
A Unified Algorithm Framework for
Unsupervised Discovery of Skills based on

Determinantal Point Process

Jiayu Chen
Purdue University

West Lafayette, IN 47907
chen3686@purdue.edu

Vaneet Aggarwal
Purdue University

West Lafayette, IN 47907
vaneet@purdue.edu

Tian Lan
The George Washington University

Washington, DC 20052
tlan@gwu.edu

Abstract

Learning rich skills under the option framework without supervision of external
rewards is at the frontier of reinforcement learning research. Existing works mainly
fall into two distinctive categories: variational option discovery that maximizes
the diversity of the options through a mutual information loss (while ignoring
coverage) and Laplacian-based methods that focus on improving the coverage of
options by increasing connectivity of the state space (while ignoring diversity). In
this paper, we show that diversity and coverage in unsupervised option discovery
can indeed be unified under the same mathematical framework. To be specific, we
explicitly quantify the diversity and coverage of the learned options through a novel
use of Determinantal Point Process (DPP) and optimize these objectives to discover
options with both superior diversity and coverage. Our proposed algorithm, ODPP,
has undergone extensive evaluation on challenging tasks created with Mujoco
and Atari. The results demonstrate that our algorithm outperforms state-of-the-art
baselines in both diversity- and coverage-driven categories.

1 Introduction

Reinforcement Learning (RL) has achieved impressive performance in a variety of scenarios, such
as games [1, 2], robotic control [3, 4], and transportation [5, 6]. However, most of its applications
rely on carefully-crafted, task-specific rewards to drive exploration and learning, limiting its use
in real-life scenarios often with sparse or no rewards. To this end, utilizing unsupervised option
discovery – acquiring rich skills without supervision of environmental rewards by building temporal
action-sequence abstractions (denoted as options), to support efficient learning can be essential. The
acquired skills are not specific to a single task and thus can be utilized to solve multiple downstream
tasks by implementing a corresponding meta-controller that operates hierarchically on these skills.

Existing unsupervised option discovery approaches broadly fall into two categories: (1) Variational
option discovery, e.g., [7, 8, 9], which aims to improve diversity of discovered options by maximizing
the mutual information [10] between the options and trajectories they generate. It tends to reinforce
already discovered behaviors for improved diversity rather than exploring (e.g., visiting poorly-
connected states) to discover new ones, so the learned options may have limited coverage of the
state space. (2) Laplacian-based option discovery, e.g., [11, 12], which clusters the state space using
a Laplacian spectrum embedding of the state transition graph, and then learns options to connect
different clusters. This approach is shown to improve the algebraic connectivity of the state space
[13] and reduce expected covering time during exploration. However, the discovered options focus on
improving connectivity between certain clusters and thus could be homogeneous and lack diversity.
Note that coverage in this paper is defined as a property with respect to a single option, which can be
measured as the number of state clusters traversed by an option trajectory. By maximizing coverage

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1: Illustrative example. (a) Options from variational methods have good diversity but poor
(single-option) coverage of the corridors. (b) Each option from Laplacian-based methods aims to
improve its coverage by visiting poorly-connected corner states but tends to be homogeneous as the
others. (c) Options from our proposed method have both superior diversity and coverage. (d) The
coverage and diversity measure of the options in (a)-(c) defined with DPP (i.e., Eq.(7) and (9)).

of each single option and diversity among different options in the meanwhile, the overall span of
all options can be maximized. However, diversity and coverage may not go hand-in-hand in option
discovery, as visualized in Figure 1(a)(b). Attempts such as [14, 15] have been made to address this
gap, but they rely on expert datasets that contain diverse trajectories spanning the whole state spaces
and lack an analytical framework for diversity and coverage of the discovered options.

This paper introduces a novel framework for unsupervised option discovery by utilizing Determinantal
Point Process (DPP) to quantify and optimize both diversity and (single-option) coverage of the
learned options. A DPP establishes a probability measure for subsets of a set of items. The expected
cardinality, representing the average size of random subsets drawn according to the DPP, serves as a
diversity measure, as it reflects the likelihood of sampling diverse items and the number of distinct
items in the set. First, to enhance option diversity, we apply a DPP to the set of trajectories for
different options. Maximizing the expected cardinality under this DPP encourages agents to explore
diverse trajectories under various options. Second, we create another DPP for the set of visited states
in a trajectory and maximize its expected cardinality. This prompts the agent to visit distant states from
distinct state clusters through each trajectory, leading to higher single-option coverage. As shown
in Figure 1(d), these objectives effectively measure diversity and coverage of the options. Lastly,
to establish the option-policy mapping and so learn multiple options simultaneously, we maximize
the mutual information between the option choice and related trajectories, as in variational option
discovery. Rather than using the whole trajectory [16] or only the goal state [7], our solution extract
critical landmark states from a trajectory via a maximum a posteriori (MAP) inference of a DPP,
allowing noise mitigation while retaining vital information. In conclusion, our proposed framework
unifies diversity and coverage in option discovery using a mathematical modeling tool—DPP. Our
key contributions are as follows. (1) To the best of our knowledge, this is the first work to adopt DPP
for option discovery. (2) The proposed unified framework enables explicit maximization of option
diversity and coverage, capturing advantages of both variational and Laplacian-based methods. (3)
Empirical results on a series of challenging RL tasks demonstrates the superiority of our algorithm
over state-of-the-art (SOTA) baselines.

2 Background and Related Works

2.1 Unsupervised Option Discovery

As proposed in [17], the option framework consists of three components: an intra-option policy
π : S ×A → [0, 1], a termination condition β : S → {0, 1}, and an initiation set I ⊆ S. An option
< I, π, β > is available in state s if and only if s ∈ I . If the option is taken, actions are selected
according to π until it terminates according to β (i.e., β = 1). The option framework enables learning
and planning at multiple temporal levels and has been widely adopted in RL. Multiple research
areas centered on this framework have been developed. Unsupervised Option Discovery aims at
discovering skills that are diverse and efficient for downstream task learning without supervision from
rewards, for which algorithms have been proposed for both single-agent and multi-agent scenarios
[18, 19, 20, 21]. Hierarchical Reinforcement Learning [22, 23] and Hierarchical Imitation Learning
[24, 25, 26], on the other hand, aim at directly learning a hierarchical policy incorporated with skills,
either from interactions with the environment or expert demonstrations.

2

We focus on single-agent unsupervised option discovery. One primary research direction in this
field is variational option discovery, which aims to learn a latent-conditioned option policy π(a|s, c),
where c represents the option latent. Diverse options can be learned by maximizing the mutual
information between the option choice c and the trajectory generated by the policy conditioned on c.
As shown in [27], this objective is equivalent to a Variational Autoencoder (VAE) [28]. Variational
option discovery can be categorized into two groups based on the structure of the VAE used: (1)
Trajectory-first methods, such as EDL [14] and OPAL [15], follow the structure τ

E−→ c
D−→ τ .

Here, τ represents the agent’s trajectory, while D and E denote the VAE’s decoder and encoder,
respectively. In this case, the policy network π(a|s, c) serves as the decoder D. The effectiveness of
these methods rely on the quality of the expert trajectory set used as the encoder’s input. For instance,
OPAL employed for Offline RL [29] assumes access to a trajectory dataset generated by a mix of
diverse policies starting from various initial states. Similarly, in EDL, highly-efficient exploration
strategies such as State Marginal Matching [16] are utilized to simulate perfect exploration and obtain
a set of trajectories (τ) with good state space coverage for option learning. (2) Option-first methods,
such as VIC [7], DIAYN [8], VALOR [27], and DADS [9], follow the structure c

E−→ τ
D−→ c

and learn π(a|s, c) as the encoder E. Unlike EDL and OPAL learning from "exploration experts",
these methods start from a random policy to discover diverse options. However, due to challenges in
exploration, they fail to expand the set of states visited by the random policy, leading to poor state
space coverage. For instance, in Figure 1(a), though trajectories of different options are diverse,
none of them explore the corridor. There have been more notable advancements in variational option
discovery methods, as cited in [30, 31, 32, 33, 34, 35]. A detailed comparison between these methods
and our algorithm, highlighting our contributions, can be found in Appendix B.

In this paper, we tackle a more challenging scenario where the agent must learn to identify diverse
options and thoroughly explore the environment, starting from a random policy. This approach
supports self-driven learning and exploration, rather than relying on expert policy/trajectories like
trajectory-first methods. We achieve this by integrating the variational method with another key
branch in unsupervised option discovery—Laplacian-based option discovery [11, 12]. This approach
is based on the Laplacian spectrum of the state transition graph, which can be estimated using state
transitions in the replay buffer. The state transition graph and its Laplacian matrix are formally
defined in Appendix A.1. Specifically, the approach presented in [12] first estimates the Fiedler
vector – the eigenvector associated with the second smallest eigenvalue of the Laplacian. Options are
then trained to connect states with high and low values in the Fiedler vector. These states are loosely
connected by "bottleneck" states. By connecting them with options, the algebraic connectivity of the
state space is enhanced, and thus the exploration can be accelerated [13]. However, these options
may be homogeneous. For instance, in Figure 1(b), multiple options are found to explore the right
corridor, but they all follow the same direction given by the Fiedler vector. Inspired by variational and
Laplacian-based methods, we propose a new option discovery framework that unifies the optimization
of diversity and coverage, through a novel use of DPP. As shown in Figure 1(c), multiple diverse
options are discovered, most of which traverse the "bottleneck" states to enhance coverage.

2.2 Determinantal Point Process

According to [36], given a set of itemsW = {w1, · · · , wN}, a point process P onW is a probability
measure on the set of all the subsets ofW . P is called a Determinantal Point Process (DPP) if a
random subset W drawn according to P has probability:

PL(W)(W = W) =
det(LW)∑

W ′⊆W det(LW ′)
=

det(LW)

det(L+ I)
(1)

I ∈ RN×N is the identity matrix. L = L(W) ∈ RN×N is the DPP kernel matrix, which should be
symmetric and positive semidefinite. LW ∈ R|W |×|W | is the sub-matrix of L indexed by elements
in W . Specifically, PL(W = {wi}) ∝ Lii and PL(W = {wi, wj}) ∝ LiiLjj − L2

ij where Lij
measures the similarity between item i and j. Since the inclusion of one item reduces the probability
of including similar items, sets consisting of diverse items are more likely to be sampled by a DPP.

The DPP kernel matrix L can be constructed as a Gram Matrix [37]: L = B̃T B̃ = Diag(−→q) ·BTB ·
Diag(−→q). −→q = [q1, · · · , qN] ∈ RN with qi ≥ 0 denotes the quality measure. B =

[−→
b1 · · ·

−→
bN

]
∈

RD×N is the stacked feature matrix where
−→
bi ∈ RD is the feature vector corresponding to wi. The

3

inner product of feature vectors, e.g.,
−→
bi
T−→bj , is used as the similarity measure between items inW .

From Eq. (1), we can see that PL(W = W) is propotional to the squared |W |-dimension volume of
the parallelepiped spanned by the columns of B̃ corresponding to the elements in W . Diverse sets
have feature vectors that are more orthogonal and span larger volumes, making them more probable.

The expected cardinality of samples from a DPP is an effective measure of the diversity ofW and
reflects the number of modes inW [38]. We provide detailed reasons why we choose the expected
cardinality instead of the likelihood in Eq. (1) as the diversity measure in Appendix C.1. According
to [36], the expected cardinality of a set sampled from a DPP can be calculated with Eq. (2), where
λW
i is the i-th eigenvalue of L(W). DPPs have found applications across a wide array of domains to

promote diversity due to their unique ability to model diverse subsets, such as information retrieval
[39, 40], computer vision [38], natural language processing [41, 42], and reinforcement learning
[43, 44, 45]. This motivates us to employ DPPs in skill discovery for diversity enhancement.

E
W∼PL(W)

[|W|] =
N∑
i=1

λW
i

λW
i + 1

(2)

3 Proposed Approach

In this section, we propose a DPP-based framework that unifies the variational and Laplacian-based
option discovery to get options with both superior diversity and coverage. As discussed in Section
2.1, defining an option requires relating it to its initial states s0, specifying its termination condition,
and learning the intra-option policy. Our algorithm learns a prior network Pω(c|s0) to determine the
option choice c ∈ C at an initial state, and an intra-option policy network πθ(a|s, c) to interact with
the environment using a certain option for a fixed number of steps (i.e., the termination condition).
With Pω and πθ, we can collect trajectories τ = (s0, a0, · · · , sT) corresponding to different options.

In Section 3.1, we propose LIB , a lower bound for the mutual information between the option and
the landmark states in its trajectory, inspired by variational option discovery. By introducing the
conditional variable c and maximizing LIB , we can establish the option-policy mapping and learn
multiple options simultaneously. Each option can generate specific trajectories. However, the mutual
information objective only implicitly measures option diversity as the difficulty of distinguishing them
via the variational decoder, and does not model the coverage. Thus, in Section 3.2, we additionally
introduce explicit coverage and diversity measures based on DPP as objectives. In particular, LDPP1
measures single-agent coverage as the number of landmark states traversed by an option trajectory.
Maximizing this metric encourages each option to cover a broader area in the state space. Notably,
LDPP1 generalizes the Laplacian-based option discovery objectives by employing the Laplacian
spectrum as the feature vector to construct the DPP kernel matrix. LDPP2 measures the diversity
among trajectories of the same option. By minimizing it, the consistency these trajectories can
be enhanced. LDPP3 measures the diversity among trajectories corresponding to different options,
which should be maximized to improve the diversity among various options. The rationale behind
introducing LDPP1:3 is to maximize both the coverage of each individual option and the diversity
among various options. By doing so, we can maximize the overall span of all options, thereby
fostering the formation of diverse skills that fully explore the state space.

3.1 Landmark-based Mutual Information Maximization

Previous works tried to improve the diversity of learned options by maximizing the mutual information
between the option choice c and trajectory τ [27] or goal state sT [46] generated by the corresponding
intra-option policy. However, the whole trajectory contains noise and the goal state only cannot
sufficiently represent the option policy. In this paper, we propose to maximize the mutual information
between c and landmark states G in τ instead. G is a set of distinct, representative states. Specifically,
after clustering all states according to their features, a diverse set of landmarks with varied feature
embeddings is identified to represent each different cluster. Notably, G can be extracted from τ
through the maximum a posteriori (MAP) inference of a DPP [36], shown as Eq. (3) where X denotes
the set of states in τ . The intuition is that these landmarks should constitute the most diverse subset
of X and thus should be the most probable under this DPP.

G = argmax
X⊆X

PL(X)(X = X) = argmax
X⊆X

P(X = X|L = L(X)) = argmax
X⊆X

det(LX)

det(L+ I)
(3)

4

In order to maximize the mutual information between G and c while filtering out the redundant
information for option discovery in τ . According to the Information Bottleneck framework [47], this
can be realized through Eq. (4), where µ(·) is the initial state distribution, I(·) denotes the mutual
information, and Ict is the information constraint.

max
θ,ω

E
s0∼µ(·)

I(c,G|s0; θ, ω), s.t., I(c, τ |s0; θ, ω) ≤ Ict (4)

Equivalently, with the introduction of a Lagrange multiplier β ≥ 0, we can optimize:
max
θ,ω

E
s0∼µ(·)

[I(c,G|s0; θ, ω)− βI(c, τ |s0; θ, ω)] (5)

It is infeasible to directly compute and optimize Eq. (5), so we have the following proposition.

Proposition 1. The optimization problem as Eq. (5) can be solved by maximizing LIB(ω, θ, ϕ):

H(C|S) + E
s0,c,τ

[
PDPP (G|τ) logPϕ(c|s0, G)

]
− β E

s0,c
[DKL(Pθ(τ |s0, c)||Unif(τ |s0))] (6)

Here, s0 ∼ µ(·), c ∼ Pω(·|s0), τ ∼ Pθ(·|s0, c). H(C|S) represents the entropy associated with the
option choice distribution at a given state. PDPP (G|τ) = det(LG)/det(L+ I) is the probability
of extracting G from τ , under a DPP on the set of states in τ . Pϕ(c|s0, G) serves as a variational
estimation of the posterior term P (c|s0, G) in I(c,G|s0). Unif(τ |s0) denotes the probability of
sampling trajectory τ given s0 under a uniformly random walk policy.

The derivation can be found in Appendix A.2. (1) The first two terms of Eq. (6) constitute a lower
bound of the first term in Eq. (5). H(C|S) and Pϕ(c|s0, G) can be estimated using the output
from the prior network and variational posterior network, respectively. (2) The third term in Eq.
(6) corresponds to a lower bound of the second term in Eq. (5). Instead of directly calculating
−βI(c, τ |s0) which is implausible, we introduce Unif(τ |s0) to convert it to a regularization term as
in Eq. (6). Specifically, by minimizing DKL(Pθ(τ |s0, c)||Unif(τ |s0)), which is the KL Divergence
[10] between the distribution of trajectories under our policy and a random walk policy, exploration
of the trained policy πθ can be improved. Note that Pθ(τ |s0, c) =

∏T−1
t=0 πθ(at|st, c)P (st+1|st, at),

where P (st+1|st, at) is the transition function in the MDP.

Another challenge in calculating LIB is to infer the landmarks G with Eq. (3). (L is the kernel matrix
of the DPP, of which the construction is further introduced in the next section.) The MAP inference
problem related to a DPP is NP-hard [48], and greedy algorithms have shown to be promising as
a solution. In this work, we adopt the fast greedy method proposed in [39] for the MAP inference,
which is further introduced in Appendix C.2 with its pseudo code and complexity analysis.

3.2 Quantifying Diversity and Coverage via DPP

In this section, we propose three optimization terms defined with DPP to explicitly model the coverage
and diversity of the learned options. Jointly optimizing these terms with Eq. (6), the discovered
options are expected to exhibit improved state space coverage and enhanced diversity.

The first term relates to improving the coverage of each option by maximizing:

LDPP1 (ω, θ) = E
s0

[∑
c,τ

Pω(c|s0)Pθ(τ |s0, c)f(τ)

]
, f(τ) = E

X∼PL(X)

[|X|] =
T+1∑
i=1

λX
i

λX
i + 1

(7)

where X is the set of states in τ , L(X) is the kernel matrix built with feature vectors of states in
X , f(τ) is the expected number of modes (landmark states) covered in a trajectory τ . Thus, LDPP1
measures single-option coverage, by maximizing which we can enhance exploration of each option.

As for the kernel matrix, according to Section 2.2, we can construct L(X) by defining the quality
measure −→q and normalized feature vector for each state in X . States with higher expected returns
should be visited more frequently and thus be assigned with higher quality values. However, given
that there is no prior knowledge on the reward function, we assign equal quality measure to each state
as 1. As for the features of each state, we define them using the Laplacian spectrum, i.e., eigenvectors
corresponding to the D-smallest eigenvalues of the Laplacian matrix of the state transition graph,
denoted as [−→v1, · · · ,−→vD]. To be specific, for each state s, its normalized feature is defined as:
−→
b (s) = [−→v1(s), · · · ,−→vD(s)] /

√∑D
j=1(
−→vj (s))2. The reasons for this feature design are as follows:

(1) As shown in Spectral Clustering [49], states with high similarity in this feature embedding fall in

5

Algorithm 1 Unsupervised Option Discovery based on DPP (ODPP)
1: Initialize the prior network Pω , policy network πθ, variational decoder Pϕ, and trajectory set −→τ
2: for each training episode do
3: for i = 1, 2, . . . , N do
4: Sample si0 ∼ µ(·) and c ∼ Pω(·|si0) or use the ones from the previous episode to collect

trajectories subject to the same option and starting point
5: Collect a trajectory τi = (si0, a

i
0, · · · , siT−1, a

i
T−1, s

i
T), where ait ∼ πθ(·|sit, c)

6: −→τ ←− −→τ ∪ {τi}
7: end for
8: Update Pω , πθ with PPO and Pϕ with SGD, based on −→τ and Eq. (11)-(13); −→τ ←− {}
9: end for

the same cluster. Under a DPP with this feature embedding, the sampled states with distinct features
should belong to different clusters, i.e., the landmarks. Then, by maximizing LDPP1 (i.e., the expected
number of landmarks covered in X), the agent is encouraged to traverse multiple clusters within the
state space. (2) With this feature design, our algorithm generalizes of the Laplacian-based option
discovery [12]. In [12], they set a threshold to partition the state space into two parts – the set of
states with higher values in the Fiedler vector (i.e., −→v2) than the threshold is used as the initiation set
and the other states are used as the termination set, then the option policy is trained to connect states
within these two areas. We note that, as a special case of our algorithm, when setting the feature
dimension D = 2, we can get similar options with the Laplacian-based methods through maximizing
LDPP1 . Given that the eigenvector corresponding to the smallest eigenvalue of a Laplacian matrix is
−→v1 = 1⃗, states with diverse feature embeddings encoded by [−→v1 ,−→v2] (i.e., D = 2) tend to differ in −→v2 .
By maximizing LDPP1 , the options are trained to visit the states that are as distinct in −→v2 as possible
in a trajectory, which is similar with the ones learned in [12]. We empirically demonstrate this in
Section 4. Note that the Laplacian spectrum [−→v1, · · · ,−→vD] for infinite-scale state space can be learned
as a neural network through representation learning [50] which is introduced in Appendix C.3. Thus,
our algorithm can be applied to tasks with large-scale state spaces.

Next, we expect the set of sampled trajectories related to the same option c and starting from the
same state s0, i.e., −→τ (s0,c), to be consistent and thus hard to be distinguished by a DPP, which is
important given the stochasticity of the policy output. This is realized by minimizing the expected
mode number in each −→τ (s0,c): (s0 ∼ µ(·), c ∼ Pω(·|s0), −→τ (s0,c) ∼ Pθ(·|s0, c))

LDPP2 (ω, θ) = E
s0,c,

−→τ (s0,c)

[
g(−→τ (s0,c))

]
, g(−→τ (s0,c)) = E

Y∼PL(Y)

[|Y|] =
M∑
i=1

λY
i

λY
i + 1

(8)

where Y is the set of M trajectories related to c starting at s0 (i.e., {τ1, · · · , τM} = −→τ (s0,c)), L(Y)
is the kernel matrix built with the feature vectors of each trajectory, i.e.,

−−→
b(τi). The feature vector of a

trajectory can be obtained based on the ones of its landmark states Gi through the Structured DPP
framework [51]:

−−→
b(τi) =

∑
s∈Gi

−−→
b(s). (

−−→
b(s) is defined above.) Alternatively, we can use the hidden

layer output of the decoder Pϕ(c|G, s0), which embeds the information contained in G. This design
is commonly adopted in DPP-related works [52, 53]. We will compare these two choices in Section 4.
Notably, our kernel matrix design, i.e, L(X) and L(Y), is task-irrelevant and domain-knowledge-free.

Last, the set of sampled trajectories subject to different options should be diverse. This is achieved
by maximizing its expected mode number (i.e., Eq. (9)). Here, Z is the union set of Y related to
different options, i.e., ∪c′ −→τ (s0,c′), and L(Z) is the kernel matrix corresponding to trajectories in Z .

LDPP3 (ω, θ) = E
s0,c,

−→τ (s0,c)

[
h(∪
c′
−→τ (s0,c′))

]
, h(∪

c′
−→τ (s0,c′)) = E

Z∼PL(Z)

[|Z|] =
K∑
i=1

λZ
i

λZ
i + 1

(9)

3.3 Overall Algorithm Framework

The overall objective is to maximize Eq. (10). The hyperparameters α1:3 ≥ 0 (provided in Appendix
C.6) are the weights for each DPP term and can be fine-tuned to enable a tradeoff between coverage
and diversity of the learned options.

L(ω, θ, ϕ) = LIB(ω, θ, ϕ) + α1LDPP1 (ω, θ)− α2LDPP2 (ω, θ) + α3LDPP3 (ω, θ) (10)

6

Based on Eq. (10), we can calculate the gradients with respect to ω, θ, ϕ, i.e., the parameters of the
prior network, policy network and variational decoder, and then apply corresponding algorithms for
optimization. First,∇ϕL = ∇ϕLIB , so Pϕ can be optimized as a standard likelihood maximization
problem with SGD [54]. Next, regarding ω and θ, we have Proposition 2, which is proved in Appendix
A.3. Notably, we select PPO [55] to update ω and θ. The overall algorithm (ODPP) is summarized
as Algorithm 1, where the main learning outcome is the intra-option policy πθ. When applied to
downstream tasks, πθ(a|s, c) can be fixed and we only need to learn a high-level policy Pψ(c|s) to
select among options. We note that our algorithm is highly salable and only slightly increases the time
complexity compared with previous algorithms in this field. Detailed discussion on the complexity
and scalability are provided in Appendix C.4 and C.5.
Proposition 2. The gradients of the overall objective L(ω, θ, ϕ) with respect to ω and θ can be
unbiasedly estimated using Eq. (11). Here, QPω and Qπθ

m are the Q-functions for the prior and policy
networks, respectively. Consequently, both networks can be trained using reinforcement learning.

∇ωL = E
s0,c

[
∇ω logPω(c|s0)QPω

]
, ∇θL = E

s0,c,
−→τ

[
M∑
m=1

T−1∑
t=0

∇θ log πθ(amt |smt , c)Qπθ
m

]
(11)

QPω (c, s0) =− logPω(c|s0) + E−→τ

[
M∑
m=1

Qπθ
m (−→τ , s0, c)

]
(12)

Qπθ
m (−→τ , c, s0) =

PDPP (Gm|τm) logPϕ(c|s0, Gm)

M
− β

M

T−1∑
t=0

log πθ(a
m
t |smt , c)

+
α1

M
f(τm)− α2g(

−→τ (s0,c)) + α3h(∪
c′

−→τ (s0,c′))

(13)

4 Evaluation and Main Results

In this section, we compare ODPP with SOTA baselines on a series of RL tasks. (1) For intuitive
visualization, we test these algorithms on maze tasks built with Mujoco [56]. In particular, we select
the Point and Ant as training agents, and put them in complex 3D Mujoco Maze environments
(Figure 4(a) and 4(d)). We evaluate the diversity and coverage of the options learned with different
algorithms, through visualizing corresponding trajectories. Then, we provide a quantitative study to
see if these options can aid learning in downstream tasks – goal-achieving or exploration tasks in
the maze environments. Both tasks are long-horizon with an episode length of 500. (2) To show the
applicability of our algorithm on a wide range of tasks, we test it on 3D Ant locomotion tasks (Figure
5(a)) and Atari video games. In this part, we focus on evaluating if the agent can learn effective skills
without supervision of task-specific rewards.

As mentioned in Section 2.1, our algorithm follows the option-first variational option discovery,
which starts from a random policy rather than an efficient exploration policy like the trajectory-first
methods. To keep it fair, we compare our algorithm with several SOTA option-first methods: VIC [7],
DIAYN [8], VALOR [27], DADS [9], and APS [57]. Further, our algorithm integrates the variational
and Laplacian-based option discovery, so we compare it with a SOTA Laplacian-based method as
well: DCO [12]. The codes are available at https://github.com/LucasCJYSDL/ODPP.

4.1 Ablation Study

In Figure 2, we visualize trajectories of options learned with different algorithms in the Point Room
task, which start from the same initial state and have the same horizon (i.e., 50 steps). Note that
the visualizations in Figure 1-3 are aerial views of the 3D Mujoco Room/Corridor. As mentioned
in Section 3.2, the objective of DCO is to train options that can connect states with high and low
values in the Fielder vector of the state transition graph. Due to its algorithm design [12], we can
only learn one option with DCO at a time. While, with the others, we can learn multiple options
simultaneously. (1) From (a)-(c), we can see that variational option discovery methods can discover
diverse options, but these options can hardly approach the "bottleneck" states in the environment
which restricts their coverage of the state space. On the contrary, in (d), options trained with DCO
can go through two "bottleneck" states but lack diversity, since they stick to the direction given by the
Fiedler vector. While, as shown in (h), options learnt with our algorithm have both superior diversity

7

https://github.com/LucasCJYSDL/ODPP

Figure 2: (a) VIC, (b) DIAYN, (c) VALOR, (d) DCO, (e) ODPP (LIB), (f) ODPP (LIB ,LDPP1), (g)
ODPP using trajectory features defined by hidden layer output, (h) ODPP using trajectory features
defined with the Structured DPP framework.

and coverage. (2) In (e), we can already get significant better options than the baselines by only using
LIB as the objective. From (e) to (f), it can be observed that additionally introducing the objective
term LDPP1 can encourage options to cover more landmark states. From (f) to (h), we further add
LDPP2 and LDPP3 , which makes the option trajectories more distinguishable from the view of DPP.
Also, in (g) and (h), we adopt different designs of the trajectory feature. It shows that using trajectory
features defined with the Structured DPP framework (introduced in Section 3.2) is better than using
the hidden layer output of the decoder Pϕ. These results show the effectiveness of each component in
our algorithm design and demonstrate that our algorithm can construct options with higher diversity
and coverage than baselines. In Appendix D.3, we provide quantitative results to further show the
improvement brought by each objective term of ODPP.

(a) DCO (b) ODPP (D = 2) (c) ODPP

Figure 3: (a) Options learned with DCO; (b) Options
learned with ODPP, when setting the feature dimension as
2; (c) Options learned with ODPP in the normal setting.

Next, as claimed in Section 3.2, if set-
ting the feature dimension D = 2,
ODPP is expected to learn similar op-
tions with DCO, thus ODPP generalizes
the Laplacian-based method. In Figure
3, we visualize the value of each state
in the Fiedler vector as the background
color (the darker the higher), and the op-
tions learned with DCO and ODPP in
the Point Corridor task starting from dif-
ferent locations. We can observe from
(a) and (b) that most of the learned op-
tions are similar both in direction and
length. Further, if we adopt the normal setting, where D = 30 and the number of options to learn at a
time is 10, we can get diverse options shown as (c), which can be beneficial for various downstream
tasks. In this case, ODPP can be viewed as a generalization and extension of DCO through variational
tools (e.g., LIB) to learn multiple diverse options at a time.

4.2 Evaluation in Downstream Tasks

In Figure 4, we evaluate the options learned with different algorithms on a series of downstream
tasks. These options are trained without task-specific rewards, and thus potentially applicable to
different downstream tasks in the environment. Firstly, we test the options in Point Room/Corridor
goal-achieving tasks where a point agent is trained to achieve a certain goal (i.e., red points in Figure
4(a) and 4(d)). This task is quite challenging since: (1) The location of the goal is not included in the
observation. (2) The agent will get a positive reward only when it reaches the goal area; otherwise, it
will receive a penalty. Hence, the reward setting is highly sparse and delayed, and the agent needs
to fully explore the environment for the goal state. In Figure 4(b)-4(c), we compare the mean and
standard deviation of the performance (i.e., mean return of a decision step) of different algorithms

8

(a) Mujoco Room (b) Point Room Task (c) Point Corridor Task

(d) Mujoco Corridor (e) Ant Room Task (f) Ant Corridor Task

Figure 4: (a)(d) Mujoco Maze tasks. (b)(c) Applying the options to goal-achieving tasks in the Point
Room/Corridor where the agent needs to achieve one of the four goals (red points). (e)(f) Applying
options to exploration tasks in the Ant Room/Corridor where the agent needs to explore as far as
possible to get higher reward.

in the training process, which is repeated four times (each time with a different goal). It can be
observed that, with options learned by ODPP, the convergence speed and return value can be much
higher. Note that the pretrained options are fixed for downstream tasks and we only need to learn
an option selector Pψ(c|s) which gives out option choice c at state s. In this way, we can simplify a
continuous control task to a discrete task, and the advantage can be shown through the comparison
with using PPO (i.e., “Base RL") directly on the task. To keep it fair, the PPO agent is pretrained for
the same number of episodes as the option learning. Moreover, we evaluate these algorithms in Ant
Room/Corridor exploration tasks where an Ant agent is trained to explore the areas as far from the
start point (center) as possible. The reward for a trajectory is defined with the largest distance that the
agent has ever reached during this training episode. In Figure 4(e)-4(f), we present the change of the
trajectory return during the training process of these algorithms (repeated five times with different
random seeds). The options trained with ODPP provide a good initialization of the policy for this
exploration task. With this policy, the Ant agent can explore a much larger area in the state space.

As mentioned in Section 3, we learn a prior network Pω together with the option policy network
πθ. This design is different from previous algorithms which choose to fix the prior distribution. In
Appendix D.1, we provide a detailed discussion on this and empirically show that we can get a further
performance improvement in the downstream task by initializing the option selector Pψ with Pω .

4.3 Performance of Unsupervised Skill Discovery Across Various Benchmarks

In the 3D Locomotion task, an Ant agent needs to coordinate its four legs to move. In Figure 5(a),
we visualize two of the controlling behaviors, learned by ODPP without supervision of any extrinsic
rewards. Please refer to Appendix D.2 for more visualizations. The picture above shows that the
Ant rolls to the right by running on Leg 1 first and then Leg 4, which is a more speedy way to move
ahead. While, the picture below shows that it learns how to walk to the right by stepping on its front
legs (2&3) and back legs (1&4) by turn. These complex behaviors are learned with only intrinsic
objectives on diversity and coverage, which is quite meaningful. Further, we show numeric results to
evaluate the learned behaviors. We use the reward defined in [58] as the metric, which is designed
to encourage the Ant agent to move as fast as possible at the least control cost. In Figure 5(b), we
take the average of five different random seeds, and the result shows that options trained by ODPP
outperform the baselines. The reward drops during training for some baselines, which is reasonable
since this is not the reward function used for option learning. Finally, to see whether we can learn
a large number of options in the meantime with ODPP, we test the performance of the discovered
options when setting the number of options to learn as 10, 20, 40, 60. From Figure 5(c), it can be
observed that even when learning a large number of options at the same time, we can still get options
with high quality (mean) and diversity (standard deviation) which increase during the training.

9

Figure 5: (a) Visualization of the controlling behaviors learned by ODPP. (b) The change of the mean
and standard deviation of the trajectory rewards subject to different options in the training process.
(c) The performance change as the number of options to learn at the same time goes up.

(a) CartPole (b) RiverRaid (c) AirRaid

Figure 6: Evaluation results on OpenAI Gym and Atari games to show the superiority of our algorithm
on more general tasks. Our algorithm performs the best in all the three tasks, and the performance
improvement becomes more significant as the task difficulty increases.

To further demonstrate the applicability of ODPP, we compare it with SOTA baselines on more
general OpenAI Gym and Atari tasks [59]. Notably, we adopt two more advanced skill discovery
algorithms as baselines: DADS and APS. Comparisons among these two and previous baselines are
in Appendix D.4. Skills discovered with different algorithms are evaluated with reward functions
carefully-crafted for each task, provided by OpenAI Gym. For each algorithm, we learn 10 skills, of
which the average cumulative rewards (i.e., sum of rewards within a skill duration) in the training
process are shown in Figure 6. The skill duration is set as 100 for CartPole and 50 for the other two.
Note that the complete episode horizon is 200 for CartPole and 10000 for AirRaid and RiverRaid.
Thus, it would be unfair to compare the cumulative reward of a skill with the one of a whole episode.
Our algorithm performs the best in all the three tasks, and the improvement becomes more significant
as the task difficulty increases. When relying solely on MI-based objectives, the agent tends to
reinforce already discovered behaviors for improved diversity rather than exploration. The explicit
incorporation of coverage and diversity objectives in our algorithm proves beneficial in this case.

5 Conclusion and Discussion

ODPP is a novel unsupervised option discovery framework based on DPP, which unifies variational
and Laplacian-based option discovery methods. Building upon the information-theoretic objectives in
prior variational research, we propose three DPP-related measures to explicitly quantify and optimize
diversity and coverage of the discovered options. Through a novel design of the DPP kernel matrix
based on the Laplacian spectrum of the state transition graph, ODPP generalizes SOTA Laplacian-
based option discovery algorithms. We demonstrate the superior performance of ODPP over SOTA
baselines using variational and Laplacian-based methods on a series of challenging benchmarks.
Regarding limitations of ODPP, the primary one is to assign suitable weights for each objective term:
α1:3 in Eq. (10) and β in Eq. (6). These hyperparameters are crucial, yet conducting a grid search for
their joint selection would be exhaustive. Instead, we employ a sequential, greedy method to select
hyperparameters in accordance with our ablation study’s procedure, further detailed in Appendix C.6.

Acknowledgments and Disclosure of Funding

This project is supported by ONR award N00014-23-1-2850 and CISCO research award 76934189.

10

References
[1] Brown, N., T. Sandholm. Superhuman ai for multiplayer poker. Science, 365(6456):885–890,

2019.
[2] Silver, D., A. Huang, C. J. Maddison, et al. Mastering the game of go with deep neural networks

and tree search. Nature, 529(7587):484–489, 2016.
[3] Ebert, F., C. Finn, S. Dasari, A. Xie, A. Lee, S. Levine. Visual foresight: Model-based deep

reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568, 2018.
[4] Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra.

Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
[5] Chen, J., A. K. Umrawal, T. Lan, V. Aggarwal. Deepfreight: A model-free deep-reinforcement-

learning-based algorithm for multi-transfer freight delivery. In Proceedings of the 31st Inter-
national Conference on Automated Planning and Scheduling, pages 510–518. AAAI Press,
2021.

[6] Al-Abbasi, A. O., A. Ghosh, V. Aggarwal. Deeppool: Distributed model-free algorithm for ride-
sharing using deep reinforcement learning. IEEE Transactions on Intelligent Transportation
Systems, 20(12):4714–4727, 2019.

[7] Gregor, K., D. J. Rezende, D. Wierstra. Variational intrinsic control. In Proceedings of the 5th
International Conference on Learning Representations, ICLR 2017. OpenReview.net, 2017.

[8] Eysenbach, B., A. Gupta, J. Ibarz, S. Levine. Diversity is all you need: Learning skills
without a reward function. In Proceedings of the 7th International Conference on Learning
Representations, ICLR 2019. OpenReview.net, 2019.

[9] Sharma, A., S. Gu, S. Levine, V. Kumar, K. Hausman. Dynamics-aware unsupervised discovery
of skills. In Proceedings of the 8th International Conference on Learning Representations,
ICLR 2020. OpenReview.net, 2020.

[10] Cover, T. M. Elements of information theory. John Wiley & Sons, 1999.
[11] Jinnai, Y., J. W. Park, D. Abel, G. D. Konidaris. Discovering options for exploration by

minimizing cover time. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, vol. 97 of Proceedings of Machine Learning Research, pages 3130–3139.
PMLR, 2019.

[12] Jinnai, Y., J. W. Park, M. C. Machado, G. D. Konidaris. Exploration in reinforcement learning
with deep covering options. In Proceedings of the 8th International Conference on Learning
Representations, ICLR 2020. OpenReview.net, 2020.

[13] Ghosh, A., S. P. Boyd. Growing well-connected graphs. In Proceedings of the 45th IEEE
Conference on Decision and Control, CDC 2006, pages 6605–6611. IEEE, 2006.

[14] Campos, V., A. Trott, C. Xiong, R. Socher, X. Giró-i-Nieto, J. Torres. Explore, discover and
learn: Unsupervised discovery of state-covering skills. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, vol. 119 of Proceedings of Machine Learning
Research, pages 1317–1327. PMLR, 2020.

[15] Ajay, A., A. Kumar, P. Agrawal, S. Levine, O. Nachum. OPAL: offline primitive discovery for
accelerating offline reinforcement learning. In Proceedings of the 9th International Conference
on Learning Representations, ICLR 2021. OpenReview.net, 2021.

[16] Lee, L., B. Eysenbach, E. Parisotto, E. P. Xing, S. Levine, R. Salakhutdinov. Efficient exploration
via state marginal matching. CoRR, abs/1906.05274, 2019.

[17] Sutton, R. S., D. Precup, S. P. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence, 112(1-2):181–211, 1999.

[18] Chen, J., J. Chen, T. Lan, V. Aggarwal. Multi-agent covering option discovery based on
kronecker product of factor graphs. IEEE Transactions on Artificial Intelligence, 2022.

[19] —. Learning multi-agent options for tabular reinforcement learning using factor graphs. IEEE
Transactions on Artificial Intelligence, pages 1–13, 2022.

[20] Zhang, F., C. Jia, Y.-C. Li, L. Yuan, Y. Yu, Z. Zhang. Discovering generalizable multi-agent
coordination skills from multi-task offline data. In Proceedings of the 11th International
Conference on Learning Representations. 2022.

11

[21] Chen, J., M. Haliem, T. Lan, V. Aggarwal. Multi-agent deep covering option discovery. arXiv
preprint arXiv:2210.03269, 2022.

[22] Zhang, S., S. Whiteson. DAC: the double actor-critic architecture for learning options. In
Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, pages
2010–2020. 2019.

[23] Li, C., D. Song, D. Tao. The skill-action architecture: Learning abstract action embeddings
for reinforcement learning. In Submissions of the 9th International Conference on Learning
Representations. 2021.

[24] Jing, M., W. Huang, F. Sun, X. Ma, T. Kong, C. Gan, L. Li. Adversarial option-aware hierarchical
imitation learning. In Proceedings of the 38th International Conference on Machine Learning,
pages 5097–5106. PMLR, 2021.

[25] Chen, J., T. Lan, V. Aggarwal. Option-aware adversarial inverse reinforcement learning for
robotic control. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 5902–5908. IEEE, 2023.

[26] Chen, J., D. Tamboli, T. Lan, V. Aggarwal. Multi-task hierarchical adversarial inverse reinforce-
ment learning. In Proceedings of the 40th International Conference on Machine Learning, vol.
202 of Proceedings of Machine Learning Research, pages 4895–4920. PMLR, 2023.

[27] Achiam, J., H. Edwards, D. Amodei, P. Abbeel. Variational option discovery algorithms. CoRR,
abs/1807.10299, 2018.

[28] Kingma, D. P., M. Welling. Auto-encoding variational bayes. In Proceedings of the 2nd
International Conference on Learning Representations, ICLR 2014. 2014.

[29] Levine, S., A. Kumar, G. Tucker, J. Fu. Offline reinforcement learning: Tutorial, review, and
perspectives on open problems. CoRR, abs/2005.01643, 2020.

[30] Hansen, S., W. Dabney, A. Barreto, D. Warde-Farley, T. V. de Wiele, V. Mnih. Fast task
inference with variational intrinsic successor features. In Proceedings of the 8th International
Conference on Learning Representations. OpenReview.net, 2020.

[31] Baumli, K., D. Warde-Farley, S. Hansen, V. Mnih. Relative variational intrinsic control. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, pages 6732–6740. AAAI Press, 2021.

[32] Hansen, S., G. Desjardins, K. Baumli, D. Warde-Farley, N. Heess, S. Osindero, V. Mnih.
Entropic desired dynamics for intrinsic control. In Advances in Neural Information Processing
Systems 34, pages 11436–11448. 2021.

[33] Kamienny, P., J. Tarbouriech, S. Lamprier, A. Lazaric, L. Denoyer. Direct then diffuse:
Incremental unsupervised skill discovery for state covering and goal reaching. In Proceedings
of the 10th International Conference on Learning Representations. OpenReview.net, 2022.

[34] Strouse, D., K. Baumli, D. Warde-Farley, V. Mnih, S. S. Hansen. Learning more skills through
optimistic exploration. In Proceedings of the 10th International Conference on Learning
Representations. OpenReview.net, 2022.

[35] Liu, H., P. Abbeel. APS: active pretraining with successor features. In Proceedings of the 38th
International Conference on Machine Learning, vol. 139, pages 6736–6747. PMLR, 2021.

[36] Kulesza, A., B. Taskar. Determinantal point processes for machine learning. Foundations and
Trends in Machine Learning, 5(2-3):123–286, 2012.

[37] Elfeki, M., C. Couprie, M. Rivière, M. Elhoseiny. GDPP: learning diverse generations using
determinantal point processes. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, vol. 97 of Proceedings of Machine Learning Research, pages 1774–1783.
PMLR, 2019.

[38] Gong, B., W. Chao, K. Grauman, F. Sha. Diverse sequential subset selection for supervised
video summarization. In Advances in Neural Information Processing Systems 27, NeurIPS
2014, pages 2069–2077. 2014.

[39] Chen, L., G. Zhang, E. Zhou. Fast greedy MAP inference for determinantal point process to
improve recommendation diversity. In Advances in Neural Information Processing Systems 31,
NeurIPS 2018, pages 5627–5638. 2018.

12

[40] Wilhelm, M., A. Ramanathan, A. Bonomo, S. Jain, E. H. Chi, J. Gillenwater. Practical diversified
recommendations on youtube with determinantal point processes. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, pages 2165–2173.
ACM, 2018.

[41] Perez-Beltrachini, L., M. Lapata. Multi-document summarization with determinantal point
process attention. Journal of Artificial Intelligence Research, 71:371–399, 2021.

[42] Song, Y., R. Yan, Y. Feng, Y. Zhang, D. Zhao, M. Zhang. Towards a neural conversation
model with diversity net using determinantal point processes. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence, pages 5932–5939. AAAI Press, 2018.

[43] Parker-Holder, J., A. Pacchiano, K. M. Choromanski, S. J. Roberts. Effective diversity in
population based reinforcement learning. In Advances in Neural Information Processing
Systems 33. 2020.

[44] Nieves, N. P., Y. Yang, O. Slumbers, D. H. Mguni, Y. Wen, J. Wang. Modelling behavioural
diversity for learning in open-ended games. In Proceedings of the 38th International Conference
on Machine Learning, vol. 139, pages 8514–8524. PMLR, 2021.

[45] Wu, S., J. Yao, H. Fu, Y. Tian, C. Qian, Y. Yang, Q. Fu, W. Yang. Quality-similar diversity via
population based reinforcement learning. In Proceedings of the 11th International Conference
on Learning Representations. OpenReview.net, 2023.

[46] Kwon, T. Variational intrinsic control revisited. In Proceedings of the 9th International
Conference on Learning Representations, ICLR 2021. OpenReview.net, 2021.

[47] Alemi, A. A., I. Fischer, J. V. Dillon, K. Murphy. Deep variational information bottleneck.
In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017.
OpenReview.net, 2017.

[48] Ko, C., J. Lee, M. Queyranne. An exact algorithm for maximum entropy sampling. Operation
Research, 43(4):684–691, 1995.

[49] Ng, A. Y., M. I. Jordan, Y. Weiss. On spectral clustering: Analysis and an algorithm. In
Advances in Neural Information Processing Systems 14, NeurIPS 2001, pages 849–856. MIT
Press, 2001.

[50] Wang, K., K. Zhou, Q. Zhang, J. Shao, B. Hooi, J. Feng. Towards better laplacian representation
in reinforcement learning with generalized graph drawing. In Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, vol. 139 of Proceedings of Machine
Learning Research, pages 11003–11012. PMLR, 2021.

[51] Kulesza, A., B. Taskar. Structured determinantal point processes. In Advances in Neural
Information Processing Systems 23, NeurIPS 2010, pages 1171–1179. Curran Associates, Inc.,
2010.

[52] Yuan, Y., K. M. Kitani. Diverse trajectory forecasting with determinantal point processes. In
Proceedings of the 8th International Conference on Learning Representations, ICLR 2020.
OpenReview.net, 2020.

[53] Yang, Y., Y. Wen, J. Wang, L. Chen, K. Shao, D. Mguni, W. Zhang. Multi-agent determinantal
q-learning. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, vol. 119 of Proceedings of Machine Learning Research, pages 10757–10766. PMLR,
2020.

[54] Amari, S. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(3):185–
196, 1993.

[55] Schulman, J., F. Wolski, P. Dhariwal, A. Radford, O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[56] Todorov, E., T. Erez, Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012.

[57] Liu, H., P. Abbeel. APS: active pretraining with successor features. In Proceedings of the 38th
International Conference on Machine Learning, vol. 139, pages 6736–6747. PMLR, 2021.

[58] Schulman, J., P. Moritz, S. Levine, M. I. Jordan, P. Abbeel. High-dimensional continuous control
using generalized advantage estimation. In Proceedings of the 4th International Conference on
Learning Representations, ICLR 2016. 2016.

13

[59] Hosu, I., T. Rebedea. Playing atari games with deep reinforcement learning and human
checkpoint replay. CoRR, abs/1607.05077, 2016.

[60] Fiedler, M. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):298–
305, 1973.

14

A Notations and Proof

A.1 Basic Concepts and Notations

Markov Decision Process (MDP): The reinforcement learning problem can be described with
an MDP, denoted by M = (S,A,P,R, γ), where S is the state space, A is the action space,
P : S ×A×S → [0, 1] is the state transition function,R : S ×A → R1 is the reward function, and
γ ∈ (0, 1] is the discount factor.

State transition graph in an MDP: The state transitions inM can be modelled as a state transition
graph G = (VG, EG), where VG is a set of vertices representing the states in S, and EG is a set of
undirected edges representing state adjacency inM. We note that:
Remark. There is an edge between state s and s′ (i.e., s and s′ are adjacent) if and only if
∃ a ∈ A, s.t. P(s, a, s′) > 0 ∨ P(s′, a, s) > 0.

The adjacency matrix A of G is an |S| × |S| matrix whose (i, j) entry is 1 when si and sj are
adjacent, and 0 otherwise. The degree matrix D is a diagonal matrix whose entry (i, i) equals the
number of edges incident to si. The Laplacian matrix of G is defined as L = D − A. Its second
smallest eigenvalue λ2(L) is called the algebraic connectivity of the graph G, and the corresponding
normalized eigenvector is called the Fiedler vector [60]. Last, the normalized Laplacian matrix is
defined as L = D− 1

2LD− 1
2 .

A.2 Proof of Proposition 1

To start with, we can find a lower bound of the second term in Eq. (5) as follows:

− β E
s0∼µ(·)

[I(c, τ |s0)] = −β E
s0∼µ(·)

[
−
∑
τ

P (τ |s0) logP (τ |s0) +
∑
c,τ

P (c, τ |s0) logPθ(τ |s0, c)

]

= −β E
s0∼µ(·)

[
−
∑
c,τ

P (c, τ |s0) logP (τ |s0) +
∑
c,τ

P (c, τ |s0) logPθ(τ |s0, c)

]

= −β E
s0∼µ(·)

[∑
c,τ

Pω(c|s0)Pθ(τ |c, s0) log
Pθ(τ |s0, c)
P (τ |s0)

]

= −β E
s0∼µ(·)

[∑
c,τ

Pω(c|s0)Pθ(τ |c, s0)
[
log

Pθ(τ |s0, c)
Unif(τ |s0)

− log
P (τ |s0)

Unif(τ |s0)

]]

= −β E
s0∼µ(·)

[[∑
c,τ

Pω(c|s0)Pθ(τ |c, s0) log
Pθ(τ |s0, c)
Unif(τ |s0)

]
−DKL(P (τ |s0)||Unif(τ |s0))

]

≥ −β E
s0∼µ(·)

[∑
c,τ

Pω(c|s0)Pθ(τ |c, s0) log
Pθ(τ |s0, c)
Unif(τ |s0)

]
= −β E

s0∼µ(·)
c∼Pω(·|s0)

[DKL(Pθ(τ |s0, c)||Unif(τ |s0))]

(14)
where DKL(·) denotes the Kullback-Leibler (KL) Divergence which is non-negative, Pθ(τ |s0, c) =∏T−1
t=0 πθ(at|st, c)P (st+1|st, at) is the probability of the trajectory τ given s0 and c under the option

policy πθ, and Unif(τ |s0) is the probability of the same trajectory given s0 under the random walk
policy. Instead of explicitly calculating P (τ |s0) which is impractical, we introduce Unif(τ |s0) to
convert the second term in Eq. (5) into a regularization term to encourage exploration and diversity.

As for the first term in Eq. (5), we can deal with it as Eq. (15), where we introduce Pϕ(c|s0, G) as
the variational estimation of P (c|s0, G) which is hard to acquire. The first inequality in Eq. (15) is
based on the fact that KL Divergence is non-negative. While, the second inequality holds because we
only keep the trajectory τ from which G is sampled, so the trajectory and its corresponding landmark
states form a bijection.

15

E
s0∼µ(·)

[I(c,G|s0)] = E
s0∼µ(·)

−∑
c

Pω(c|s0) logPω(c|s0) +
∑
c,G

Pω(c|s0)Pθ(G|s0, c) logP (c|s0, G)

= E
s0∼µ(·)

−∑
c

Pω(c|s0) logPω(c|s0) +
∑
c,G

Pω(c|s0)Pθ(G|s0, c) log
[
Pϕ(c|s0, G)

P (c|s0, G)

Pϕ(c|s0, G)

]
= H(C|S) + E

s0∼µ(·)

∑
c,G

Pω(c|s0)Pθ(G|s0, c) logPϕ(c|s0, G)

+
∑
G

P (G|s0)DKL(P (c|s0, G)||Pϕ(c|s0, G))

≥ H(C|S) + E
s0∼µ(·)

∑
c,G

Pω(c|s0)Pθ(G|s0, c) logPϕ(c|s0, G)

= H(C|S) + E

s0∼µ(·)

∑
c,G

Pω(c|s0)

[∑
τ ′

Pθ(τ
′|s0, c)PDPP (G|τ ′)

]
logPϕ(c|s0, G)

≥ H(C|S) + E

s0∼µ(·)

[∑
c,τ

Pω(c|s0)Pθ(τ |s0, c)PDPP (G|τ) logPϕ(c|s0, G)

]
(15)

A.3 Proof of Proposition 2

First, we take the gradient with respect to ω and get the following result:

∇ωL = E
s0∼µ(·)

[−
∑
c

[∇ωPω(c|s0) logPω(c|s0) +∇ωPω(c|s0)]

+
∑
c,τ

∇ωPω(c|s0)Pθ(τ |s0, c)PDPP (G|τ) logPϕ(c|s0, G)

− β
∑
c

∇ωPω(c|s0)DKL(Pθ(τ |s0, c)||Unif(τ |s0))

+ α1

∑
c,τ

∇ωPω(c|s0)Pθ(τ |s0, c)f(τ)

− α2

∑
c

∇ωPω(c|s0)
∑

−→τ (s0,c)

Pθ(
−→τ |s0, c)g(−→τ (s0, c))

+ α3

∑
c

∇ωPω(c|s0)
∑

−→τ (s0,c)

Pθ(
−→τ |s0, c)h(∪

c′

−→τ (s0, c
′))]

(16)

Given that ∇ωPω(c|s0) = Pω(c|s0)∇ω logPω(c|s0) and the definition of KL Divergence, i.e.,
DKL(Pθ(τ |s0, c)||Unif(τ |s0)) =

∑
τ Pθ(τ |s0, c)

∑T−1
t=0 [log πθ(at|st, c)− log πunif (at|st)], we

can simplify Eq. (16) as:

∇ωL = E
s0∼µ(·)

c∼Pω(·|s0)

[
∇ω logPω(c|s0)APω (c, s0)

]
(17)

where the related advantage function APω (c, s0) is defined as:

APω (c, s0) = − logPω(c|s0) + E−→τ (s0,c)∼Pθ(·|s0,c)

[
−α2g(

−→τ (s0,c)) + α3h(∪
c′
−→τ (s0,c′)

]
+ E
τ∼Pθ(·|s0,c)

[
PDPP (G|τ) logPϕ(c|s0, G)− β

T−1∑
t=0

log πθ(at|st, c) + α1f(τ)

] (18)

16

Next, we calculate the gradient with respect to θ as follows:

∇θL = E
s0∼µ(·)

∑
c,τ

Pω(c|s0)∇θPθ(τ |s0, c)PDPP (G|τ) logPϕ(c|s0, G)

− β
∑
c,τ

Pω(c|s0)∇θPθ(τ |s0, c)
T−1∑
t=0

[log πθ(at|st, c)− log πunif (at|st)]

− β
∑
c,τ

Pω(c|s0)Pθ(τ |s0, c)
T−1∑
t=0

∇θ log πθ(at|st, c)

+ α1

∑
c,τ

Pω(c|s0)∇θPθ(τ |s0, c)f(τ)

+
∑
c

Pω(c|s0)
∑

−→τ (s0,c)

∇θPθ(−→τ |s0, c)
[
−α2g(

−→τ (s0, c)) + α3h(∪
c′
−→τ (s0, c

′))
]

(19)
With ∇θPθ(τ |s0, c) = Pθ(τ |s0, c)∇θ logPθ(τ |s0, c) = Pθ(τ |s0, c)

∑T−1
t=0 ∇θ log πθ(at|st, c), and

∇θPθ(−→τ |s0, c) = Pθ(
−→τ |s0, c)

∑M
m=1

∑T−1
t=0 ∇θ log πθ(amt |smt , c) where smt (amt) is the state (ac-

tion) at step t in trajectory m, Eq. (19) can be written as follows:

∇θL = E
s0,c,τ

[
T−1∑
t=0

∇θ log πθ(at|st, c)

[
PDPP (G|τ) logPϕ(c|s0, G)− β

T−1∑
t=0

log πθ(at|st, c) + α1f(τ)

]]

+ E
s0,c,

−→τ

[
M∑
m=1

T−1∑
t=0

∇θ log πθ(amt |smt , c)
[
−α2g(

−→τ (s0,c)) + α3h(∪
c′

−→τ (s0,c′))
]]

= E
s0,c,

−→τ

[
M∑
m=1

T−1∑
t=0

∇θ log πθ(amt |smt , c)Aπθ
m (−→τ , s0, c)

]
(20)

where the advantage term is as Eq. (21), −→τ = {τ1, · · · , τM}, τm = (sm0 , am0 , · · · , smT−1, a
m
T−1, s

m
T):

Aπθ
m (−→τ , s0, c) =

PDPP (Gm|τm) logPϕ(c|s0, Gm)

M
− β

M

T−1∑
t=0

log πθ(a
m
t |smt , c)

+
α1

M
f(τm)− α2g(

−→τ (s0,c)) + α3h(∪
c′

−→τ (s0,c′))

(21)

Then, it’s not hard to see the relationship between APω and Aπθ
m as:

APω (c, s0) =− logPω(c|s0) + E−→τ

[
M∑
m=1

Aπθ
m (−→τ , s0, c)

]
(22)

17

B Comparisons with Recent Variational Option Discovery Algorithms

Here, we provide comparisons of our algorithm with more recent variational option discovery methods
[30, 31, 32, 33, 34, 35].

In [30], the authors focus on alternative approaches to leverage options learned during the unsuper-
vised phase, rather than new option discovery algorithms. They still adopt objectives based on Mutual
Information (MI) as previous works without solving the exploration issue.

The authors of [31] propose a slightly-modified version of VIC to improve usefulness of the discovered
options by introducing an extra posterior. Still, their options are not explicitly trained for better
coverage/exploration like ours.

The authors of [32] propose to replace the fixed prior distribution P (c) with a fixed dynamics
model over the option latent codes P (ct|ct−1). Each latent code corresponds to a sub-trajectory. By
concatenating sub-trajectories, the agent can reach much further states. They only rely on MI-based
objectives, so they cannot model the coverage of each option (like ours) and instead choose to chain
options for better overall coverage. The fixed P (ct|ct−1) can result in inflexibility when applying
options in downstream tasks.

In [33], they employ a multi-step protocol to generate options organized in a tree-like structure.
Heuristics and structural limits are involved in each step, which may hinder its generality. Also,
they propose to optimize the local coverage around the final state rather than the overall trajectory
coverage like ours.

The authors of [34] note that, with variational objectives proposed in VIC and DIAYN, the agent
can be discouraged from seeking out new states, since the variational posterior Pϕ(c|s) is likely to
make poor predictions when presented with trajectories containing previously unseen states, resulting
in low rewards for the policy. Thus, an exploration bonus should be introduced as an extra reward
term. In [34], they choose to train ensembles of discriminators and adopt their disagreement as a
measure of state uncertainty. States of higher uncertainty are assigned with higher exploration bonus.
Similar to theirs, our algorithm introduces additional bonus as a reimbursement of the unnecessary
pessimistic exploration. The difference lies that they adopt an implicit exploration measure (i.e., the
disagreement among ensembles) while we use explicit ones based on DPP.

In [35], they optimize the MI I(s, c) = H(s)−H(s|c), whereH(s) is for improving exploration of
the learned options. They adopt a variational posterior Pϕ(s|c) to estimateH(s|c). Learning Pϕ(s|c)
can be challenging when the state space is high-dimensional, compared with Pϕ(c|s) used in our
paper, which can hinder the optimization. Further, in DADS, they categorize algorithms utilizing
I(s, c) = H(s) −H(s|c) as the forward form of MI-based option discovery, and they empirically
and theoretically show the limited capability of these algorithms for exploration even withH(s) in
the objective.

C Implementation Details and Analysis of ODPP

C.1 The Choice of Diversity Measure

The expected cardinality is a better choice for the diversity measure than the likelihood shown as
Eq. (1). Using the log-likelihood based on the Determinant of the DPP kernel matrix directly would
heavily penalize repeated items in the sampled set W in Eq. (1). For example, if there are very
similar points inW , the corresponding rows in the kernel matrix will be almost identical and lead
to a zero determinant, which will cause numerical issues for the logarithm function. Take our work
as an example: at the beginning of the training stage, the moving range of the Mujoco agent is very
limited, then we always include very close states in a trajectory, which will always lead to a zero
determinant and thus cannot provide training signals. However, the expected cardinality only counts
the number of diverse states in a trajectory that will not be heavily influenced by the repeated items.
Therefore, we select the expected cardinality as the diversity measure in this paper.

C.2 Fast Greedy MAP Inference for DPP

The maximum a posteriori (MAP) inference of DPP aims at finding the subset of items with the
highest possibility under the DPP measure, which is NP-hard [48]. The log-probability function in

18

DPP, i.e., l(W) = log det(LW), is submodular, which means:
∀ i ∈ W, W1 ⊆W2 ⊆ W\{i}, l(W1 ∪ {i})− l(W1) ≥ l(W2 ∪ {i})− l(W2) (23)

Thus, the MAP inference for DPP can be converted to a submodular maximization problem, where
greedy algorithms have shown promising empirical success. Recently, the authors of [39] propose a
fast greedy method for MAP inference in DPP with time complexity O(S2N) to return S items out
of a sample space of size N . The key step of their algorithm is that for each iteration, the item which
maximizes the marginal gain:

j = argmax
i∈W\Wmap

l(Wmap ∪ {i})− l(Wmap) (24)

is added to Wmap starting from an initial set ∅, until the maximal marginal gain becomes negative or
the target sample number is reached (i.e., stopping criteria). This part is not our contribution. We
provide its detailed pseudo code as Algorithm 2. For the derivation, please refer to the original paper
[39]. We also provide its implementation code as a part of the complete code of ODPP.

Algorithm 2 Fast Greedy MAP Inference for DPP
1: Input: The set of itemsW and its kernel matrix L, stopping criteria
2: Initialize: For i ∈ W , ci = [], d2i = Lii; Wmap = {j}, where j = argmaxi∈W log(d2i)
3: while stopping criteria not satisfied do
4: for i ∈ W\Wmap do
5: ei = (Lji− < cj , ci >)/dj
6: ci = [ci ei], d2i = d2i − e2i
7: end for
8: j = argmaxi∈W\Wmap

log(d2i), Wmap = Wmap ∪ {j}
9: end while

10: Return Wmap

C.3 Computation of the Laplacian Spectrum for the Infinite-scale State Spaces

As mentioned in Section 3.2, the feature vector of each state
−→
bi is defined with the eigenvectors

corresponding to the D-smallest eigenvalues of the Laplacian matrix of the state transition graph.
However, for the infinite-scale state spaces, we cannot obtain this Laplacian spectrum through matrix-
based methods, so we adopt the NN-based method proposed in [50] for estimating the Laplacian
spectrum, which has been proved to be scalable for infinite-scale state spaces and sufficiently accurate
compared with the groundtruth. Since this algorithm is not our contribution, we only provide the
take-away messages here for implementation.

According to [50], the k smallest eigenvalues λ1:k and corresponding eigenvectors v1:k of the
Laplacian L can be estimated by: (k = D for our case)

min
v1,··· ,vk

k∑
i=1

(k − i+ 1)vTi Lvi, s.t. v
T
i vj = δij ,∀ i, j = 1, · · · , k (25)

For the large-scale state space, the eigenvectors can be represented as a neural network that takes a state
s as input and outputs a k-dimension vector [f1(s), · · · , fk(s)] as an estimation of [v1(s), · · · , vk(s)].
Accordingly, the objective in Equation (25) can be expressed as: (please refer to [50] for details)

G(f1, · · · , fk) =
1

2
E(s,s′)∼T

[
k∑
l=1

l∑
i=1

(fi(s)− fi(s
′))2

]
(26)

where T is a set of state-transitions collected by interacting with the environment through a random
policy. Further, the orthonormal constraints in Equation (25) are implemented as a penalty term:

P (f1, · · · , fk) = αEs∼ρ,s′∼ρ

 k∑
l=1

l∑
i=1

l∑
j=1

(fi(s)fj(s)− δij)(fi(s
′)fj(s

′)− δij)

 (27)

where α is the weight term and ρ is the distribution of states in T . To sum up, the eigenfunctions f
can be trained as an NN by minimizing the loss function:

L(f1, · · · , fk) = G(f1, · · · , fk) + P (f1, · · · , fk) (28)

19

C.4 Analysis on Computation Complexity

The learning target of ODPP is an intra-option policy πθ(a|s, c) conditioned on the option choice
c. As in Section 3.3, this policy is learned with an Actor-Critic algorithm for which the Q-function
is defined as Eq. (13). This Q-function contains variational and DPP-based objectives. Compared
with previous variational option discovery algorithms (e.g., DIAYN, VIC, VALOR), we additionally
need to (a) sample landmark states from each trajectory and (b) calculate the DPP-related terms:
f(·), g(·), h(·).
For (a), we adopt a fast greedy MAP inference algorithm for DPP. As mentioned in Appendix C.2, it
takes O(S2N) to sample S landmark states from an option trajectory of length N . In our setting,
N = 50, S = 10, so the process can be done in real-time.

For (b), we need to build DPP kernel matrices, and then compute f(·), g(·), h(·) based on eigenvalues
of the corresponding kernel matrix as in Eq. (7)-(9). The time complexity for eigen decomposition is
O(N3), where N is the size of the matrix. For the state kernel matrix, N is the number of states in
an option trajectory (i.e., the option horizon) which we set as 50. For the trajectory kernel matrix,
N corresponds to the number of trajectories collected in each training iteration, which is set as 100.
Thus, f(·), g(·), h(·) can be computed in real-time.

To build the kernel matrix, we need feature vectors for each state. As introduced in Appendix C.3, the
feature vector is the output of a pre-trained neural network which takes the state as input. The training
of this feature function is based on state transitions in the replay buffer and only needs to be done for
once or twice in the whole option discovery process, of which the time cost is within 30 minutes.

To sum up, compared with previous variational methods, we additionally introduce three DPP items
to explicitly model the option diversity and coverage, of which the involvement only slightly increases
the time complexity.

C.5 Analysis on Scalability

ODPP can be adapted to more intricate setups encompassing longer option horizons, a greater number
of skills, or visual domains. We elaborate on the scalability of ODPP as follows.

(a) The skill horizon is constrained by the MAP inference and eigen decomposition operations
previously described. Given their time complexity, the skill horizon could readily be expanded
from 50 to 100 or even 500. This augmentation would necessitate an additional time of O(10−3)
or O(10−2) seconds per training iteration, compared with previous variational methods. These
estimations are based on computations on a machine with a single Intel i7 CPU and four GeForce
RTX 2060 GPUs. Note that a skill horizon longer than 100 is rarely necessary. Employing a skill
with an excessively long horizon may compromise flexibility in decision-making.

(b) Compared with variational methods, our algorithm does not introduce extra limitations on the
number of learned skills. Moreover, in Figure 5(c), we show that even when learning a large number
of options at the same time (as much as 60), we can still get options with high quality (mean) and
diversity (standard deviation) which increase during the training process.

(c) ODPP needs to learn the Laplacian feature embeddings. For visual domains, this process can
incorporate a pretrained CNN model as a feature extractor, which serves to convert visual input into
feature vectors. Subsequently, the original algorithm can be applied. Applications in visual domains
could pose a common challenge for all option discovery algorithms and present an exciting avenue
for future research.

C.6 Important Hyperparameters

First, we introduce the structure of the networks used in our algorithm and the baselines as follows.
We use s_dim, a_dim to represent the dimension of the state space and action space respectively,
and use c_num to represent the number of options to learn at a time, which can be 10, 20, 40 or
60 in our experiments. Also, we use tanh and relu to denote the hyperbolic tangent function and
rectified linear unit used as the activation functions, FC(X,Y), BiLSTM(X,Y) to denote the
fully-connected and bidirectional LSTM layer with the input size X and output size Y .

20

• The prior network Pω is used in all the algorithms other than DCO and its structure is
[FC(s_dim, 64), tanh, FC(64, 64), tanh, FC(64, 64), tanh, FC(64, c_num)]. The
value network corresponding to Pω has the same structure as Pω , except that the output is of
size 1.

• The policy network πθ is used in all the algorithms, with the structure [FC(s_dim +
c_num, 64), tanh, FC(64, 64), tanh, FC(64, 64), tanh, FC(64, a_dim), tanh]. Its
corresponding value network has the same structure except that the output is of size 1 and
there is not tanh at the end.

• The decoder Pϕ used in ODPP and VALOR takes a sequence of states in the trajectory as
input, so it uses bidirectional LSTM as part of the network, i.e., [BiLSTM(s_dim, 64),
FC(2 ∗ 64, c_num)]. While, the decoder of VIC and DIAYN takes one state
as input rather than sequential data, so it uses the fully-connected layer instead, i.e.,
[FC(s_dim, 180), tanh, FC(180, 180), tanh, FC(180, 180), tanh, FC(180, c_num)].

• The option selector Pψ has the same structure as Pω and is used in all the algorithms.
• The eigenfunction network introduced in Section C.3 is used in ODPP and DCO to estimate

the Laplacian spectrum. Its structure is [FC(s_dim, 256), relu, FC(256, 256), relu,
FC(256, 256), relu, FC(256, 256), relu, FC(256, 30)], where 30 denotes the dimension
of the feature vector

−→
bi mentioned in Section 3.2.

As noted in the paper, the crucial hyperparameters are β, α1:3 in Eq. (6) and (10) which control the
importance of each objective term, relating to diversity and coverage. Conducting a grid search on
the set of parameters can be exhaustive. Therefore, we follow the process of the ablation study shown
in Figure 2, add objective terms and adjust their corresponding weights one by one. In particular,
in Figure 2(e), we retain only the LIB objective and select its weight β = 10−3 from five possible
choices: 1, 10−1, 10−2, 10−3, 10−4, guided by the visualization results. Next, for Figure 2(f), we
introduce LDPP1 and fine-tune the corresponding weight α1 while keeping β fixed at 10−3. Last, we
incorporate LDPP2 and LDPP3 and adjust α2 and α3 accordingly, while keeping β and α1 fixed. Note
that the final two terms must work in tandem to ensure that the discovered options exhibit diversity
across different options and consistency for a specific option choice.

After fine-tuning, we set β = 10−3, α1 = 10−4, α2 = 10−2, α3 = 10−2. It is worthy noting that our
evaluations across various challenging RL tasks utilize the same hyperparameter set, highlighting
the robustness of our algorithm. This is because our proposed (DPP-based) coverage and diversity
measures are task-agnostic and universally applicable to RL tasks.

D Additional Evaluation Results

D.1 Complementary Results on the Effect of the Prior Network

As discussed in Section 3, we learn a prior network Pω concurrently with the option policy network πθ.
Figure 7 demonstrates how initializing the option selector Pψ with Pω can lead to further performance
improvement in the downstream task, using the Point Corridor goal-achieving task as an example.
This is based on the fact that both networks share the same structure.

First, in (a), we sample 10,000 trajectories for each option and visualize the agent orientation
distribution corresponding to different options. In (b), we present the coordinate system setup along
with the four turning points for evaluation. The option choices at these turning points provided by the
prior network are displayed in (c). It can be observed that Pω favors the most significant options at a
given state. For instance, at Location #1, Option #5, which tends to go left or down as shown in (a),
is preferred, while at Location #3, Option #3 is favored, guiding the agent to go up or right. Lastly, in
(d), we demonstrate that initializing the option selector with the prior network can further enhance
the agent’s performance in the downstream goal-achieving task.

Previous variational methods choose to fix the prior distribution to avoid a collapse for the prior
network to sample only a handful of skills. Our algorithm pretends that because our algorithm
additionally introduces three DPP-based terms to explicitly maximize the coverage and diversity
of the learned options. With LDPP1:3 , each option is expected to cover multiple state clusters with a
long range and different options tend to visit different regions in the state space. In this case, the
prior network would tend to select multiple diverse skills to improve its learning objective (i.e., Eq.

21

Figure 7: (a) Agent orientation distribution corresponding to different options. (b) Setup of the
coordinate system and start points. (c) The output distribution of the prior network at different start
points. (d) Performance improvement in the downstream task when applying the prior initialization.
The trained prior gives preference to more useful options at corresponding states. At Location #1,
Option #5, which tends to go left or down, is preferred; at Location #3, Option #3 is preferred which
can lead the agent to go up or right. Moreover, Option #8 is preferred at Location #2 to lead the agent
to go down, while Option #6 is preferred at Location #4 to lead the agent to go up.

(12)) rather than sampling only few of them. The collapse happens because the mutual information
objective only implicitly measures option diversity as the difficulty of distinguishing them via the
variational decoder and does not model the coverage, as noted in Section 3. This motivates us to
introduce explicit diversity and coverage measures as regularizers and enhancement.

D.2 More Visualization of the Learned Ant Locomotion Behaviors

In Figure 8, we show more visualization results of the learned Ant locomotion behaviors without the
supervision of task-specific rewards.

(a) Flip (b) Rotation

Figure 8: (a) The Ant agent learns to flip over first, then tries to flip back, and finally stands on its
Leg 1. (b) The Ant agent walks to the right while rotating. It uses Leg 2&3 as the front legs at first
and Leg 1&2 as the front leags at last.

22

D.3 Quantitative Ablation Study Results

Algorithm Distance Standard deviation in x Standard deviation in y

ODPP (LIB) 9.600 ± 0.724 5.342 ± 0.521 9.239 ± 0.689
ODPP (LIB , LDPP1) 11.037 ± 0.627 7.067 ± 0.565 9.313 ± 0.731
ODPP (LIB , LDPP1:3) 14.241 ± 0.653 7.493 ± 0.547 10.077 ± 0.799

Table 1: Numerical results on Mujoco Corridor. We compare our algorithm (the third row) with its
ablated versions. ODPP (LIB) represents a version using only the variational objective LIB , whereas
ODPP (LIB , LDPP1) includes the additional coverage objective LDPP1 . For each algorithm, we
collect ten different option trajectories and compute the mean distance (i.e.,

√
x2 + y2) of the final

states as the (single-option) coverage measure, and the standard deviation on x and y (of the final
states) as the diversity measure. For goal-achieving tasks, these are reasonable metrics, as adopted
in VALOR. The table displays the 95% confidence intervals for these metrics from ten repeated
experiments. It can be observed that the performance in coverage and diversity improves with the
introduction of DPP-based objectives, supporting our algorithm design.

Algorithm Distance Standard deviation in x Standard deviation in y

ODPP (LIB) 11.737 ± 0.581 7.424 ± 0.450 9.637 ± 0.766
ODPP (LIB , LDPP1) 13.008 ± 0.786 8.649 ± 0.887 9.768 ± 0.633
ODPP (LIB , LDPP1:3) 15.349 ± 0.629 10.551 ± 0.558 11.356 ± 0.515

Table 2: Numerical results on Mujoco Room. These results are gathered in the same way as described
above, and the same conclusion can be derived from this table.

D.4 Baseline Performance on OpenAI Gym and Atari Games

(a) CartPole (b) RiverRaid

(c) AirRaid

Figure 9: Each algorithm is employed to learn skills for various tasks in an unsupervised manner. The
95% confidence intervals of the option trajectory rewards from repeated experiments with different
random seeds are depicted. Comparisons between DADS (brown) and APS (purple) with other
baselines illustrate their enhanced performance.

23

	Introduction
	Background and Related Works
	Unsupervised Option Discovery
	Determinantal Point Process

	Proposed Approach
	Landmark-based Mutual Information Maximization
	Quantifying Diversity and Coverage via DPP
	Overall Algorithm Framework

	Evaluation and Main Results
	Ablation Study
	Evaluation in Downstream Tasks
	Performance of Unsupervised Skill Discovery Across Various Benchmarks

	Conclusion and Discussion
	Notations and Proof
	Basic Concepts and Notations
	Proof of Proposition 1
	Proof of Proposition 2

	Comparisons with Recent Variational Option Discovery Algorithms
	Implementation Details and Analysis of ODPP
	The Choice of Diversity Measure
	Fast Greedy MAP Inference for DPP
	Computation of the Laplacian Spectrum for the Infinite-scale State Spaces
	Analysis on Computation Complexity
	Analysis on Scalability
	Important Hyperparameters

	Additional Evaluation Results
	Complementary Results on the Effect of the Prior Network
	More Visualization of the Learned Ant Locomotion Behaviors
	Quantitative Ablation Study Results
	Baseline Performance on OpenAI Gym and Atari Games

