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ABSTRACT
In this paper, we propose a novel decentralized learning algorithm,

namely DLLR-OA, for resource-constrained over-the-air computa-

tion with formal privacy guarantee. Theoretically, we characterize

how the limited resources induced model-components selection

error and compound communication errors jointly impact decen-

tralized learning, making the iterates of DLLR-OA converge to a

contraction region centered around a scaled version of the errors.

In particular, the convergence rate of the DLLR-OA algorithm in

the error-free case O( 1√
𝑛𝑇

) achieves the state-of-the-arts. Besides,
we formulate a power control problem and decouple it into two

sub-problems of transmitter and receiver to accelerate the conver-

gence of the DLLR-OA algorithm. Furthermore, we provide quanti-

tative privacy guarantee for the proposed over-the-air computation

approach. Interestingly, we show that network noise can indeed

enhance privacy of aggregated updates while over-the-air compu-

tation can further protect individual updates. Finally, the extensive

experiments demonstrate that DLLR-OA performs well in the com-

munication resources constrained setting. In particular, numerical

results on CIFAR-10 dataset shows nearly 30% communication cost

reduction over state-of-the-art baselines with comparable learning

accuracy even in resource constrained settings.

CCS CONCEPTS
• Computing methodologies → Distributed algorithms.
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decentralized learning, over-the-air computation, resource alloca-

tion, privacy-preserving

ACM Reference Format:
Jing Qiao

1
, Shikun Shen

1
, Shuzhen Chen

1
, Xiao Zhang

1∗
, Tian Lan

2
, Xi-

uzhen Cheng
1
, Dongxiao Yu

1∗
. 2023. Communication Resources Limited

Decentralized Learning with Privacy Guarantee through Over-the-Air Com-

putation. In The Twenty-fourth International Symposium on Theory, Algo-
rithmic Foundations, and Protocol Design for Mobile Networks and Mobile

∗
Xiao Zhang and Dongxiao Yu are corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9926-5/23/10. . . $15.00

https://doi.org/10.1145/3565287.3610268

1

2

3 4

5

6

7

1

2

3 4

5

6

71) Time-varying 

network topology. 

Client-2 Client-1

...

...

2) Limited number of 
subcarriers. 

1

1

2 �1
�

2 �2
�

3)Limited transmit power. 

Round t Round t+1

Figure 1: An illustration of key communication challenges
in a decentralized learning framework: 𝜏 = 𝑡 for the left and
𝜏 = 𝑡 + 1 for the right.
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1 INTRODUCTION
Recently, distributed machine learning has attracted much research

attention [14, 19] due to the explosive growth of data at network

edge. Federated Learning (FL) [15] and fully decentralized learn-

ing [13] are two widely adopted distributed machine learning ap-

proaches to support intelligent data analytics and learning in edge

computing environments. In particular, fully decentralized learning

[13] is a dominating approach in areas such as the Internet of Vehi-

cles [25], where clients communicate only with their neighbors thus

forming an arbitrary (potentially time-varying) topology without

relying on the coordination of a central server.

While wireless networks are often used in fully decentralized

learning to support the high mobility of edge devices [24], it could

easily become a performance bottleneck due to frequent informa-

tion exchange among the computing clients and the resulting high

communication overhead. Most existing works on communication-

effective learning algorithms employ compression techniques, e.g.,

sparsification and quantization, to mitigate the communication

overhead. Distributed stochastic gradient descent by exchanging

sparse updates instead of dense updates was proposed in [1]. Re-

lated works also include Quantized SGD (QSGD) [2] enabling a

tradeoff between compression and convergence speed, as well as

algorithms [12] increasing local training sessions. However, these

existing works either fail to provide a theoretical convergence guar-

antee, or ignore time-varying network conditions/topologies and

resource constraints in wireless transmission.

To this end, over-the-air computation in decentralized learning

(in contrast to the traditional “communication-then-aggregation”

mechanism) has been proposed to utilize the superposition property
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of the wireless channels to complete aggregation during transmis-

sion in the physical wireless channel [4]. As shown in Figure 1,

over-the-air computation must account for wireless resource con-

straints (e.g., the number of subcarriers and available transmit

power), as well as the dynamism of network conditions and time-

varying topologies, in the learning algorithms. In this paper, we

address a number of key challenges in over-the-air computation: (1)

model-components selection error. In over-the-air computation,

the number of subcarriers among each connection/link might be

limited due to wireless bandwidth constraints. Therefore, only part

of the model parameters can be transmitted to its neighbors in

each step [27], leading to a model-components selection error that

needs to be analyzed. (2) Compound communication errors.
Since wireless channels are noisy, the received model parameters

in over-the-air computation could suffer from compound commu-

nication errors. This requires novel solutions to optimize client

device’s individual transmit power, with the goal of maximizing

resulting model accuracy in decentralized learning. (3) Dynamic
network conditions. The high mobility of edge devices leads to

time-varying network topologies. In addition, the constraints on

communication resources are not fixed due to the unstable network.

The above dynamically changing network conditions make the

communication mode more complicated, which brings challenges

to convergence analysis and optimization of decentralized learning.

(4) Privacy guarantee. Finally, wireless channel noise and over-

the-air computation mechanism also present a unique opportunity

for providing privacy protection in distributed learning. Rigorously

characterizing the privacy guarantee has not been considered.

This paper proposes a novel decentralized learning algorithm,

namely DLLR-OA, for resource-constrained over-the-air computa-

tion with formal privacy guarantee. Firstly, with respect to wireless

channel noise and limited number of subcarriers available for each

wireless link, we theoretically characterize how model-components

selection error and compound communication errors jointly im-

pact the convergence of decentralized learning under the dynamic

network conditions and time-varying topologies. In particular, we

prove that the iterates of DLLR-OA would converge to a neighbor-

hood of the scale of these two types of errors. Next, we formulate an

optimization problem for minimizing the communication error (in

terms of MSE) to accelerate the convergence of DLLR-OA. Decou-
pling into two sub-problems of transmitter and receiver, a power

control problem is formulated and solved through a two-step oper-

ation consisting of scaling and recovery steps. Finally, we quantita-

tively analyze the privacy guarantee for the proposed over-the-air

computation approach. To analyze the privacy-preserving mecha-

nism of network noise, we leverage differential privacy (DP) tech-

nique, and solve the key problem on how to bound 𝐿2-sensitivity in

this technique through power constraints and inequality transfor-

mation. Intuitively, over-the-air computation can protect individual

information because it completes aggregation during the communi-

cation process, but there is currently a lack of theoretical analysis,

we here use the properties of the solutions to linear equations to

give a formal mathematical support. Interestingly, we show that net-

work noise can indeed enhance privacy of aggregated updates while

over-the-air computation can further protect individual updates.

Our key contributions are summarized as follows:

• Wepropose a decentralized learning algorithm, namelyDLLR-
OA, for resource constrained over-the-air computation with

formal privacy guarantee.

• The convergence of DLLR-OA is quantified under dynamic

network conditions/topologies, model-components selection

error due to limited bandwidth, and compound communica-

tion errors due to channel noise. We prove that the iterates

of DLLR-OA would converge to a small neighborhood of

the scale of these errors and at a rate of O( 1√
𝑛𝑇

) in the

resource-unconstrained setting, suffering no loss in conver-

gence speed compared with state-of-the-arts.

• We provide quantitative privacy guarantee for DLLR-OA
by analyzing how the existence of channel noise enhances

privacy in aggregation of neighboring information and how

over-the-air aggregation protect individual updates from

potential eavesdropping.

• We perform extensive experiments to evaluate the perfor-

mance of DLLR-OA. Numerical results on CIFAR-10 dataset

shows nearly 30% communication cost reduction over state-

of-the-art baselines with comparable learning accuracy even

in resource constrained settings.

2 RELATEDWORK
In recent years, decentralized learning that relies on large-scale data

and high-dimensional models often has extremely high demands

on communication resources. Therefore, it is important to study

communication-efficient decentralized learning to obtain higher

performance with limited network resources. Such algorithms in

the decentralized learning literature are based on compression, such

as sparsification [1, 22] and quantization [2, 3], assuming lossless

communication. In practice, however, communication is often lossy

due to unstable networks and limited resources.

Classical model/gradient transmission often suffers from privacy

leakage due to model inversion and reconstruction attacks [7, 9].

Differential privacy (DP) [5] methods can achieve a certain level

of privacy protection within a given privacy budget by adding

noise. Farokhi et al. [6] considered asynchronous collaborative

algorithms for machine learning models with DP settings. Wei et

al. [23] show that the proposed method NbAFL can satisfy DP by

correctly tuning the artificial noise variance. Seif et al. [20] proposed

a FL framework under the local differential privacy and showed that

the superposition property of the simulation scheme is beneficial

for privacy preservation.

Over-the-air computation exploits the superposition property

of multi-access channel (MAC) to ensure that communication and

aggregation can be done simultaneously, which facilitates enhanced

communication efficiency and reduced training latency [4, 18, 21].

In addition, the paper [4] pointed out that the potential eavesdrop-

pers can only access the aggregated updates instead of individual

ones, which can protect private data.

Due to the advantages gradually shown by over-the-air compu-

tation, some works have started to investigate it in conjunction

with various decentralized learning frameworks. Ozfatura et al.

[17] focused on decentralized stochastic gradient descent (DSGD)

taking into account the physical channel characteristics, without

essential results on theoretical convergence. Shi et al. [21] proposed
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an AirComp-based DSGT-VR algorithm in decentralized FL, where

both precoding and decoding strategies at devices are developed

to guarantee algorithm convergence. Unfortunately, this work is

based on the assumption of sufficient available resources, without

considering the poor network conditions. Michelusi [16] presented

NCOTA-DGD to solve distributed machine learning problems over

wirelessly-connected systems. But its assumption that the channels

are noiseless and static cannot be applied to complex networks that

are dynamically changing in reality.

In summary, under dynamic networks and constrained resources,

decentralized learning via over-the-air computation with detailed

theoretical convergence results and privacy analysis has not yet

been well investigated.

3 PRELIMINARIES
3.1 Decentralized Learning Model
We consider the decentralized learning scenario with n clientsV =

{1, · · · , 𝑛}, W = (𝑊𝑖 𝑗 )𝑛×𝑛 is a doubly stochastic matrix,𝑊𝑖 𝑗 > 0

if client-𝑖 and client- 𝑗 can communicate with each other. During

the learning process, time is divided into synchronous rounds. In

each round, client-𝑖 receives information aggregated over the air

from all its neighbors, and then updates the model by performing

local training using the aggregated neighbor information and its

own local information.

The general learning problem is as follows:

min

𝜃 ∈R𝑑
𝑓 (𝜃 ) :=

1

𝑛

𝑛∑︁
𝑖=1

E𝜉𝑖∼D𝑖
[𝐹𝑖 (𝜃, 𝜉𝑖 )]︸                ︷︷                ︸

:=𝑓𝑖 (𝜃 )

(1)

In this paper, we consider a general dynamic scenario where the

connections between clients can vary arbitrarily after each round.

i.e., The neighboring set 𝑁 𝑡
𝑖
= { 𝑗 |𝑊 𝑡

𝑖 𝑗
> 0, 𝑗 ∈ V, 𝑗 ≠ 𝑖} of client-𝑖

and weight matrixW𝑡 = (𝑊 𝑡
𝑖 𝑗
)𝑛×𝑛 of clients vary with the rounds.

3.2 Over-the-Air Aggregation
In the above decentralized learning scenario, we complete the pro-

cess of client-𝑖 receiving information from all its neighbors client- 𝑗

∈ 𝑁 𝑡
𝑖
through over-the-air computation. That is, based on MISO

communication, client-𝑖 receives aggregated information from all

its neighbors over the wireless multiple access channel (MAC).

Specifically, each component of the parameters required by

client-𝑖 is considered to be carried by one subcarrier of the channel.

Thus, in round 𝑡 of decentralized learning, the signal in subcarrier-𝑘

received by client-𝑖 can be expressed as:

𝑦𝑡𝑖 (𝑘) =
∑︁
𝑗∈𝑁 𝑡

𝑖

𝑏𝑡𝑖 𝑗 (𝑘)ℎ
𝑡
𝑖 𝑗 (𝑘)𝑥

𝑡
𝑖 𝑗 (𝑘) + 𝑛

𝑡
𝑖 (𝑘) (2)

when client- 𝑗 sends message to client-𝑖 through subcarrier-𝑘 in

round 𝑡 , 𝑏𝑡
𝑖 𝑗
(𝑘) is the transmit power scaling factor, ℎ𝑡

𝑖 𝑗
(𝑘) is the

channel gain,𝑏𝑡
𝑖 𝑗
(𝑘)𝑥𝑡

𝑖 𝑗
(𝑘) is the power of client- 𝑗 when it transmits

message to client-𝑖 through subcarrier-𝑘 , and 𝑛𝑡
𝑖
(𝑘) is the channel

noise. In this paper, 𝑥𝑡
𝑖 𝑗
(𝑘) represents a component of the local

model of client- 𝑗 transmitted to client-𝑖 via subcarrier-𝑘 in round

𝑡 . If the model-components of the corresponding coordinates of

all neighboring client models are transmitted to client-𝑖 through

subcarrier-𝑘 , the information received by client-𝑖 is already aggre-

gated because of the superposition property of the channel.

In Table 1, we summarize the main notations in this paper.

Table 1: Notations and Descriptions

Notations Descriptions
𝜃𝑡
𝑖

The local model parameter of client-𝑖 in round 𝑡

𝜂 The step length of algorithm DLLR-OA
𝜀 The budget of DP mechanism

𝛿 The slack variable of DP mechanism

D𝑖 The local data set of client-𝑖

T The total round for algorithm DLLR-OA
t The current round for algorithm DLLR-OA
𝐹𝑖 (𝜃𝑡𝑖 , 𝜉

𝑡
𝑖
) The loss of client-𝑖 on data sample 𝜉𝑡

𝑖
in round 𝑡

𝑦𝑡
𝑖
(𝑘) The signal in subcarrier-𝑘 received by client-𝑖

in round 𝑡

𝑥𝑡
𝑖 𝑗
(𝑘) The signal in subcarrier-𝑘 sent by client- 𝑗 to

client-𝑖 in round 𝑡

𝑏𝑡
𝑖 𝑗
(𝑘) The transmit power scaling factor

ℎ𝑡
𝑖 𝑗
(𝑘) The channel gain

𝑛𝑡
𝑖
(𝑘) The channel noise and 𝑛𝑡

𝑖
(𝑘) ∼ N (0, 𝜎2)

𝑚𝑡
𝑖

The mask generated by client-𝑖 based on its local

model-components selection in round 𝑡

𝑔𝑡
𝑖

The gradient of client-𝑖 in round 𝑡 , 𝑔𝑡
𝑖
= ∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉

𝑡
𝑖
)

𝑓𝑖 (𝜃𝑡𝑖 ) The loss function of client-𝑖 in round 𝑡 , 𝑓𝑖 (𝜃𝑡𝑖 ) =
E𝜉𝑖∼D𝑖

[𝐹𝑖 (𝜃𝑡𝑖 , 𝜉
𝑡
𝑖
)]

𝑟𝑡
𝑖

The model-components selection error of client-𝑖

in round t, 𝑟𝑡
𝑖
=
∑

𝑗∈𝑁 𝑡
𝑖
𝑊 𝑡

𝑖 𝑗
(𝐶𝑡

𝑖
(𝜃𝑡

𝑗
) − 𝜃𝑡

𝑗
)

𝜖𝑡
𝑖

The communication error of client-𝑖 in round 𝑡 ,

𝜖𝑡
𝑖
= 𝑅𝑡

𝑖
−∑

𝑗∈𝑁 𝑡
𝑖
𝑊 𝑡

𝑖 𝑗
𝐶𝑡
𝑖
(𝜃𝑡

𝑗
)

𝑟𝑡 𝑟𝑡 = [𝑟𝑡
1
, · · · , 𝑟𝑡𝑛]𝑇

𝜖𝑡 𝜖𝑡 = [𝜖𝑡
1
, · · · , 𝜖𝑡𝑛]𝑇

𝐺𝑡 𝐺𝑡 = [𝑔𝑡
1
, · · · , 𝑔𝑡𝑛]𝑇

𝐻𝑡 𝐻𝑡 = [∇𝑓1 (𝜃𝑡
1
), · · · ,∇𝑓𝑛 (𝜃𝑡𝑛)]𝑇

Θ𝑡 Θ𝑡 = [𝜃𝑡
1
, · · · , 𝜃𝑡𝑛]𝑇 ∈ R𝑛×𝑑

4 DECENTRALIZED LEARNINGWITH
LIMITED RESOURCES THROUGH
OVER-THE-AIR COMPUTATION

4.1 DLLR-OA Algorithm
With constrained subcarriers, it is often difficult for an arbitrary

client-𝑖 to obtain information about all components of its neighbor

models. We consider that for client-𝑖 , in each round 𝑡 , it expects

to get as much model-components information as possible from

its neighbors 𝑗 ∈ 𝑁 𝑡
𝑖
according to its model-components selection

strategy. The number of selected model-components depends on

the number of subcarriers of the corresponding channel.

Definition 1. (model-components Selection). Suppose we have
a 𝑑-dimensional model 𝜃 ∈ R𝑑 and a certain strategy,𝑚 ∈ {0, 1}𝑑 is
a mask generated based on the strategy, we can pick some components
of the current model parameters by 𝜃 ⊙𝑚. And for the 𝑙-𝑡ℎ component
of 𝜃 ⊙𝑚, we have
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Figure 2: An overview of the process of the DLLR-OA algo-
rithm, taking client-1 in Figure 1 as an example. 1○: Generate
a mask 𝑚𝑡

1
and send it to all neighbors of client-1, 2○: Se-

lect 𝑑𝑡
1
model-components, 3○: Transmit model-components

information, 4○: Transmit scaling factors information, 5○:
Aggregated information related to the model-components of
all neighbors, 6○: Aggregated information related to the scal-
ing factors, 7○: Use 6○ to correct 5○ for local model updates.

(
𝜃 ⊙𝑚

)
𝑙 =

{(
𝜃
)
𝑙 , if

(
𝑚
)
𝑙 = 1

0, if
(
𝑚
)
𝑙 = 0

Specifically, we assume that for round 𝑡 , the model-components

selection strategy for client-𝑖 generates a mask 𝑚𝑡
𝑖
, where 𝑚𝑡

𝑖
∈

{0, 1}𝑑 . Thus, the aggregated information that client-𝑖 expects to re-

ceive from neighboring clients can be expressed as

∑
𝑗∈𝑁 𝑡

𝑖
𝑊 𝑡

𝑖 𝑗
(𝜃𝑡

𝑗
⊙

𝑚𝑡
𝑖
) = ∑

𝑗∈𝑁 𝑡
𝑖
𝑊 𝑡

𝑖 𝑗
𝐶𝑡
𝑖
(𝜃𝑡

𝑗
), where𝑊 𝑡

𝑖 𝑗
is the weight between client-𝑖

and client- 𝑗 at round 𝑡 , 𝑁 𝑡
𝑖
= { 𝑗 |𝑊 𝑡

𝑖 𝑗
> 0, 𝑗 ∈ V, 𝑗 ≠ 𝑖} is the neigh-

boring set of client-𝑖 at round 𝑡 , 𝜃𝑡
𝑖
is the local model of client-𝑖 at

round 𝑡 and 𝐶𝑡
𝑖
(𝜃𝑡

𝑗
) = (𝜃𝑡

𝑗
⊙𝑚𝑡

𝑖
). We next elaborate the learning

process in round 𝑡 as shown in Figure 2:

• Mask Generation and Transmission. First, client-𝑖 finds
the 𝑑𝑡

𝑖
coordinates that may contain more local information

based on the local model-components selection strategy,

then generates a mask𝑚𝑡
𝑖
and transmits it to all neighboring

clients (for all 𝑗 ∈ 𝑁 𝑡
𝑖
).

• Receive and correct the Aggregate Sum of Neighbor-
ing Information Then, every neighboring client- 𝑗 will get

𝐶𝑡
𝑖
(𝜃𝑡

𝑗
) = 𝜃𝑡

𝑗
⊙𝑚𝑡

𝑖
according to the mask𝑚𝑡

𝑖
of client-𝑖 . Next,

ideally, client-𝑖 will receive every non-zero component of∑
𝑗∈𝑁 𝑡

𝑖
𝑊 𝑡

𝑖 𝑗
𝐶𝑡
𝑖
(𝜃𝑡

𝑗
) transmitted by client- 𝑗 ∈ 𝑁 𝑡

𝑖
. However, in

practice, due to the transmit power limitation and the pres-

ence of channel noise, the model component information re-

ceived by client-𝑖 carried by subcarrier-𝑘 can be represented

as (𝑅𝑡
𝑖
)𝐼 (𝑘 ) = 𝑦𝑡

𝑖
(𝑘) = ∑

𝑗∈𝑁 𝑡
𝑖
𝑏𝑡
𝑖 𝑗
(𝑘)ℎ𝑡

𝑖 𝑗
(𝑘)𝑥𝑡

𝑖 𝑗
(𝑘) + 𝑛𝑡

𝑖
(𝑘). In

this representation, 𝑏𝑡
𝑖 𝑗
(𝑘) is the transmit power scaling fac-

tor, which will be optimized in subsequent parts of this paper.

ℎ𝑡
𝑖 𝑗
(𝑘) is the time-varying channel gain. 𝑥𝑡

𝑖 𝑗
(𝑘) represents

a component of the local model of client- 𝑗 transmitted to

Algorithm 1 DLLR-OA

Input: The initial local model 𝜃0

𝑖
∈ R𝑑 (𝑖 = 1, · · · , 𝑛), the number

of subcarriers 𝑑𝑡
𝑖
(𝑑𝑡
𝑖
≤ 𝑑 , 𝑖 = 1, · · · , 𝑛, 𝑡 = 0, 1, · · · ,𝑇 − 1), step

length 𝜂 and client-𝑖’s model-components selection strategy

(𝑖 = 1, · · · , 𝑛)
Output: Local model 𝜃𝑖 (𝑖 = 1, · · · , 𝑛)
1: for round 𝑡 = 0, 1, · · · ,𝑇 − 1 do
2: // Receiver Side:
3: for Receiver client-𝑖 = 1, · · · , 𝑛 (In Parallel) do
4: Generate a mask𝑚𝑡

𝑖
based on the local model-components

selection strategy;

5: Send𝑚𝑡
𝑖
to client- 𝑗 , for all 𝑗 ∈ 𝑁 𝑡

𝑖
;

6: Receive the sum of neighboring clients’ information 𝑅𝑡
𝑖

through over-the-air aggregation;

7: Correct 𝑅𝑡
𝑖

locally to get a good estimator 𝑅𝑡
𝑖

of∑
𝑗∈𝑁 𝑡

𝑖

𝑊 𝑡
𝑖 𝑗
𝐶𝑡
𝑖
(𝜃𝑡

𝑗
);

8: Update local model 𝜃𝑡+1

𝑖
= 𝑅𝑡

𝑖
+𝑊 𝑡

𝑖𝑖
𝜃𝑡
𝑖
− 𝜂∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉

𝑡
𝑖
).

9: end for
10: // Transmitter Side:
11: for Transmitter client- 𝑗 ∈ 𝑁 𝑡

𝑖
(𝑖 = 1, 2, · · · , 𝑛) (In Parallel)

do
12: Receive𝑚𝑡

𝑖
from client-𝑖 , where ∥ 𝑚𝑡

𝑖
∥1= 𝑑𝑡

𝑖
;

13: Compute power allocation coefficients 𝑏𝑡
𝑖 𝑗
(𝑘) (𝑘 =

1, 2, · · · , 𝑑𝑡
𝑖
);

14: Transmit 𝑏𝑡
𝑖 𝑗
(𝑘)𝑥𝑡

𝑖 𝑗
(𝑘) through subcarrier-𝑘 (𝑘 =

1, 2, · · · , 𝑑𝑡
𝑖
);

15: Transmit information related to scaling factors.

16: end for
17: end for

client-𝑖 , 𝑏𝑡
𝑖 𝑗
(𝑘)𝑥𝑡

𝑖 𝑗
(𝑘) is the power of client- 𝑗 when it trans-

mits message to client-𝑖 through subcarrier-𝑘 , and 𝑛𝑡
𝑖
(𝑘) is

the channel noise.

After receiving (𝑅𝑡
𝑖
)𝐼 (𝑘 ) , client-𝑖 can locally correct (𝑅𝑡

𝑖
)𝐼 (𝑘 )

to obtain a good estimate (𝑅𝑡
𝑖
)𝐼 (𝑘 ) of the corresponding com-

ponent (∑𝑗∈𝑁 𝑡
𝑖
𝑊 𝑡

𝑖 𝑗
𝐶𝑡
𝑖
(𝜃𝑡

𝑗
))𝐼 (𝑘 ) , and thus use 𝑅𝑡

𝑖
for subse-

quent local model updates.

• Local Update Finally, client-𝑖 updates its model using the

neighbor information obtained through over-the-air aggre-

gation and local information.

Algorithm 1 shows that client-𝑖 can receive signals carried by at

most 𝑑𝑡
𝑖
subcarriers at round 𝑡 , where 𝑑𝑡

𝑖
is determined by both the

local model nature of client-𝑖 and the number of subcarriers.

Remark 1. For client-𝑖 (𝑖 ∈ V), the component coordinates and
subcarriers are one-to-one mapping:

(𝑅𝑡𝑖 )𝐼 (𝑘 ) =
{

0, if (𝑚𝑡
𝑖 )𝐼 (𝑘 ) = 0

𝑦𝑡𝑖 (𝑘), if (𝑚𝑡
𝑖 )𝐼 (𝑘 ) = 1

4.2 Convergence Analysis of DLLR-OA
We next analyze the convergence rate of Algorithm 1. At first, we

present the assumptions for this algorithm, which are widely used

in decentralized learning [13].
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Assumption 1. (Lipschitzian gradient). Loss function 𝑓𝑖 (·)s
are with Lipschitzian gradients. i.e., For ∀𝜃 (1)

𝑖
, 𝜃

(2)
𝑖

∈ R𝑑 , it holds
that

∥ ∇𝑓𝑖 (𝜃 (1)𝑖
) − ∇𝑓𝑖 (𝜃 (2)𝑖

) ∥≤ 𝐿 ∥ 𝜃 (1)
𝑖

− 𝜃
(2)
𝑖

∥

Assumption 2. (Bounded variance). The variance of the sto-
chastic gradient is bounded as follows.

E ∥ ∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉
𝑡
𝑖 ) − ∇𝑓𝑖 (𝜃𝑡𝑖 ) ∥

2≤ 𝜎2

1
, ∀𝑖,∀𝑡

E ∥ ∇𝑓𝑖 (𝜃 ) − ∇𝑓 (𝜃 ) ∥2≤ 𝜎2

2
, ∀𝑖

Assumption 3. (Symmetric double stochasticmatrix). In each
round 𝑡 , the communication matrix W𝑡 is a real double stochastic
matrix that satisfies W𝑡 = (W𝑡 )𝑇 ,W𝑡1𝑛 = 1𝑛 and 1𝑇𝑛W𝑡 = 1𝑇𝑛 .

Assumption 4. (Spectral gap). For any symmetric doubly sto-
chasticmatrixW𝑡 above, we assume that 𝜌𝑡 = max{𝜆2 (W𝑡 ), 𝜆𝑛 (W𝑡 )}
< 1. And we write 𝜌 = max

𝑡
𝜌𝑡 .

Based on the above assumptions, we can obtain the convergence

result of DLLR-OA as Theorem 1.

Theorem 1. Let

𝐷1 =
1 − 2𝐿𝜂

2

, 𝐷2 =

(
1

2

− 27𝑛𝐿2𝜂2

(1 − 𝜌)2

(
1 − 54𝑛𝐿2𝜂2

(1−𝜌 )2

) ),
𝐷3 = 1 − 54𝑛𝐿2𝜂2

(1 − 𝜌)2

If 𝜂2 ≤ min{1,
(1−𝜌 )2

108𝑛𝐿2
}, we have the following result for Algorithm 1:

𝐷1 ·
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥ 1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝜃𝑡𝑖 ) ∥
2 +

𝐷2 ·
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥ ∇𝑓 ( ¯𝜃𝑡 ) − 1

2𝜂𝐷2

1𝑇𝑛
𝑛

(𝜖𝑡 + 𝑟𝑡 ) ∥2

≤E𝑓 (
¯𝜃0) − E𝑓 ( ¯𝜃∗)

𝜂𝑇
+ 3𝐿2

2𝑇 (1 − 𝜌2)𝐷3

E ∥ Θ0 ∥2

+
𝐿2

(
E ∥ Θ0 − 1𝑛1𝑇𝑛

𝑛 Θ0 ∥2 −E ∥ Θ∗ − 1𝑛1𝑇𝑛
𝑛 Θ∗ ∥2

)
2𝑛𝑇𝐷3

+
(𝐿𝜂
𝑛

+ 3𝑛𝐿2𝜂2

(1 − 𝜌2)𝐷3

)
𝜎2

1
+ 27𝑛𝐿2𝜂2

(1 − 𝜌)2𝐷3

𝜎2

2

+
(

9𝐿2

(1 − 𝜌)2𝐷3𝑇
+ 2𝐿

𝑛𝑇𝜂
+ 1

2𝐷2𝑛𝑇𝜂
2

)
·
(𝑇−1∑︁
𝑡=0

E ∥ 𝜖𝑡 ∥2︸     ︷︷     ︸
𝑀𝑆𝐸

+
𝑇−1∑︁
𝑡=0

Δ(𝑡 )
)

Proof (Theorem 1). Due to page limitation, we only outline the
proof and state the important definitions and lemmas in the proof.

Lemma 1 is an important property that is based on the assumptions
on the network topology matrix W𝑡 . And its proof idea is similar to
that of Lemma 5 in the paper [13]. With the help of Lemma 1, we can
derive the subsequent Lemma 2 and 3 which are important for the
convergence results.

Lemma 1. Under Assumptions 3-4 above, we have

∥ 𝒆𝑇𝑖 W
𝑡W𝑡−1W𝑡−2 · · ·W𝑙 − 1𝑇𝑛

𝑛
∥≤ 𝜌𝑡−𝑙+1

Then, we elaborate the model-components selection error in
Definition 2:

Definition 2. (model-components selection error). In round 𝑡 ,
model-components selection error can be written as follow:

E ∥ 𝑟𝑡 ∥2 =

𝑛∑︁
𝑖=1

E ∥ 𝑟𝑡𝑖 ∥2

=

𝑛∑︁
𝑖=1

E ∥
∑︁
𝑗∈𝑁 𝑡

𝑖

𝑊 𝑡
𝑖 𝑗 (𝐶

𝑡
𝑖 (𝜃

𝑡
𝑗 ) − 𝜃𝑡𝑗 ) ∥

2

= Δ(𝑡 )

And then we rewrite 𝜃𝑡+1

𝑖
as:

𝜃𝑡+1

𝑖 = 𝜖𝑡𝑖 + 𝑟
𝑡
𝑖 +

𝑛∑︁
𝑗=1

𝑊 𝑡
𝑖 𝑗𝜃

𝑡
𝑗 − 𝜂∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉

𝑡
𝑖 )

where 𝜖𝑡
𝑖
= 𝑅𝑡

𝑖
−∑

𝑗∈𝑁 𝑡
𝑖
𝑊 𝑡

𝑖 𝑗
𝐶𝑡
𝑖
(𝜃𝑡

𝑗
) is generated by communication

aggregation. And 𝑟𝑡
𝑖
=
∑

𝑗∈𝑁 𝑡
𝑖
𝑊 𝑡

𝑖 𝑗
(𝐶𝑡

𝑖
(𝜃𝑡

𝑗
) − 𝜃𝑡

𝑗
) is caused by model-

components selection. And this rewriting allows the impact of resource
constraints to be represented visually in the subsequent results.

Next, Lemma 2 and Lemma 3 illustrate two bounds, using which
the final convergence results can be directly derived.

Lemma 2. If 𝜂 ∈ (0,min{1,
√︃

(1−𝜌 )2

54𝑛𝐿2
}), under Assumption 1-4

above, we have
𝑇−1∑︁
𝑡=0

E ∥ Θ𝑡 − 1𝑛1𝑇𝑛
𝑛

Θ𝑡 ∥2

≤
E ∥ Θ0 − 1𝑛1𝑇𝑛

𝑛 Θ0 ∥2 −E ∥ 𝜃∗ − 1𝑛1𝑇𝑛
𝑛 𝜃∗ ∥2(

1 − 54𝑛𝐿2𝜂2

(1−𝜌 )2

)
+ 3𝑛

(1 − 𝜌2)
(
1 − 54𝑛𝐿2𝜂2

(1−𝜌 )2

) E ∥ Θ0 ∥2

+
6𝑛2𝜂2𝜎2

1

1 − 𝜌2

(
1 − 54𝑛𝐿2𝜂2

(1−𝜌 )2

)𝑇 +
54𝑛2𝜂2𝜎2

2

(1 − 𝜌)2

(
1 − 54𝑛𝐿2𝜂2

(1−𝜌 )2

)𝑇
+ 54𝑛2𝜂2

(1 − 𝜌)2

(
1 − 54𝑛𝐿2𝜂2

(1−𝜌 )2

) 𝑇−1∑︁
𝑡=0

E ∥ ∇𝑓 ( ¯𝜃𝑡 ) ∥2

+ 9𝑛

(1 − 𝜌)2

(
1 − 54𝑛𝐿2𝜂2

(1−𝜌 )2

) 𝑇−1∑︁
𝑡=0

E ∥ 𝜖𝑡 + 𝑟𝑡 ∥2

Lemma 3. Under Assumption 1-4 above, we have

𝜂 − 2𝐿𝜂2

2

𝑇−1∑︁
𝑡=0

E ∥ 1

𝑛

𝑛∑︁
𝑖=1

∇𝑓𝑖 (𝜃𝑡𝑖 ) ∥
2 +𝜂

2

𝑇−1∑︁
𝑡=0

E ∥ ∇𝑓 ( ¯𝜃𝑡 ) ∥2

≤E𝑓 ( ¯𝜃0) − E𝑓 ( ¯𝜃∗) +
𝐿𝜂2𝜎2

1
𝑇

𝑛
+
𝑇−1∑︁
𝑡=0

E

〈
1𝑇𝑛
𝑛

(𝜖𝑡 + 𝑟𝑡 ),∇𝑓 ( ¯𝜃𝑡 )
〉

+ 𝐿

𝑇−1∑︁
𝑡=0

E ∥ 1𝑇𝑛
𝑛

(𝜖𝑡 + 𝑟𝑡 ) ∥2 +𝐿
2𝜂

2𝑛

𝑇−1∑︁
𝑡=0

E ∥ Θ𝑡 − 1𝑛1𝑇𝑛
𝑛

Θ𝑡 ∥2

Substituting Lemma 2 into Lemma 3, Theorem 1 can be further
deduced. □
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Theorem 1 characterizes the convergence rate of the average

gradient of all local optimization variables 𝜃𝑡
𝑖
and the gradient of

the average local model
¯𝜃𝑡 with the communication error and the

model-components selection error. We choose an appropriate step

length 𝜂 in Theorem 1 to derive the following result.

Corollary 1. Let 𝜂 = 1

2𝐿+𝜎1

√
𝑇 /𝑛

. If 𝑇 ≥ 216𝑛2𝐿2

𝜎2

1
(1−𝜌 )2

and 𝑇 ≥

9𝑛5𝐿4

(
𝜎2

1

1−𝜌2
+ 9𝜎2

2

(1−𝜌 )2

)
2

𝜎6

1
(E𝑓 ( ¯𝜃 0 )−E𝑓 ( ¯𝜃 ∗ )+𝐿)2

, we have

𝐷2 ·
1

𝑇

𝑇−1∑︁
𝑡=0

E ∥ ∇𝑓 ( ¯𝜃𝑡 ) − 1

2𝜂𝐷2

1𝑇𝑛
𝑛

(𝜖𝑡 + 𝑟𝑡 ) ∥2

≤Bound1 +
(

9𝐿2

(1 − 𝜌)2𝐷3𝑇
+ 4𝐿2

𝑛𝑇
+ 2𝐿𝜎1

𝑛
√
𝑛𝑇

+

1

2𝐷2

(
2𝐿
√
𝑛𝑇

+ 𝜎1

𝑛

)
2
)
·
(𝑇−1∑︁
𝑡=0

E ∥ 𝜖𝑡 ∥2︸     ︷︷     ︸
MSE

+
𝑇−1∑︁
𝑡=0

Δ(𝑡 )
)

where the communication aggregation error term and the model-
components selection error term are not included in Bound1:

Bound1 =
2𝐿

𝑇

(
E𝑓 ( ¯𝜃0) − E𝑓 ( ¯𝜃∗)

)
+ 3𝐿2

2𝑇 (1 − 𝜌2)𝐷3

E ∥ Θ0 ∥2

+
𝐿2

(
E ∥ Θ0 − 1𝑛1𝑇𝑛

𝑛 Θ0 ∥2 −E ∥ Θ∗ − 1𝑛1𝑇𝑛
𝑛 Θ∗ ∥2

)
2𝑛𝑇𝐷3

+
2𝜎1

(
E𝑓 ( ¯𝜃0) − E𝑓 ( ¯𝜃∗) + 𝐿

)
√
𝑛𝑇

.

In Corollary 1, the bound sharply decreases as the number of

clients 𝑛 and training round 𝑇 increase. And it also shows that the

communication error MSE caused by over-the-air aggregation may

inhibit the convergence of the decentralized learning process. We

can also know another fact that if there is no communication error

and no model-components selection error, Corollary 1 indicates a

convergence rate of O( 1√
𝑛𝑇

) when 𝑇 is sufficiently large.

4.3 Transmit Power Allocation of DLLR-OA
From the above analysis, we find that the convergence result of

Algorithm 1 may be affected by the communication error MSE.

In this part, we will consider minimizing MSE by proper power

allocation to speed up the convergence.

We assume that the channel state information is only available

at the corresponding transmitter. i.e., only the client- 𝑗 has the infor-

mation of 𝒉𝑡𝑖 𝑗 = [ℎ𝑖 𝑗 (1)𝑡 , · · · , ℎ𝑡𝑖 𝑗 (𝑑
𝑡
𝑖
)]𝑇 in the process of sending

signals from client- 𝑗 to client-𝑖 .

Theoretically, if the transmit power of each client is not limited,

we can set 𝑏𝑡
𝑖 𝑗
(𝑘) =

𝑊 𝑡
𝑖 𝑗

ℎ𝑡
𝑖 𝑗
(𝑘 ) to ensure that client-𝑖 receives an un-

biased estimate of aggregated neighboring information. However,

when the transmit power of each client is constrained, which is

often a very common situation in real life, it is difficult for the

client-𝑖 to receive an unbiased estimate of the transmitted signal.

In round t, all client- 𝑗 ∈ 𝑁 𝑡
𝑖
optimize their local power allocation

for transmitting the selected model-components over the 𝑑𝑡
𝑖
sub-

carriers to client-𝑖 , aiming to minimize the communication error so

as to achieve a good estimation of

∑
𝑗∈𝑁 𝑡

𝑖
𝑊 𝑡

𝑖 𝑗
𝐶𝑡
𝑖
(𝜃𝑡

𝑗
) (or its scaled

version).

Since the power needs to be re-allocated in each round, in order

to simplify notation, we omit t when it is clear from the context in

the following.

For the neighboringmodel-components information in the subcarrier-

𝑘 (𝑘 = 1, · · · , 𝑑𝑖 ) received by client-𝑖 , we introduce the model-

components estimator coefficients {𝛼𝑖 (𝑘)}𝑑𝑖𝑘=1
(themodel-components

estimation error incurred by the lossy communication) to correct

the aggregated information obtained. That is to say, (𝑅𝑡
𝑖
)𝐼 (𝑘 ) =

𝛼𝑖 (𝑘)
( ∑

𝑗∈𝑁𝑖
𝑏𝑖 𝑗 (𝑘)ℎ𝑖 𝑗 (𝑘)𝑥𝑖 𝑗 (𝑘) + 𝑛𝑖 (𝑘)

)
is actually an estimator

of (∑𝑗∈𝑁𝑖
𝑊𝑖 𝑗𝐶

𝑡
𝑖
(𝜃 𝑗 ))𝐼 (𝑘 ) =

∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘). Then the aggrega-

tion error in every round can be denoted as:

MSE =

𝑛∑︁
𝑖=1

( 𝑑𝑖∑︁
𝑘=1

( ∑︁
𝑗∈𝑁𝑖

[𝛼𝑖 (𝑘)𝑏𝑖 𝑗 (𝑘)ℎ𝑖 𝑗 (𝑘) −𝑊𝑖 𝑗 ]𝑥𝑖 𝑗 (𝑘)
)
2 +

𝑑𝑖∑︁
𝑘=1

𝜎2𝛼2

𝑖 (𝑘)
)

An intuitive power allocation strategy is to solve the following

optimization problem:

P1: min

𝜶 ,𝒃
MSE

s.t.

𝑑𝑖∑︁
𝑘=1

|𝑏𝑖 𝑗 (𝑘)𝑥𝑖 𝑗 (𝑘) |2 ≤ 𝐸𝑖 𝑗 , ∀𝑖 ∈ V, 𝑗 ∈ 𝑁𝑖

𝛼𝑖 (𝑘) ≥ 0, ∀𝑖 ∈ V, 𝑗 ∈ 𝑁𝑖 , 𝑘 ∈ {1, · · · , 𝑑𝑖 }
𝑏𝑖 𝑗 (𝑘) ≥ 0, ∀𝑖 ∈ V, 𝑘 ∈ {1, · · · , 𝑑𝑖 }

Obviously, it is difficult to optimize 𝜶 , 𝒃 simultaneously to solve

P1, and a feasible approach [27] is to optimize 𝜶 , 𝒃 alternately.

i.e., first initialize 𝒃 , then find 𝜶 that minimizes MSE and satisfies

the constraint, then use the obtained 𝜶 to find 𝒃 that satisfies the

constraint and minimizes MSE, and so on alternately. This method

not only has a large computational overhead but also requires global

information for each iteration to optimize𝜶 , 𝒃 for each client, which
is difficult to implement in practice.

Therefore, we focus on designing a sub-optimal solution for the

power allocation and the setting of the model component estima-

tion coefficients. In the process of transmitting signals to client-𝑖 ,

our objective is to minimize the communication aggregation error

with the guarantee that 𝛼𝑖 (𝑘)
( ∑

𝑗∈𝑁𝑖
𝑏𝑖 𝑗 (𝑘)ℎ𝑖 𝑗 (𝑘)𝑥𝑖 𝑗 (𝑘) + 𝑛𝑖 (𝑘)

)
is an unbiased estimate of

∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘). Specifically, this opti-
mization problem P2 can be divided into two sub-problems:

In the sub-problem of transmitter-j. Unbiased estimation of

the model-components information is often not possible due to the

constrained transmit power. This makes it meaningful to achieve an

unbiased estimation of a scaled version of the model-components

information. Therefore the goal of the transmitter is to rationally

allocate the available power to get an unbiased estimation of the

scaled version.

P2 (Transmitter-j):
max

{𝑏𝑖 𝑗 (𝑘 ) }
𝜁𝑖 𝑗

s.t. 𝜁𝑖 𝑗𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘) − 𝑏𝑖 𝑗 (𝑘)ℎ𝑖 𝑗 (𝑘)𝑥𝑖 𝑗 (𝑘) = 0, ∀𝑘 ∈ {1, · · · , 𝑑𝑖 }
𝑑𝑖∑︁
𝑘=1

|𝑏𝑖 𝑗 (𝑘)𝑥𝑖 𝑗 (𝑘) |2 ≤ 𝐸𝑖 𝑗 ,
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𝑏𝑖 𝑗 (𝑘) ≥ 0, ∀𝑘 ∈ {1, · · · , 𝑑𝑖 }
The first constraint above makes it possible for the transmitter-j

to transmit signals unbiased from the scaled versions of the cor-

responding product of weights and model-components. And the

second and third are the power constraints. By using Karush-Kuhn-

Tucker (KKT) conditions, the solution of the power allocation prob-

lem for transmitter-j can be derived as follows:

𝜁 ∗𝑖 𝑗 =

√√√√√√ 𝐸𝑖 𝑗

𝑊 2

𝑖 𝑗

𝑑𝑖∑
𝑘=1

𝑥2

𝑖 𝑗
(𝑘 )

ℎ2

𝑖 𝑗
(𝑘 )

, 𝑏∗𝑖 𝑗 (𝑘) =
𝜁 ∗
𝑖 𝑗
𝑊𝑖 𝑗

ℎ𝑖 𝑗 (𝑘)
(3)

In the sub-problem of receiver-i. model-components estima-

tion coefficients {𝛼𝑖 (𝑘)}𝑘∈{1,· · · ,𝑑𝑖 } need to be set appropriately to

minimize communication errors and to achieve unbiased estimation

of model component information. (The scaled version is appropri-

ately corrected by the model component estimation coefficients to

approximate the unscaled version)

P2 (Receiver-i):

min

{𝛼𝑖 (𝑘 ) }

𝑑𝑖∑︁
𝑘=1

( ∑︁
𝑗∈𝑁𝑖

(
𝛼𝑖 (𝑘)𝜁𝑖 𝑗𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘) −𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘)

) )2

+
𝑑𝑖∑︁
𝑘=1

𝜎2𝛼2

𝑖 (𝑘)

s.t.

∑︁
𝑗∈𝑁𝑖

(
𝛼𝑖 (𝑘)𝜁𝑖 𝑗𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘) −𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘)

)
= 0, ∀𝑘 ∈ {1, · · · , 𝑑𝑖 }

𝛼𝑖 (𝑘) ≥ 0, ∀𝑘 ∈ {1, · · · , 𝑑𝑖 }
The first constraint indicates that the scaled version of the cor-

responding product of weights and model-components with the

adjustment of the model-components estimation coefficients is zero

deviation from the unscaled version. And for given {𝜁 ∗
𝑖 𝑗
}, it holds

1

max

𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

≤ 𝛼∗𝑖 (𝑘) =

∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘)∑
𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗
𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘)

≤ 1

min

𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

(4)

We note that in the above, 𝑥𝑖 𝑗 (𝑘) is not available at receiver-i. So
it is wise to use one of the following two considerations as an

approximation to 𝛼∗
𝑖
(𝑘):

𝛼∗𝑖 ≃ 𝛼
†
𝑖
=

|𝑁𝑖 |∑
𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

(5)

𝛼∗𝑖 ≃ 𝛼
‡
𝑖
=

∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗𝜁
∗
𝑖 𝑗

(6)

where

∑
𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗
or

∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗𝜁
∗
𝑖 𝑗
can be transmitted to receiver-i through

a control channel.

The most important feature of this resource allocation scheme

is that it is considered separately by the transmitter side and the

receiver side. During the communication, the target information is

manipulated in two steps—scaling and recovery—in order to utilize

the available resources sufficiently.

Remark 2. From the above discussion, if the transmit power con-

straints are large enough (𝐸𝑖 𝑗 ≥𝑊 2

𝑖 𝑗

∑𝑑𝑖
𝑘=1

𝑥2

𝑖 𝑗 (𝑘 )
ℎ2

𝑖 𝑗
(𝑘 ) , ∀𝑖, 𝑗 ), with scaling

factor 𝜁𝑖 𝑗 and coefficient 𝛼𝑖 (𝑘) equal to 1, we can recover𝑏𝑖 𝑗 (𝑘) =
𝑊𝑖 𝑗

ℎ𝑖 𝑗

to make each receiver obtain an unbiased estimate of the aggregated
neighboring information. However, a potential possibility of our mech-
anism is able to reduce the variance of the network noise while ob-
taining an unbiased estimate by transmitting a multiple of 𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘 )

ℎ𝑖 𝑗

and going through a subsequent recovery operation at the receiver
side.

Remark 3. By solving the sub-problem P2, we obtain the transmit
power scaling factor 𝑏∗

𝑖 𝑗
(𝑘) as in eq. (3). One possible solution to solve

P1 mentioned above is to alternately optimize 𝜶 and 𝒃 , which may
cause a computational bottleneck. Since we have already obtained
𝑏∗
𝑖 𝑗
(𝑘) by solving P2, can we directly substitute it back to problem

P1 to obtain the optimal 𝛼𝑖 (𝑘) thus avoiding a lot of alternating
optimizations? If so, after a simple algebraic transformation, the
optimal 𝛼𝑖 (𝑘) of the P1 problem can be expressed as

𝛼𝑖 (𝑘) =

∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘)∑
𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗
𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘) + 𝜎2∑

𝑗 ∈𝑁𝑖

𝜁 ∗
𝑖 𝑗
𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘 )

(7)

However, eq. (7) shows that receiver-i has access to the model com-
ponent information 𝑥𝑖 𝑗 (𝑘) of its neighbors, which is not reasonable in
practice. Therefore, a presumptuous attempt to solve P1 is not feasible.

Moreover, theoretically, if the variance 𝜎2 of the channel noise
is much smaller than

∑
𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗
𝑊𝑖 𝑗𝑥𝑖 𝑗 (𝑘), eq. (7) can be considered

equivalent to the 𝛼∗
𝑖
(𝑘) obtained by solving the receiver sub-problem

of P2 as in eq. (4).

Remark 4. Due to the unavailability of individual information,
it is also difficult to solve P2 in practical scenarios, which motivates
an approximate solution. The approximation of 𝛼∗

𝑖
(𝑘) in eq. (4) is

given by eq. (5) or (6), and the corresponding error can be bounded as
follows, respectively:

|𝛼∗𝑖 (𝑘) − 𝛼
†
𝑖
| ≤ max{ 1

min

𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

− |𝑁𝑖 |∑
𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

,
|𝑁𝑖 |∑

𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

− 1

max

𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

}

(8)

|𝛼∗𝑖 (𝑘) − 𝛼
‡
𝑖
| ≤ max{ 1

min

𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

−

∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗𝜁
∗
𝑖 𝑗

,

∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗∑
𝑗∈𝑁𝑖

𝑊𝑖 𝑗𝜁
∗
𝑖 𝑗

− 1

max

𝑗∈𝑁𝑖

𝜁 ∗
𝑖 𝑗

}

(9)

4.4 Privacy Guarantee of DLLR-OA
In this part, we give an analysis on privacy preservation of DLLR-
OA. First, we introduce some definitions of privacy protection.

Definition 3. (Privacy Preserving). [26] A mechanism M:
M(𝑋 ) → 𝑌 is privacy preserving if the input 𝑋 cannot be uniquely
derived from the output 𝑌 .

Definition 4. ((𝜺, 𝜹)-DP). Given a dataset with domain D and
range R, a randomized mechanism M preserves (𝜀, 𝛿)-DP if for any
two adjacent datasets 𝑑, 𝑑

′ ∈ D and any subset of outputs S ⊆ R it
holds that

𝑃𝑟 (𝑀 (𝑑) ∈ S) ≤ 𝑒𝜀𝑃𝑟 (𝑀 (𝑑
′
) ∈ S) + 𝛿,

where 𝜀 ≥ 0 is a constant and 𝛿 is the probability of breaking this
lower bound.
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The 𝐿2-sensitivity of the query function can be used to analyze

DP, we elaborate it in Definition 5.

Definition 5. (𝑳2-sensitivity). For a vector-valued function 𝑓 :

D → R𝑑 , the 𝐿2-sensitivity of f is

Δ2 𝑓 = max

𝑑1,𝑑2∈D
∥ 𝑓 (𝑑1) − 𝑓 (𝑑2) ∥2,

where 𝑑1 and 𝑑2 differ in at most one element.

Lemma 4. (GaussianMechanism). [5] Let 𝜀 ∈ (0, 1) be arbitrary.
For 𝑐2 > 2𝑙𝑛(1.25/𝛿), the Gaussian Mechanism with parameter 𝜎 ≥
𝑐Δ2 𝑓 /𝜀 is (𝜀, 𝛿)-differentially private.

We consider that each client-𝑖 is honest but curious about its

neighboring model-components information. Since over-the-air ag-

gregationmakes each client-𝑖 receive neighboringmodel-components

information in the form of an aggregated sum, we first analyze the

privacy performance of Algorithm 1 by considering this aggregated

sum as a whole, which is given by Theorem 2.

Theorem 2. In round t, Algorithm 1 satisfies (𝜀𝑡
𝑖
(𝑘), 𝛿)-DP for

aggregated neighboring information in any subcarrier-𝑘 received by
client-𝑖 , where

𝜀𝑡𝑖 (𝑘) =
2ℎ𝑡

max

∑
𝑗∈𝑁 𝑡

𝑖

√︃
𝐸𝑡
𝑖 𝑗

𝜎

√︂
2𝑙𝑛

1.25

𝛿

and ℎ𝑡
max

= max

𝑖, 𝑗,𝑘
ℎ𝑡
𝑖 𝑗
(𝑘).

Proof (Theorem 2). Wefirstly bound the 𝐿2-sensitivity of 𝑧𝑡𝑖 (𝑘) =∑
𝑗∈𝑁 𝑡

𝑖
𝑏𝑡
𝑖 𝑗
(𝑘)ℎ𝑡

𝑖 𝑗
(𝑘)𝑥𝑡

𝑖 𝑗
(𝑘). Consider two datasets D and D′

, 𝐿2-
sensitivity can be expressed as
Δ2 𝑓

= ∥ 𝑧𝑡𝑖 (𝑘, D) − 𝑧𝑡𝑖 (𝑘, D
′ ) ∥

= ∥
∑︁
𝑗 ∈𝑁 𝑡

𝑖

𝑏𝑡𝑖 𝑗 (𝑘, D)ℎ𝑡𝑖 𝑗 (𝑘 )𝑥𝑡𝑖 𝑗 (𝑘, D) −
∑︁
𝑗 ∈𝑁 𝑡

𝑖

𝑏𝑡𝑖 𝑗 (𝑘, D
′ )ℎ𝑡𝑖 𝑗 (𝑘 )𝑥𝑡𝑖 𝑗 (𝑘, D

′ ) ∥

Since
𝑑𝑖∑
𝑘=1

|𝑏𝑡
𝑖 𝑗
(𝑘)𝑥𝑡

𝑖 𝑗
(𝑘) |2 ≤ 𝐸𝑡

𝑖 𝑗
, we have |𝑏𝑡

𝑖 𝑗
(𝑘)𝑥𝑡

𝑖 𝑗
(𝑘) | ≤

√︃
𝐸𝑡
𝑖 𝑗
.

And ℎ𝑡
max

= max

𝑖, 𝑗,𝑘
ℎ𝑡
𝑖 𝑗
(𝑘), then 𝐿2-sensitivity can be bounded as

Δ2 𝑓 ≤ 2ℎ𝑡
max

∑︁
𝑗∈𝑁 𝑡

𝑖

√︃
𝐸𝑡
𝑖 𝑗

□

Further, if client-𝑖 makes aggregation of neighboring model-

components available to it by some means, obtaining information

about the model-components of one of its neighbors is also impos-

sible, and we give the result in Theorem 3.

Theorem 3. At round t, for an honest but curious receiver-𝑖 , if
|𝑁 𝑡

𝑖
| > 1, Algorithm 1 can preserve the privacy of each neighboring

model component 𝑥𝑡
𝑖 𝑗
(𝑘).

Proof (Theorem 3). If client-𝑖 has access to aggregation of neigh-
boringmodel-components by somemeans,

∑
𝑗∈𝑁 𝑡

𝑖
𝑏𝑡
𝑖 𝑗
(𝑘)ℎ𝑡

𝑖 𝑗
(𝑘)𝑥𝑡

𝑖 𝑗
(𝑘) =∑

𝑗∈𝑁 𝑡
𝑖
𝜁 𝑡
𝑖 𝑗
𝑊 𝑡

𝑖 𝑗
𝑥𝑡
𝑖 𝑗
(𝑘) is available for client-𝑖 .

Under the assumption that |𝑁 𝑡
𝑖
| > 1, whether client-𝑖 receives the

model-components estimation coefficient𝛼𝑡
𝑖
(𝑘) in the form of (5) or (6),

client-𝑖 can know all 𝜁 𝑡
𝑖 𝑗
(𝑘) (∀𝑗 ∈ 𝑁 𝑡

𝑖
) if and only if 𝜁 𝑡

𝑖 𝑗1
(𝑘) = 𝜁 𝑡

𝑖 𝑗2
(𝑘)

(∀𝑗1, 𝑗2 ∈ 𝑁 𝑡
𝑖
and 𝑗1 ≠ 𝑗2). At this point,

∑
𝑗∈𝑁 𝑡

𝑖
𝑊 𝑡

𝑖 𝑗
𝑥𝑡
𝑖 𝑗
(𝑘) is avail-

able for client-𝑖 . However, this single equation has |𝑁 𝑡
𝑖
| unknowns.

Hence, client-𝑖 can not have a unique solution for 𝑥𝑡
𝑖 𝑗
(𝑘) ( 𝑗 ∈ 𝑁 𝑡

𝑖
)

since the number of unknowns |𝑁 𝑡
𝑖
| is greater than the number of

equations, which is 1. □

5 EXPERIMENTS
In this part, we perform extensive experiments to evaluate our work.

The details are shown as follows.

5.1 Experimental Setup
In our experiments, we train ResNet-18 [8] model on MNIST [11]

and CIFAR-10 [10] datasets in different resource-constrained sce-

narios. We evaluate our work against the following baselines with

sufficient available resources:

• Local is implemented by each client using its own data based

on SGD algorithm, without any communication.

• D-PSGD [13] is based on the SGD algorithm for parallel

training of all clients, considering neither constrained com-

munication resources nor network noise.

• D-PSGD (noise) takes into account network noise compared

to D-PSGD, but is still based on unconstrained communica-

tion resources.

For an arbitrary client-𝑖 ∈ V in round 𝑡 , we consider the follow-

ing three model-components selection strategies according to the

number of subcarriers 𝑑𝑡
𝑖
of the corresponding channel:

• Strategy-1: Randomly select 𝑑𝑡
𝑖
coordinates.

• Strategy-2: Select the top-𝑑𝑡
𝑖
coordinates corresponding to

the 𝐿2 parametrization of the model-components.

• Strategy-3: Select the top-𝑑𝑡
𝑖
coordinates corresponding to

the 𝐿2 parametrization of the gradient components.

For all clients in round 𝑡 , we can get decentralized learning systems

with different restriction levels of subcarriers LS by setting different
𝑑𝑡
𝑖
≤ 𝑑 (𝑖 ∈ V), where 𝜃𝑖 ∈ R𝑑 . Take MNIST dataset in Table 2

as an example, 1○ 𝐿𝑆 = 1.00, 2○ 𝐿𝑆 = 0.50, 4○ 𝐿𝑆 = 0.10 indicate

that each client can receive a full model, 50% of model, and 10%

of model information, respectively. And 3○ 𝐿𝑆 = 0.50 means the

clients receiving 75% of models, 50% of models and 25% of models

information are each 1/3. We can compare 2○ 𝐿𝑆 = 0.50 and 3○ 𝐿𝑆 =

0.50 to explore the impact of heterogeneous limited subcarriers on

decentralized learning performance. As for the transmit power

limit 𝐸𝑡
𝑖 𝑗
, we let 𝐸𝑡

𝑖 𝑗
= 𝛽 (∑𝑑𝑡

𝑖

𝑘=1
(
𝑊 𝑡

𝑖 𝑗
𝑥𝑡
𝑖 𝑗
(𝑘 )

ℎ𝑡
𝑖 𝑗
(𝑘 ) )2), where 𝛽 > 1 indicates

excess transmit power, 𝛽 = 1 indicates proper transmit power, and

𝛽 < 1 indicates insufficient transmit power. By adjusting different

𝛽 values, we can set different levels of transmit power constraints.

In particular, we satisfy the heterogeneity of the limited transmit

power by adding a Gaussian noise for each 𝛽 in 𝐸𝑡
𝑖 𝑗
. Without loss of

generality, we take the variance of the channel noise as 𝜎2 = 0.0001

and {ℎ𝑖 𝑗 (𝑘)} are independent and identically distributed Rayleigh

random variables with mean 1. In all our experiments, the number

of clients is 12, the batch size is 128, the number of local training

epochs is 5 and the learning rate is 0.001.
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Table 2: Performance comparison of decentralized learning with different restriction levels of subcarriers based on different
model-components selection strategies.

Dataset

Restriction level Strategy-1 Strategy-2 Strategy-3

of subcarriers Acc. (%) Average Comm.cost (𝑀𝐵) Acc. (%) Average Comm.cost (𝑀𝐵) Acc. (%) Average Comm.cost (𝑀𝐵)

MNIST

Local 98.46 - 98.46 - 98.46 -

D-PSGD LS=1.00 99.50 2836.55 99.50 2836.55 99.50 2836.55

D-PSGD (noise) LS=1.00 99.49 2836.55 99.49 2836.55 99.49 2836.55

1○ LS=1.00 99.49 2836.55 99.49 2836.55 99.49 2836.55

2○ LS=0.50 99.42 1404.27 99.44 2804.52 99.51 2324.74

3○ LS=0.50 99.36 1416.05 99.03 2761.47 99.48 2322.40

4○ LS=0.10 99.58 263.74 98.49 2115.99 99.10 229.92

CIFAR-10

Local 64.03 - 64.03 - 64.03 -

D-PSGD LS=1.00 83.13 2830.47 83.13 2830.47 83.13 2830.47

D-PSGD (noise) LS=1.00 83.70 2830.47 83.70 2830.47 83.70 2830.47

1○ LS=1.00 83.24 2830.47 83.24 2830.47 83.24 2830.47

2○ LS=0.60 80.19 1660.75 82.26 2821.91 82.25 2045.41

3○ LS=0.60 79.74 1659.45 79.82 2816.92 82.25 2035.29

4○ LS=0.30 75.39 809.32 65.01 2744.09 81.56 1100.48

All the experiments are implemented in PyTorch 1.11.0, Python

3.8, Cuda 11.3. And we run them on a Cloud Server with AMD EPYC

7642 48-core processors and total 4 RTX 3090 GPUs in Ubuntu 20.04.

5.2 Numerical Results
We evaluate our work using metrics: training loss, test accuracy,

average communication cost and communication rounds. In par-

ticular, we explore the effects of the constraints on subcarries and

transmit power separately.

Impact of limited subcarriers. On the MNIST and CIFAR-10

datasets, we compare the impact of limited subcarriers on decen-

tralized learning under three different model-components selection

strategies within 100 communication rounds.

As shown in Table 2, in general, the smaller the average number

of subcarriers, the lower the test accuracy. The results show that

the test accuracy of decentralized learning in resource-constrained

situations outperforms that of fully local training method Local.

For example, on CIFAR-10, the average test accuracy of 4○ LS =

0.3 under the three strategies improved by 9.96% over that of Local.

Furthermore, when the average restriction levels of subcarriers are

same, the test accuracy of decentralized learning is lower with het-

erogeneous subcarrier restrictions (𝑑𝑡
𝑖
may be different for varying

𝑖). Take 2○ and 3○ on CIFAR-10 with Strategy-2 as an example, the

case 3○ with higher heterogeneity is 2.44% less accurate than the

test results of 2○. Further, the results show that transmitting the

partial model rather than the full model determined by a proper

model-components selection strategy is a communication-efficient

mechanism. On MNIST, this mechanism achieves an accuracy com-

parable to traditional D-PSGD on the basis of reducing the commu-

nication cost by 91.89%. On CIFAR-10, it reduces the communication

cost by 61.12%, bringing only 1.57% accuracy reduction.

Impact of limited transmit power. On MNIST and CIFAR-10,

we compare the impact of limited transmit power on decentral-

ized learning under three different model-components selection

strategies within 100 communication rounds. Note that here the

number of subcarriers is also restricted, and the restriction levels

correspond to 2○ 𝐿𝑆 = 0.5 for MNIST and 2○ 𝐿𝑆 = 0.6 for CIFAR-10

in Table 2.

As shown in Figure 3-4, proper transmit power (𝛽 = 1.0) or excess
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Figure 3: Test accuracy comparison of decentralized learning
with different power limits on MNIST.
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Figure 4: Performance comparison of decentralized learning
with different power limits on CIFAR-10, with test accuracy
on the top and training loss on the bottom.

transmit power (𝛽 = 1.5) leads to a faster convergence rate and

a higher test accuracy than insufficient transmit power (𝛽 = 0.5).

In particular, under model-components selection strategy-3, the

excess transmit power (𝛽 = 1.5) enables decentralized learning with

the limited number of subcarriers to reduce the communication

cost by 29.04%, compared with D-PSGD and D-PSGD (noise) on

CIFAR-10. However the accuracy of them is about the same. This

result is due to the fact that during the communication process,

the SNR is improved by amplifying the signal, thereby reducing

209
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the impact of noise after subsequent recovery operations at the

receiver side.

6 CONCLUSION
In this paper, we proposed the DLLR-OA algorithm integrating the

communication resources allocation and privacy guarantee. Theo-

retically, we characterized the inhibition of the model-components

selection error and compound communication errors caused by

communication resources constraints on the convergence of decen-

tralized learning. And we accelerated the convergence by designing

an efficient resource allocation scheme. Moreover, we provided

quantitative privacy guarantee with the help of differential privacy

techniques and over-the-air computation mechanism. To further

evaluate our work, we conducted sufficient experiments to show

the possibility to achieve a high accuracy under communication

resources constrained settings.
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