with the TP in following subsections. The difference between a
protocol implementation and a general single-state program is that,
there are multiple “inputs”(packets) across the protocol while there
is one input for single-state programs. As explained in Section 2,
the function __ AFL_INIT() is used to mark the forking point in the
TP so that the forkserver will always clone itself at that position.
In practice, state machines of protocols are implemented in a while
loop, such as in OpenSSL. A simplified SSL client/server model can
also be developed for fuzzing [4], where socket communication is
transformed to file operations®. We unroll the while loop into three
states to better demonstrate the instrumentation of __ AFL_INIT()
as shown in the shadowed area in TP, Fig. 3, but the idea and actual
implementation of our approach are not limited by the number of
states a protocol may have. While the forkserver is only initialized
once in AFL, we conditionally initialize the forkserver multiple
times for different fork points in TP.

3.2 State-aware fuzzer

The state engine passes forking and fuzzing state information to the
forkserver, based on the execution status of TP. It collects protocol
state and code coverage information from TP after each execution,
and in turn, analyze such information to decide the forking state
of forkserver and TP in the next execution. At the core of the state
engine is the data structure multiQ and the methods operate on
it: constructQ, storeQ, destroyQ, switchQ. Each multiQ struct will
store the queue entries with the same type (basically a linked list)
as well as the global variables associated with them for logging and
analysis.

The reason for designing the multiple fuzzing queues is that,
packets in various stages typically have different formats. It is ob-
viously inefficient to uniformly mutate these types of packets to
generate new testcases for whatever state the TP has. And simply
putting all packets into one queue will definitely disrupt the analy-
ses that are only meant for one queue. For general programs, one
queue will suffice as what is done in AFL, because it only needs
to consider a single state of the TP. All the inputs denoted by the
queue entries (no matter what content they contain), will be read
by the TP at exactly the same location during the execution, which
is not the case for protocols.

After each execution of the TP, the fuzzer analyzes the protocol
state, TP exit status as well as code coverage, as denoted by arrow
(® and (©® in Fig. 3. In AFL, there is a 64kB shared memory between
fuzzer and TP to track the code coverage information. Our design
approach also shares the protocol states using the shared memory
and pipes. The protocol state is updated per execution of TP and
once the fuzzer detects new states (or decides to move to the nex-
t/previous state), it will invoke Q-related methods to store/destroy

3In general, tools such as preeny [35] can be used to convert socket communications
into file operations through preloading customized libraries, if the source code of TP
is not available



current fuzzing Q, and switch to the new Q, as denoted by arrow (D.
Meanwhile, it sends the state information to forkserver (as denoted
by arrow (2)).

The state engine is able to utilize flexible policies for progression
(moving to the next state) and regression (rolling back to the previ-
ous state) based on the specifications of the target protocol or the
user’s requirement. The heuristics are explained later in Section 4.

3.3 Coordination

In the example shown in Fig. 1, suppose we are mutating the first
packet p1 and the forkserver is in state fs;. At first the mutated
p1 has wrong packet format and will not pass the format checking
and the server sends back error message and stop the handshake.
We use TPstate to track the protocol state changes in TP. At some
point, the mutated p1” has the correct format and triggers new state
in the TP (T Pstate changes®). In this case, when TP finishes current
execution and the fuzzer gets the updated TPstate, it decides to
mutate p2 using this interesting p1” for the next execution (p1” can
be retrieved from the previous fuzzing by the fuzzer). So the state
engine signals the forkserver to switch to fsy. The forkserver at
fs1 forks another instance f'sy to continue the fuzzing. Meanwhile,
fs1 will be blocked by f'sy until fsy switches back (when the state
engine decides to regress the fuzzing state).

In summary, our proposed stateful fuzzing design performs pro-
gram fuzzing flexibly at multiple execution points with “memory”
of precedent program states, by incorporating a state engine, a
multi-state forkserver and a stateful TP into a closed loop. The
fuzzer analyzes the information provided by the forkserver and
TP to decided fuzzing state. The forkserver carries out the state
transition for TP. The policies of state transitions (i.e., when to stay,
progress or regress) will be discussed in Section 4 and evaluated in
Section 5.

4 IMPLEMENTATION

Our implementation is based on AFL that utilizes its coverage-
guided testcase generation and the infrastructure of communica-
tion. The multi-state fuzzer contains multiple queues (for testcases
representing different stages of packets), a state engine (that ana-
lyzes the yield information and decides the next fuzzing state) and a
stateful forkserver (that is able to switch between different forking
states).

The TP is also instrumented as follows. (1) Multiple program lo-
cations are selected and set as the forking points for the multi-state
forkserver initialization. (2) In addition to the code coverage and
exit status, the TP will share more information (such as TPstate)
with the state engine in the fuzzer. (3) The fuzzer and TP also com-
municate to record the packets when progressions are performed,
such that we can keep track of the chain of packets that lead to
vulnerabilities.

Search Policy: Based on the structure of the multi-state fork-
server, we implement a DFS-like searching policy to transit among
different fuzzing states. Taking Fig. 1 as an example, when inter-
esting p1’ occurs, the fuzzer will use the program state of p1” and

4Currently we use the number of packet flights seen in each execution as TPstate.
However, there could be more options for specific protocls and fuzzing purposes, such
as execution time, packet size ranges or specific actions that the TP triggers.

starts to fuzz p2. If interesting p2’ is generated, then we will follow
the program state of p1’ and p2’ to fuzz p3, and so on. During any
state in-between p1 and p4, if no interesting case is generated, then
the fuzzer will regress to previous fuzzing state (p4 — p3, p3 — p2
or p2 — p1). When the fuzzer comes back at p1, then it continues
fuzzing p1 and wait for the next progression.

The conditions of progression and regression define the power
schedule. The fuzzer will perform progression to move the fuzzing
state forward when TPstate satisfies certain conditions (such as
the increase of the number of packets occurred during the current
execution). In particular, the increase of number of packets indicates
that the packet currently being fuzzed has triggered a new protocol
state, as well as new code coverage. However, such condition will
potentially prevent progression from happening when TPstate
already reaches its maximum value and cannot increase any more.
In Fig. 1, suppose our fuzzer is handling p1, the initial seed of p1
might not be valid and the number of packet flights is 2 (p1 and p2,
where p2 terminates the session). After certain amount of mutation,
a valid p1 is generated (p1’) and TPstate reaches 4. The fuzzer will
start to fuzz p2 based on the program state of p1’. At this point the
TPstate will not exceed 4 any more, which means progression will
not be triggered to fuzz p3 and p4. To solve this problem, in addition
to the TPstate monitoring, our design also adopts a profile-based
progression policy. In particular, the fuzzing process is separated
into two stages: profiling and testing. During the profiling stage,
each packet is fuzzed for a fixed amount of time (say, one hour) to
provide an overview of code coverage and fuzzing queue related to
each packet. After profiling, the probability of progression at each
state is decided. Intuitively, the fuzzing state that has higher code
coverage and more pending queue entries will be assigned more
fuzzing time, and the probability of progressing to this fuzzing
state is assigned a larger value. In the testing stage, our fuzzer
performs random progression based on the probabilities determined
during profiling. Periodically, we update the probabilities by jointly
consider the code coverage (and queue entries) in the profiling and
testing stages. We also assign a higher score to the packets that
trigger new protocol states, giving more mutation time to these
packets.

A similar mechanism is applied to regression, i.e., the fuzzing
state with higher code coverage and more pending queue entries
will have lower probability of regressing to previous fuzzing state.
Also, we set other thresholds for regression such as max_Q_cycles

and max_entries. When the current fuzzing state finishes max_Q_cycles

or the index of current queue entry exceeds max_entries, we will
enforce regression to prevent wasting too much resources upon
current fuzzing state.

Note that we set the search policy in our approach heuristically.
In fact, the progression and regression conditions can be easily
changed to adapt to different protocols.

5 EVALUATION

In this section, we evaluate our stateful fuzzer design to answer the
following questions: (i) What is the performance of our fuzzer with
respect to metrics such as code coverage and number of unique
crashes? (ii) How does it compare with non-stateful fuzzing like
default AFL? (iii) What is the runtime overhead of our fuzzer due



Table 1: Statistics of fuzzing single packet (OpenSSL v101) at
four different stages using default AFL for 6 and 24 hours.

Code Unique Cycles Total # of Time
Coverage(%) Crashes Done Executions(M) (hours)
pl 9.51 1 4 7.87 6
p2 10.18 9 0 12.68 6
p3 5.56 9 15 12.21 6
p4 2.61 6 157 12.43 6
Code Unique Cycles Total # of Time
Coverage(%) Crashes Done Executions(M) (hours)
pl 9.64 11 30 42.05 24
p2 11.16 9 6 49.58 24
p3 5.6 14 410 66.20 24
p4 2.61 9 1308 54.80 24

to state forking and replay? (iv) What are the benefits of fuzzing
strategy that targets higher yield on code coverage?

5.1 Environment Setup

All experiments are done on a ubuntu server (16.04.5 LTS) with
48 cores (Intel(R) Xeon(R) Gold 6126 CPU @ 2.60GHz) and 92 GB
RAM. Each fuzzer runs on a single core in the same environment.
We choose OpenSSL (with version 101, 110) as our benchmark. As
mentioned in [4], we first compile OpenSSL using afl-clang- f ast
to generate the static library libssl.a and libcrypto.a. Then in our
instrumented TP, we invoke functions from libssl.a and libcrypto.a
to perform the ssl handshake. We add init_y fuzz() after each packet
is generated. In TP, we also get the shared memory pointer through
the environment variable “__AFL_SHM_ID”, which is created by
the fuzzer and shared among its children processes. We use the
number of packets occurred in the execution as the value of TPstate.
Hence, each time TPstate changes, we will consider a state change
in the protocol. We utilize AFL’s built-in support for ASAN [14] to
consider more crash conditions.

We conduct each batch of experiment that with the same pa-
rameters (w.r.t OpenSSL version, fuzzer settings, fuzzing time) four
times and show the average numbers where it applies.

5.2 Effect of single-packet fuzzing

Table 2: Code coverage breakdown: the code explored by
fuzzing four individual packet. Time is in hours. The total size
of bitmap is 64kB (65536 Bytes). Ui stands for the number of edges
that are only explored when fuzzing packet i but not explored when
fuzzing other packets (i.e., edges that is unique to packet i).

Version Time Covered Uncovered Ul U U3 U4
6 7ev? 57859 563 955 30 386

101

24 8896 56640 3123 966 32 359

110 10 10093 55443 21233 81 15 293

We evaluate the performance (in terms of code coverage and
unique crashes) of fuzzing single packet during OpenSSL handshake
to demonstrate the limitations of default non-stateful fuzzing. The
TP is constructed using the design proposed by Bock et al [4]. By
assigning different values to packetID in line 11, we can utilize the
default forkserver in AFL to conveniently fuzz different packets.

In the case of OpenSSL version 101, fuzzing different packet
results in different code coverage. Fuzzing the first and second
packet typically can yield more code coverage than fuzzing the
third and fourth packet. The average numbers are shown in Table 1.
In particular, fuzzing the first and second packet during OpenSSL
handshake for 6 hours can achieve 9.51% and 10.18% code coverage,
respectively. However, the third and fourth packet fuzzing can only
reach 5.56% and 2.61% code since the code space for them to explore
is greatly reduced when starting from the late stage of handshake.
Correspondingly, the completed fuzzing queue cycle of later stage
fuzzing (p3 and p4) are much larger than early stage fuzzing (p1
and p2), which means that AFL cannot find interesting testcases
anymore, so the length of queue is much less and it will finish
one round of fuzzing quickly then start the next cycle. When the
experiments are conducted for 24 hours, the code coverage results
are similar. This indicates that the growth of code coverage when
fuzzing single packet is extremely slow after 6 hours or less.

Among the different code coverage explored by fuzzing different
packets, some are common code (edges) and others may be unique
to each packet. We want to find out the composition of the code
coverage by fuzzing individual packets. However, the default AFL
assign ID to basic blocks randomly during runtime. If we restart the
program to fuzz p2 after fuzzing p1, then the assignment of block
IDs will be different, which means that the same edge could appear
in different position of the bitmap. Hence, we fuzz the four different
packets in one run, each for 6 (10,24) hours. When the current
packet fuzzing lasts for 6 (10,24) hours, we force the progression
to fuzz the next packet, by clearing the code coverage bitmap (the
global variable virgin_bits in AFL) without relaunching the AFL.
The experiment results are shown in Table 2. We can see that the
total code coverage of 24 hours’ fuzzing (for each packet, the fuzzing
time is 6 hours) is 7677/64kB = 11.71%, which is higher than any of
the four single-packet fuzzing shown in Table 1, due to the unique
code coverage. Further, we analyze the bitmap (which is used to
store the code coverage information in AFL), and get the unique
edges explored by each packet, as shown in Table 2 column U1, U2,
U3 and U4.

In summary, the experiments conducted in this section has
shown that:

e By only fuzzing one packet, the code coverage is limited.
Fuzzing early-stage packets results in higher code coverage.

o Different packet fuzzing can discover unique code. That is,
even though late-stage packet fuzzing achieves less code
coverage, it still discovers the code that cannot be discov-
ered by early-stage packet fuzzing. (And early-stage packet
fuzzing also discovers unique code that cannot be explored
by late-stage packet fuzzing).

These two observations show the need of stateful fuzzing ap-
proach, and demonstrate the usefulness of fuzzing different packets
interactively and heuristically.



5.3 Progression and Regression policies

After the profiling stage (as mentioned in Section 4), our fuzzer
starts to perform progression and regression based on the protocol
state changes and the probability (based on code coverage and
fuzzing queue during profiling stage). In the case of AFL, fuzzing p1
or p2 results in better code coverage and unique crashes as shown
in Table 1. In addition, AFL tends to stop discovering new code soon
after a short amount of time when there is no interesting testcases.
Our design is able to “escape” the fuzzing stages that are no longer
profitable and flexibly switch between different states to discover
new code.

On average of four 24-hour fuzzing, our stateful fuzzer design is
able to discover 19.27% code (of a total size of 64kB shared mem-
ory). In particular, fuzzing packet p1, p2, p3 and p4 contributes 10%,
4.65%, 1.73% and 2.79% code coverage (of a total size of 64kB shared
memory) respectively. In other words, fuzzing p1 contributes a per-
centage of 10/19.27 = 52.41% of the entire discovered code. Similarly,
fuzzing p2, p3 and p4 contributes 24.13%, 8.98% and 14.48%. And
the air time spent on each fuzzing stage is 7.2, 11, 1.4 and 4.4 hours.
In terms of unique crashes, our new fuzzer design founds 43 unique
crashes during 24 hours (on average), while AFL found 11 when
fuzzing p1 (for 24 hours) or 14 when fuzzing p3 (for 24 hours).

6 RELATED WORK

Program fuzzing has enjoyed success in hunting bugs in real-world
programs with researchers devoting tremendous efforts into it.

Code-coverage guided fuzzing: Plenty of works focus on smarter

testcase mutation/selction or search heuristics, to help the fuzzer
generate inputs that explore more/rare/buggy execution paths [11,
16, 19, 25, 28, 29, 33]. AFLFast [6] models testcase generation as
a Markov chain. It changes the testcase power scheduling policy
(scoring and priority mechanism) of default AFL, to prevent AFL
spending too much time on the high-frequency testcase, and assign-
ing more resource to low-frequency paths. Similarly, AFLGo [5]
uses simulated annealing algorithm to assign more mutation time
to testcases that are “closer” to the target basic block, to quickly
direct the fuzzing towards the target code area. These works help
AFL to find the target paths faster by changing the mutation time
assigned to each testcase, but cannot find new paths, e.g., new vul-
nerabilities. Our stateful fuzzer design, on the other hand, can not
only optimize the power schedule based on the protocol states, but
also can explore new paths that the default AFL could never explore
by stateful progressions.

Symbolic execution and tainting: Techniques such as taint-
ing and symbolic execution are also employed to complement grey-
box fuzzing [18, 21]. Angora [8] implements byte-level tainting to
locate the critical byte sequences (that determines branch control
flows) from the input, then use gradient descent algorithm to solve
branch condition to explore both branches. SYMFUZZ [7] utilizes
tainting and symbolic execution to determine the dependencies be-
tween input bytes and program CFG, in order to decide which bytes
to mutate (optimal input mutation ratio) during fuzzing. Drill [27]
uses concolic execution to solve constraints of magic numbers (to
guide fuzzing) then apply fuzzing inside each code compartment
(to mitigate path explosion).

Machine Learning: Some works take advantages of machine
learning techniques to model/improve the fuzzing [9, 13, 30, 32, 36].
Angora [8] and NEUZZ [26] adopt gradient descent-based searching
policies (instead of code-coverage) to guide the input mutation.
NEUZZ builds a feedforward neural network to mimic the code
coverage behavior of the TP. The neural network is trained by
testcases and bitmaps (as ground truth) generated by AFL, to find
the critical bytes in testcases. When new testcases are executed,
NEUZZ only mutate the critical bytes to reduce redundant testcase
generation.

Program transformation: Another interesting line of work
transforms the testing programs for fuzzing [17, 20, 23]. T-Fuzz [23]
dynamically traces the testing programs to locate and remove the
checks once the fuzzer gets stuck. Untracer [20] creates customized
testing programs with software interrupts at the beginning of each
basic block. Instead of tracing every testcase for coverage informa-
tion (as in AFL), Untracer enables the the testing program to signal
the fuzzer once new basic blocks are encountered, thus greatly
reducing the overhead caused by redundant testcase tracing.

Protocol fuzzing: Few greybox fuzzers are designed specifi-
cally for protocols (in general, stateful programs). Sulley [1] and its
successor Boofuzz [24] are two popular whitebox protocol fuzzers
that generate packets based on protocol specifications then send
them to target ports for fuzzing. Unlike greybox fuzzers that in-
strument the testing program for code coverage and tainting in-
formation, the whitebox fuzzers typically only instrument to mon-
itor process/network failures. Thus they lack the guidance for
smarter testcase generation and power scheduling. Blackbox pro-
tocol fuzzers [3, 10, 12, 15] have the same limitation. Our stateful
fuzzer, on the other hand, is a state-aware greybox protocol fuzzer
that leverages coverage-guidance and stateful protocol fuzzing to
efficiently explore deep into each protocol states.

7 CONCLUSION

In this paper, we identify the challenges in fuzzing stateful proto-
cols/programs and demonstrate the limitation of existing greybox
fuzzers when fuzzing protocols. In order to achieve higher code
coverage for protocol fuzzing, we propose a progressive stateful pro-
tocol fuzzer to capture the state changes in protocols, and heuristi-
cally explore code spaces that are related to multiple protocol states.
We implemented our design upon the popular greybox fuzzer, AFL
and evaluate using OpenSSL (v101 and v110). Our experimental re-
sults show that we can achieve 1.73X code coverage and 2X unique
crashes when comparing to only fuzzing the first packet during
the protocol communication (which is adopted by current greybox
fuzzer).
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