
Need for Speed: CORA Scheduler for Optimizing
Completion-Times in the Cloud

Zhe Huang1, Bharath Balasubramanian2, Michael Wang2, Tian Lan3, Mung Chiang2, and Danny H.K. Tsang1

1The Hong Kong University of Science and Technology, Hong Kong,
2Princeton University, NJ, USA,

3George Washington University, DC, USA
Emails: {ecefelix, eetsang}@ust.hk, {bharathb, mwseven, chiangm}@princeton.edu, tlan@gwu.edu

Abstract—There is an increasing need for cloud service per-
formance that can be tailored to customer requirements. In
the context of jobs submitted to cloud computing clusters, a
crucial requirement is the specification of job completion-times.
A natural way to model this specification, is through client/job
utility functions that are dependent on job completion-times.
We present a method to allocate and schedule heterogeneous
resources to jointly optimize the utilities of jobs in a cloud.
Specifically: (i) we formulate a completion-time optimal resource
allocation (CORA) problem to apportion cluster resources across
the jobs that enforces max-min fairness among job utilities,
and (ii) starting with an integer programming problem, we
perform a series of steps to transform it into an equivalent linear
programming problem, and (iii) we implement the proposed
framework as a utility-aware resource scheduler in the widely
used Hadoop data processing framework, and finally (iv) through
extensive experiments with real-world datasets, we show that
our prototype achieves significant performance improvement over
existing resource-allocation policies.

I. INTRODUCTION

In a computing cloud, efficient allocation of cluster re-
sources (e.g., CPU-time and memory) across multiple jobs
determines system performance and fairness. We address key
challenges in resource allocation with a specific focus on
the client’s sensitivity to job completion-times. The cloud
service provider will greatly benefit by prioritizing resources
towards critical jobs that need to finish by a certain time as
opposed to jobs that are insensitive to completion-times. While
there has been extensive work on resource-allocation in data
centers [1]–[3] and data processing frameworks [4]–[7], none
of them addresses individual job requirements with respect
to completion-times. This brings forth two hard problems: (i)
how do we model job sensitivity to completion-times in a
practically relevant manner, and (ii) given such a model, how
can we perform optimal resource-allocation? We address these
questions and formulate a resource-allocation problem with
job utilities that depend on job completion-times and further,
we present an efficient optimal solution to this problem.

In cloud data analysis frameworks such as Hadoop [8]
and Dryad [9], multiple jobs concurrently share cluster re-
sources such as CPU-time and memory. The state-of-the-art
in resource-allocation among jobs for such systems is based

This work was in part supported by DARPA grant FA8750-11-C0254, a
gift from Google and a gift from HP.

on simple policies. For example, the default Hadoop sched-
uler uses FIFO scheduling while the most popular Hadoop
scheduler, the fair scheduler [10], allocates computational
resources proportional to the priority of the jobs. Since these
schedulers ignore job completion-times, they may often make
wrong scheduling decisions. Even deadline-aware scheduling
schemes such as earliest-deadline-first (EDF) are insufficient
to address our problem [11], [12]. For example, consider two
jobs, where the first job specifies an early target completion
time, but can tolerate longer execution time and the second
job specifies a later, but much more critically important target
completion time. In such a scenario, EDF will simply schedule
the first job ahead of the second job, which may cause the
critical job to miss its target completion time. Clearly, resource
allocation schemes need to account for this heterogeneity with
respect to jobs’ sensitivity to completion time.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time

J
o

b
/C

lie
n

t
U

ti
lit

y

Completion−time−critical

Completion−time−sensitive

Completion−time−insensitive

Fig. 1. Five examples of completion-time-dependent utility functions.

We can capture this sensitivity by modeling job utilities
directly as a function of job completion-times. For example, a
client can describe a completion-time-critical job by specifying
a utility function that decays rapidly to zero (but not below
as utilities are modeled as nonnegative values) after the job’s
target completion-time. In Figure 1, both the red curves model
such utilities. On the other hand, if the job is sensitive to
completion-time without being critically dependent on it, the
client could specify a utility curve that decays gradually with
time (e.g., blue-dashed lines in Figure 1). Finally, if the job
is completely insensitive to completion-time, the client can
simply specify a flat curve. Based on such job utilities, this is

2015 IEEE Conference on Computer Communications (INFOCOM)

978-1-4799-8381-0/15/$31.00 ©2015 IEEE 891

2

the main problem we address in this paper:

Given a set of jobs in a cloud cluster, each with het-
erogeneous resource requirements and a completion-time-
sensitive utility, how do we optimally apportion cluster
resources across the jobs?

This is a difficult problem for three reasons: (i) there
is considerable heterogeneity in the cloud in terms of both
resource requirements and completion-time sensitivity. An
optimal allocation scheme needs to carefully balance such
needs across jobs. (ii) Since job utilities are a function of
completion-time, resource allocation needs to be optimized
across jobs as well as time. This type of optimal allocation over
the time-axis involves discrete optimization, which is often
challenging. (iii) To capture client sensitivity to completion-
time in a practical manner, we have to allow utilities that
are neither convex nor concave (e.g., sigmoid). It further
complicates the optimization problem beyond the standard
literature on convex minimization. We tackle these challenges
and make the following contributions:

• We formulate a resource allocation problem (referred
to as CORA) in cloud computing clusters to maximize
the minimum utility achieved across all the jobs in the
cluster, where the job utilities are functions of their
completion times. A solution to this problem apportions
cluster resources across jobs, in line with job resource
requirements and cluster capacity.

• While CORA is an integer programming problem, we
transform the objective function to a separable convex
function and exploit the total unimodularity structure of
the solution space to reformulate CORA as an equivalent
linear programming problem, which can be solved effi-
ciently and optimally to achieve max-min fairness across
job utilities.

• We implement the proposed framework as a new job-
utility-aware resource scheduler in the Hadoop data pro-
cessing framework (code is available at [13]).

• We compare the performance of our scheduler in Hadoop
with commonly used scheduling policies such as FIFO
scheduling, Hadoop fair scheduler scheduling, earliest-
deadline-first (EDF) scheduling and utility-based risk-
reward heuristic (RRH) scheduling [14]. Through exten-
sive experiments performed on our Hadoop cluster, with
the PUMA suite [15] for MapReduce, we illustrate the
efficacy of our scheduler, in terms of both utility and
adherence to completion-times.

The rest of the paper is organized as follows. In section
II we define our main problem and solution technique. In
section III we describe the implementation of our scheduler
in the Hadoop framework and present the evaluation results.
In section IV we discuss other areas of work relevant to this
paper. Finally we conclude the paper and present directions
for future work in section V.

II. COMPLETION-TIME-OPTIMAL RESOURCE
ALLOCATION

In this section, we first describe our system model, followed
by the problem formulation and our efficient optimal solution
technique. We consider a cloud cluster with different re-
sources, denoted by the setR, and Cr amount of each resource
type r ∈ R. For example, R could be {cores, memory} with
the cluster containing Ccores = 100 and Cmemory = 400, 000.
A set of jobs, N = {1, ..., N}, are submitted to this cluster
at different times, with job i requiring Rri amount of type
r ∈ R resource to complete. We assume a slotted-time model,
in which each job is allocated a share of cluster resources
in each time slot1. A job finishes executing when it receives
the necessary amount of resources across the time slots. The
completion-time of job i, denoted by Ti, is the number of time
slots it takes for the job to receive all the resources it requires.

Each job i also specifies a utility function, Ui(Ti) which
captures its sensitivity to its completion-time. For example,
the utility function of a completion-time-critical job will drop
very fast in value after the job’s execution time passes the
target completion-time. Since each job would prefer an earlier
completion-time, the utility function is strictly non-increasing.
Note that we make no other assumption on the utility function
apart from this. This flexibility allows our proposed model to
handle a wide range of completion-time-sensitivities.

The cluster allocates xri,t resources of type r to job i in
time slot t ∈ T , where T is the set of time slots during which
the cluster operates. Its size (i.e., |T |) is chosen to be large
enough to finish all the jobs. We denote the vector of xri,t by X.
Since the resources allocated to a job cannot be infinitesimal,
without loss of generality, we assume that the minimum unit
of resource-allocation is one.

In this model, the main problem we consider is the fol-
lowing: when a scheduling decision needs to be made, how
should the scheduler allocate resources among the jobs (i.e.,
decide on xri,t), to achieve lexicographic max-min fairness
among jobs’ utilities. In other words, we wish to maximize
the worst-case utility across all the jobs, and then sequentially
maximize the next-worst utility as long as it does not affect the
previous worst-case utility. We formally model this as the fol-
lowing completion-time optimal resource-allocation (CORA)
problem:

(CORA)
lexmax

X
min
i

(Ui(Ti)) (1)

s.t.

Ti = max{t|xri,t > 0, ∀r ∈ R,∀t ∈ T },∀i ∈ N (2)∑
i∈N

xri,t ≤ Cr, ∀t ∈ T ,∀r ∈ R (3)∑
t∈T

xri,t = Rri , ∀i ∈ N ,∀r ∈ R (4)

xri,t ∈ Z+, ∀i ∈ N ,∀r ∈ R,∀t ∈ T . (5)

1In section III, we describe how this slotted-time model can be applied to
a system like Hadoop which executes in continuous time.

2015 IEEE Conference on Computer Communications (INFOCOM)

892

3

While constraint (2) defines job completion-times, constraints
(3) and (4) capture the cluster capacity and job resource
requirements respectively. The CORA problem is an inte-
ger programming problem with non-linear constraint (2).
In this paper, we leverage the structure of our problem to
transform it into an equivalent linear programming problem
(LP), to obtain the resource-allocation vector X. Here, we
summarize the steps in the transformation:
• Step 1: We eliminate the non-linear constraint (2) by re-

formulating the objective function in (1) to be dependent
on the resources allocated, xri,t, rather than the completion
time Ti. We denote this new problem as R-CORA.

• Step 2: We then replace the objective function of R-
CORA with a separable convex function [16] that pre-
serves lexicographic max-min fairness and prove that the
constraints form a totally unimodular matrix [17] (both
these terms are explained in section II-B). This enables
us to transform R-CORA into an equivalent LP.

• Step 3: The transformation to LP in the previous step
results in Cr + 1 additional decision variables for each
variable xri,t in R-CORA. We transform this LP into
another equivalent LP with just three additional variables
for each original variable in R-CORA. This reduction in
variables is crucial since Cr, the resource capacity, could
be in the order of tens of thousands.

We now elaborate each of these steps in the following sub-
sections. Due to space constraints, all the proofs in the paper
are presented in the appendix of our technical report [18].

A. Eliminate Non-linearity in the Constraints (Step 1)
We eliminate the non-linear constraint (2) in CORA by

representing the job’s finishing time using an integer indicator
function I : Z+ → {0, 1} so that I(xri,t) = 1 when xri,t is a
positive integer and I(xri,t) = 0 otherwise. Let uit denote the
utility value of job i if it finishes at time t (i.e., uit = Ui(t)).
Since Ui(t) is non-increasing, we have uit ≤ uit′ if t ≥ t′.
Therefore, by selecting the minimum term of uitI(xri,t) for
all t ∈ T and r ∈ R, we obtain the utility value of job
i at its completion-time. Since scaling the utility function
does not change the optimal solution, when uit is rational,
we multiply it by a constant coefficient to convert it into an
integer with negligible quantization error. This representation
links the utility of jobs to their resource-allocation and elimi-
nates the nonlinear definition of job completion-time from the
constraints. With the above notations, we transform the CORA
problem as follows:

(R-CORA)
lexmax

X
min
i,r,t

(uitI(xri,t))

s.t.

Constraints (3), (4) and (5).

B. Transform to Linear Programming Problem (Step 2)
To transform R-CORA into an LP we exploit two funda-

mental concepts: a separable convex objective function and
the total unimodularity of the constraints.

1) Separable Convex Objective Function: A function is
referred to as separable convex if it can be represented as a
summation of multiple single variable convex functions. Our
first goal is to replace the objective function of R-CORA with
a separable convex function that preserves the lexicographic
max-min fairness. To mathematically define lexicographic
order, we introduce the following definitions. Let Y and W be
two arbitrary k dimensional vectors in Zk. We define

−→
Y and−→

W to be the vectors of Y and W sorted in nondecreasing
order. Y is said to be lexicographically greater than W,
denoted by Y �W, if the first non-zero component of

−→
Y−
−→
W

is positive. Consequently, an allocation vector Y is said to
be lexicographically no less than W, denoted by Y � W,
if
−→
Y −

−→
W = 0 or Y � W. Consider a convex function

h : Zk → R which has the form of h(Y) =
∑k
j=1 k

yi , where
yi is the i-th element of vector Y. The following lemma shows
that h(Y) preserves the lexicographical order of the integer
vectors in Zk.

Lemma 1. For Y,W ∈ Zk, Y �W⇐⇒ h(Y) ≥ h(W).

We use lemma 1 to translate the lexicographic max-min
objective function into a separable convex objective function.
Let k = |N ||T ||R|. Note that there are k number of uitI(xri,t)
terms in the lexicographic max-min objective function of R-
CORA. Let FX be the vector of uitI(xri,t) terms calculated
using X. The objective function in R-CORA is equivalent to
lexminX(max(−FX)). Hence, the objective function in R-
CORA is searching for the smallest −FX vector according to
the lexicographic order �. From Lemma 1, we preserve the
same lexicographic order by comparing the value of h(−FX).
Hence, the objective function of R-CORA is replaced by

minh(−FX) =
∑
i∈N

∑
t∈T

∑
r∈R

k−uitI(x
r
i,t) (6)

Since each term of the summation in (6) consists of an
exponential function (which is convex) of a single decision
variable xri,t, the function is a separable convex function.

2) Total Unimodularity: An l × n matrix A is totally
unimodular if and only if A has all its entries selected in
{−1, 0, 1} and every subset of the row indexes (i.e., I ⊆
{1, 2, ..., l}) can be divided into two disjoint sets, I1 and I2,
such that |

∑
i∈I1 aij −

∑
i∈I2 aij | ≤ 1,∀j ∈ {1, 2, ..., n}

[17]. We show that the constraints of R-CORA are totally
unimodular.

Lemma 2. The coefficients of constraints (3) and (4) form a
totally unimodular matrix.

The total unimodularity property of linear constraints de-
fines a feasible solution polyhedron which has integral extreme
points. When an integer programming problem has a separable
convex objective function and totally unimodular constraints,
there exists a method to transform the integer programming
problem into a linear programming problem which has the
same optimal solutions [16]. We describe this transformation
in the next section.

2015 IEEE Conference on Computer Communications (INFOCOM)

893

4

3) Equivalent LP: To locate the equivalent LP of R-CORA,
we use the λ-representation technique [16] in which, for a
single integer variable x ∈ [0, U] ∩ Z, an integer convex
function f : [0, U] ∩ Z → R can be linearized using the
following representation:

(λ-representation)

f(x) =
∑
j∈D

f(j)λj (7)∑
j∈D

jλj = x (8)∑
j∈D

λj = 1 (9)

λj ∈ R+,∀j ∈ D. (10)

In the above λ-representation, D is the integer set of all the
potential values of x. Constraints (8) and (9) define a convex
combination set for x using linear variables λj . We apply this
λ-representation to each convex function k−uitI(x

r
i,t) in (6).

For each variable xri,t in the range of [0, Cr], we define a
set Dr

i,t = [0, Cr] ∩ Z+ to contain the potential values of
xri,t. According to the λ-representation, extra variables λr,ji,t are
introduced for every j ∈ Dr

i,t. Note that the single variable
function is sampled at each point j ∈ Dr

i,t, when j = 0, the
sample value of k−uitI(x

r
i,t) at xri,t = j is simply one. When

j > 0, the sample value of k−uitI(x
r
i,t) at xri,t = j is k−uit .

As a result, the R-CORA can be rewritten as the following
mixed integer LP:

(Linearized-CORA)

min
X,λ

∑
i∈N

∑
t∈T

∑
r∈R

(
∑

j∈Dr
i,t\{0}

k−uitλr,ji,t + λr,0i,t)

s.t. ∑
j∈Dr

i,t

jλr,ji,t = xri,t, ∀i ∈ N ,∀t ∈ T ,∀r ∈ R

∑
j∈Dr

i,t

λr,ji,t = 1, ∀i ∈ N ,∀t ∈ T ,∀r ∈ R

λr,ji,t ∈ R+,∀j ∈ Dr
i,t, ∀i ∈ N ,∀t ∈ T ,∀r ∈ R

Dr
i,t = [0, Cr] ∩ Z+, ∀i ∈ N ,∀t ∈ T ,∀r ∈ R

Constraints (3), (4) and (5).

The above problem can be solved by linear programming
through relaxing the integer constraints [16]. The total uni-
modularity property guarantees that the optimal xri,t values are
integral. Hence, the integral optimality is preserved. However,
from equation (10), it is clear that this linearization introduces
|Dr

i,t| = Cr+1 additional decision variables for each original
variable xri,t. In the following section, we reduce the size of
Dr
i,t to improve the speed of the Linearized-CORA problem

without any loss in optimality.

C. Reduce the Number of Decision Variables (Step 3)

The λ-representation represents the value of a single vari-
able convex function f(x) using a convex combination of

function values sampled at the integer points in the set of
D. If f(x) is a nonlinear single variable convex function
f(x), then for integers a, b, c such that a, c ∈ D, b /∈ D
and b ∈ [a, c], the λ-representation represents the value of b
using convex combination b = λaa + λcc with λa + λc = 1.
Because of the convexity of the nonlinear function f(x), we
have f(b) < λaf(a) + λcf(c). As a result, when b /∈ D, the
λ-representation overestimates the value of f(x) at b. Hence,
for nonlinear convex f , D must include all the possible values
of x. On the other hand, if f(x) is linear in the range of [a, c]
then, f(b) = λaf(a) + λcf(c) where b = λaa + λcc with
λa + λc = 1. In this case, we can remove all the integers
in the range of (a, c) from D without creating function value
overestimation. To mathematically define the equivalence of
the reduced D set, we present the following lemma.

Lemma 3. For an optimization problem that optimizes a
separable convex function over an integral lattice, replacing
D with D′ ⊂ D for each single variable convex function
f(x) in the λ-representation preserves integral optimality if
∀b ∈ D \ D′, ∃a, c ∈ D′ such that b ∈ [a, c] and f(x) is
linear in [a, b].

Due to the indicator function, the single variable convex
function k−uitI(x

r
i,t) in (6) is linear when xri,t ∈ [1, Cr].

Therefore, all the integer value points in (1, Cr) can be
removed from Dr

i,t. As a result, for each xri,t variable, only
three variables denoted λr,0i,t , λr,1i,t and λr,ci,t corresponding to the
integer sampling points, 0, 1 and Cr, should be considered
in the λ-representation. In this way, the Linearized-CORA
problem can be greatly simplified as follows:

(FINAL)

min
X,λ

∑
i∈N

∑
t∈T

∑
r∈R

(λr,0i,t + k−uit(λr,1i,t + λr,ci,t))

s.t.

λr,1i,t + Crλr,ci,t = xri,t, ∀i ∈ N ,∀t ∈ T ,∀r ∈ R
λr,0i,t + λr,1i,t + λr,ci,t = 1, ∀i ∈ N ,∀t ∈ T ,∀r ∈ R
λr,0i,t , λ

r,1
i,t , λ

r,c
i,t ∈ R+, ∀i ∈ N ,∀t ∈ T ,∀r ∈ R

Constraints (3), (4) and (5).

The FINAL problem is an LP with 4|N ||T ||R| decision
variables as compared to the |N ||T ||R|(Cr + 2) variables of
Linearized-CORA. Since, the resource capacity Cr can be in
the order of tens of thousands, this is a significant reduction.
The following theorem completes the transformation of CORA
into the LP presented as the FINAL problem.

Theorem 1. An optimal solution to the FINAL problem is an
optimal solution to the CORA problem.

Efficient LP solvers (e.g., Lindo [19], Mosek [20]) can be
applied to solve the FINAL problem. For convenience, we
refer to the scheduler based on a solver for the FINAL problem
as the CORA scheduler.

2015 IEEE Conference on Computer Communications (INFOCOM)

894

5

Capacity Scheduler
 XML

HADOOP Engine

CORA

Update job allocation

New job request with
resource requirements

and utility function

Submit job

 Receive periodic
 job status report

Current job allocation %

 New job allocation %

Fig. 2. CORA-Hadoop and its signaling cycle.

III. CORA SCHEDULER FOR HADOOP: IMPLEMENTATION
AND EVALUATION

Shifting from theory to systems, we now describe the
implementation of our CORA scheduler as a new job scheduler
for Hadoop. Further, we compare the CORA scheduler with
other commonly used schedulers through extensive experi-
ments performed with a heterogeneous mix of MapReduce
jobs using real-world data sets. Results confirm that the CORA
scheduler not only optimizes the max-min utility across the
jobs in Hadoop but also achieves strong results in terms of
sum utility and in terms of adherence to target completion
times.

A. Design and Implementation

Hadoop is the de facto standard for large scale data pro-
cessing applications modeled as MapReduce jobs. Each job is
split into Map and Reduce tasks, where the Map tasks perform
the actual computation on 〈key, value〉 pairs of data and the
Reduce tasks aggregate the results according to the keys.
An important problem, referred to as scheduling in Hadoop,
concerns the division of cluster resources among the jobs. We
implement our CORA scheduler as a utility-aware scheduler
in Hadoop 2.4.0, where cluster resources are partitioned into
multiple units called containers, where each container, is
assigned enough CPU, memory and I/O bandwidth to process
a Map or Reduce task. Through our scheduler, we control the
number of containers assigned to each Hadoop job. Figure
2 illustrates the functioning of the CORA scheduler with
Hadoop. The CORA scheduler periodically checks the status
of running jobs in the cluster and maintains the exact number
of Map and Reduce tasks remaining for each job. Our solver
for the FINAL problem is triggered on precisely three events:
the addition of a new job, the completion of a Map or Reduce
task in the system and the completion of an existing job. At
every scheduling event, CORA generates the exact percentage
of cluster containers to be allocated to each active job and
specifies this to the Hadoop capacity scheduler [21]. This
scheduler in turn ensures that Hadoop allocates the specified
amount of containers to each job.

A significant challenge in this implementation is in gen-
erating the input parameters to the FINAL problem at each
scheduling event. Since Hadoop only allows control over
the number of containers, in this framework we can only
consider a single resource type that effectively bundles mul-
tiple resources. The cluster capacity value C (we drop the
r from Cr and Rri since there is just one resource), is the
total number of containers in the cluster. This is a standard
parameter configured by the Hadoop administrator, chosen
such that simultaneous Map and Reduce tasks do not compete
for resources. In Hadoop 2.4.0 this is calculated as the ratio
between the amount of total memory available in the cluster
and the desired memory size of each container.

The job resource requirement Ri for each job i, is the total
number of Map and Reduce tasks it requires to complete.
This is readily available from the Hadoop system since these
numbers are predetermined, based on the total amount of data
submitted with the job and the Hadoop data splitting scheme.
However, the Map and Reduce tasks of different job types may
take different times to execute. In the technical report [18], we
describe how we scale the resource requirement accordingly.
The next parameter required for the FINAL problem is the
number of discrete time slots, |T |. We choose the number of
slots to be large enough for our FINAL problem to generate
a feasible solution. For example, if a cluster has C = 40
containers and the total resource requirement across all the
current jobs is 160 tasks (both Map and reduce), then we
choose |T | = 4. Finally, the job utility function Ui(t) is
specified by each job following the sigmoid function, which
contains both a convex and a concave part:

Ui(t) =
pi

1 + eµi(t−di)
(11)

In the above utility function, di and pi denote the target
completion-time and the priority of job i respectively. The
constant value µi, referred to as job i’s decay factor, controls
how quickly the jobs’ utility values decay, thereby quantifying
its sensitivity to completion times. Note that the client specifies
di in terms of absolute time. In the technical report, we
describe how we convert this to the slotted time model. We
choose the sigmoid utility function in our experiments since it
models a wide range of job utilities. However, our scheduler
is versatile enough to handle a large family of non-increasing
job utility functions in similar fashion (we also present results
for linear utility functions).

B. Other Schedulers for Comparison
We compare our scheduler with four mainstream schedulers:

(i) FIFO scheduling, in which jobs are scheduled according
to the order of their arrival time. This is the default scheduler
of Hadoop. (ii) Proportional scheduling, in which each job
is allocated the share of cluster resources proportional to
its priority. This reflects a comparison with the fair sched-
uler [10], one of the most popular Hadoop schedulers. (iii)
Earliest-deadline-first (EDF) scheduling, in which jobs are
scheduled according to the order of their target completion-
times. (iv) Risk-reward-heuristic (RRH) scheduling [14], in

2015 IEEE Conference on Computer Communications (INFOCOM)

895

6

which, scheduling decisions are made based on the future
utility gain and opportunity cost of reallocating resources.
Specifically, the opportunity cost is calculated using the decay
rate (equivalent to the slope of the job utility function at the
target completion time) of the job utility function.

The comparisons among these four schemes serve to illus-
trate that a scheduling strategy oblivious to the jobs’ sensi-
tivity to completion-times or resource constraints is prone to
making wrong scheduling decisions, which lead to low utility
value. Further, even a scheme such as RRH, that specifically
considers heterogeneous time-dependent job utilities, cannot
achieve optimal performance because it only takes into account
the tangent to the job utility function locally at the target
completion time, rather than the shape of the entire utility
function.

C. Experimental Set-up

The experiments are carried out on a Hadoop cluster
that consists of 5 HP Proliant DL360 G6 servers with a
total of 40 CPU cores and 100 GB of RAM. The lin-
ear programming problem FINAL is solved using the sim-
plex method implemented in the Mosek optimization library
[20]. To emulate a real-world Hadoop cluster as closely as
possible, we choose an equal mix of eight heterogeneous
Hadoop job templates (Movie Classification, Histogram of
Movies, Histogram of Ratings, InvertedIndex, SelfJoin, Se-
quenceCount, WordCount and Terabyte Data Sorting) and
multiple real-world data sets from the PUMA benchmark
suite [15]. Each job processes at least 10 GB of data
and each experimental run process up to 1 TB of data.
To broadly capture jobs’ sensitivity to completion-time, we
consider three job classes based on the decay factor µi:

• completion-time-critical (CT-critical) jobs with decay
factor between 4 and 6, in which the utility drops rapidly
if the jobs’ actual completion-time exceeds the target
completion-time.

• completion-time-sensitive (CT-sensitive) jobs with de-
cay factor between 0.01 and 1, in which the utility
decreases smoothly over a period of time.

• completion-time-insensitive (CT-insensitive) jobs with
decay factor of 0.

These jobs represent a wide range of MapReduce applications
with different characteristics. The generated Hadoop jobs are
submitted to the cluster dynamically according to a Poisson
arrival process with a mean inter-arrival time of 130 seconds.

Cluster capacity C is configured to have a value of 40 task
slots. The jobs in our system required up to 100 Map tasks and
20 reduce tasks. We chose job utilities based on the functions
described in (11). Priority pi is generated randomly according
to a uniform distribution with a range of [1, 5]. For each job
template, we benchmark the total running time of the jobs. The
running time is then used to generate the target completion
times, di, by multiplying it with a random factor generated
from a Gaussian distribution with mean 1.25 and a standard

deviation of 0.1. Note that such target completion times are
possible only if each job can consume all the resources in the
cluster. Because of the resource competition among multiple
active jobs, without scaling up the di values at runtime, no
scheduler can finish the jobs before their target completion
times. Therefore, at the job’s submission time, di is multiplied
by the number of active jobs in the cluster.

D. Performance Results

1) Scheduling Accuracy: To construct a bridge between the
theoretical model and the effectiveness of our CORA scheduler
implementation, we first examine the optimality of the FINAL
problem using real-world experiments. In the first part of
the experiment, we dynamically submit 100 MapReduce jobs
to the cluster over a period of 4 hours. Among these jobs,
20% are CT-critical, 60% are CT-sensitive and 20% are CT-
insensitive. Resources are allocated to jobs according to the
CORA scheduler. During the entire life span of the experiment,
there are 1133 scheduling events in which CORA scheduler
solves the FINAL problem. In each scheduling event, the util-
ity value of the FINAL problem achieved by CORA scheduler
is notably higher than the utility value achieved by the other
schedulers. In Figure 3, we plot the distribution of such utility
value improvements recorded for all 1133 scheduling events.
It shows that the implemented CORA scheduler is able to
accurately construct and solve the FINAL problem.

0% 20% 40% 60% 80% 100%

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Percentage FINAL Problem Utility Improvement

C
o
m

p
le

m
e
n
ta

ry
 C

D
F

CORA−FIFO

CORA−EDF

CORA−RRH

CORA−Fair

Fig. 3. CCDF of utility improvement achieved by CORA over other
schedulers. We calculate utility improvement as the difference between the
utility achieved in the FINAL problem and the minimum utility achieved by
every other scheduler. For example, the first marker on the CORA-FAIR curve
indicates that CORA obtains at least 18% utility improvement over FAIR for
0.65 fraction of all scheduling events.

Next, we focus on the actual utility value of each job at the
end of the experiment. We run the same experiment separately
for each of the five schedulers and compare their end-to-end
performance. Table I shows the minimum value and the sum
value of the actual job utility achieved for CT-critical and CT-
sensitive jobs (the utility of CT-insensitive jobs does not vary
across schedulers). If a single CT-critical job does not finish
in time, it causes the minimum utility to become zero. CORA
protects such jobs and hence achieves a utility greater than

2015 IEEE Conference on Computer Communications (INFOCOM)

896

7

TABLE I
MIN UTILITY, SUM UTILITY AND SOLVER RUNNING TIME FOR 100 JOBS

Min Sum Running time (ms)

CORA 0.008367 241.8256 Mean 347.47
STD 726.29

FIFO 0 164.0450 < 1
Fair 0 120.6410 < 1
RRH 0 167.1594 < 1
EDF 0 147.6562 < 1

zero unlike the others. CORA performs much better in terms
of the sum utility since it not only tries to maximize the worst-
case utility but also tries to improve the subsequent worst-case
utilities. Even though the CORA simplex solver has a higher
running time than the other schedulers, on average, it executes
in less than 500 milliseconds and is hence efficient.

To compare the performance of various schedulers with respect
to completion-times, we define the ∆ value of a job to be
the difference between its actual and target completion-time.

Fig. 4. ∆ values for all schedulers across different job classes (100 Jobs).
CORA outperforms Fair, EDF and FIFO for both CT-critical and CT-sensitive
jobs. RRH overprotects CT-critical jobs at the cost of CT-sensitive jobs,
leading to poor utility performance.

For the same 100 job experiment described above, Figure 4
shows the boxplot statistics of the jobs’ ∆ values for different
CT-classes. The figure demonstrates that our proposed CORA
scheduler is the only scheduler that completes all CT-critical
jobs and the majority of the CT-sensitive jobs before their
target completion times. The results clearly show that FIFO
and Fair schedulers are oblivious to target completion times
and incur high ∆ values for CT-critical jobs. Since EDF only
cares about the value of the target completion-time and ignores
resource demands or completion-time-sensitivity, it leads to
high ∆ values as well. The RRH scheduler achieves low ∆
values for CT-critical jobs, but in doing so, it sacrifices the
performance of CT-sensitive jobs. CORA on the other hand
achieves good balance of ∆ values for both these classes,
which eventually results in better utility performance. To
understand this better, we investigate the effect of balancing

CT-critical and CT-sensitive jobs, on the performance of
CORA and RRH which consider the sensitivities of the jobs’
completion-time.

2) Effect of CT-Critical/Sensitive Jobs: In this experiment,
20 heterogeneous jobs are submitted to the cluster dynami-
cally. We repeat the experiment for five iterations. In each
iteration we vary the proportion of CT-critical and CT-sensitive
jobs while maintaining 25% of the jobs as CT-insensitive.
Since EDF, FIFO and Fair schedulers do not account for
sensitivity to job completion times, we exclude these three
schedulers from the experiments. Figure 5 indicates that even
as the number of CT-critical jobs increase and hence schedul-
ing becomes harder, CORA still completes almost all the CT-
critical and CT-sensitive jobs, by sacrificing performance of
the CT-insensitive jobs (not shown in the figure to simplify
presentation). The RRH scheduler performs well for CT-
critical jobs but fails to protect the performance of the CT-
sensitive jobs. This is because CT-critical jobs have a steeper
decay slope which results in a larger reward value for RRH.
Table II shows the minimum and sum of job utilities achieved
by the CT-critical and CT-sensitive jobs across all the data
points of the experiment. The superior performance of CORA
indicates that a singular preference towards CT-critical jobs
(at the cost of CT-sensitive jobs) is undesirable for sigmoid
utility functions. For sigmoid utility functions, CORA attempts
to finish jobs by their target completion times without caring
about how early it finishes them. In the next section, we
illustrate how the behavior of CORA can be changed as desired
by changing the class of utility functions.

Fig. 5. ∆ values for CORA/RRH varying % of critical/sensitive jobs (sigmoid
utility). CORA achieves good performance for both CT-critical and CT-
sensitive jobs, unlike RRH that overly focuses on CT-critical jobs.

3) Robustness to Change in Utility Curvature: In this ex-
periment, we study the schedulers’ performance for truncated
linear utility functions where the utility decreases linearly with
the job’s execution time. When the job’s total execution time
exceeds its target completion-time, the utility value drops to
zero. The slope of the utility function is randomly generated
from three classes: steep-slope jobs with a slope in [-1, -0.7],
gradual-slope jobs with a slope in [-0.4, -0.1] and no-slope

2015 IEEE Conference on Computer Communications (INFOCOM)

897

8

TABLE II
MIN AND SUM UTILITY FOR VARYING % OF CRITICAL/SENSITIVE JOBS

CORA RRH
Min Agg. Min Agg.

10% 0.1729 46.5574 0 36.0844
20% 0.3610 45.9568 0 37.5157
30% 0 46.9446 0 32.3376
45% 0 45.6386 0 37.7590
60% 0 44.0081 0 35.5677

jobs. Linear utility functions encourage jobs to be completed
as soon as possible. For these classes of utility functions, we
perform experiments similar to those in the previous section
and vary the % of steep-slope and gradual-slope jobs while
keeping the % of no-slope jobs constant. Figure 6 shows
the median, 25% and 75% quartiles of the jobs’ ∆ values
achieved by CORA and RRH for the slope-sensitive jobs. On
average CORA finishes jobs earlier than RRH and as indicated
by the much lower 25% quartile, for many jobs it finishes
considerably earlier. Table III shows that CORA outperforms
RRH in terms of the sum utility value. The results of sections
III-D2 and III-D3 demonstrate that when the utility function
encourages jobs with steeper slops/higher decay values to
finish earlier, CORA outperforms RRH. The results also show
CORA’s versatility in tacking a wide range of utility functions
with different physical interpretations.

10% 20% 30% 45% 60%

−1400

−1200

−1000

−800

−600

−400

−200

0

200

Percentage of Steep Slope Jobs

∆
 (

A
c
tu

a
l
−

 T
a
rg

e
t
C

o
m

p
le

ti
o
n
 T

im
e
)

sec CORA
RRH

Fig. 6. ∆ values for CORA/RRH for varying % of steep/gradual-slope jobs.
CORA outperforms RRH and adapts to the fact that linear utility functions
actively reward earlier completion times (reflected in the low 25% quartiles).

TABLE III
MIN AND SUM UTILITY FOR VARYING % OF STEEP/GRADUAL-SLOPE JOBS

CORA RRH
Min Agg. Min Agg.

10% 0.5 1864.1 0.5 884.5
20% 0.5 2461.4 0.5 1411.0
30% 0.5 3181.6 0.5 1630.5
45% 0.5 3881.0 0.5 2291.4
60% 0.5 6380.1 0.5 3651.1

IV. RELATED WORK

There has been prior work in real-time systems, grid com-
puting and high performance computing in the area of utility-
driven resource-allocation, with the utility function directly
dependent on job completion-times [14], [22]–[25]. In [22],
the authors present heuristics to handle task scheduling across
heterogeneous machines when the tasks have utility functions
that depend on task priority and completion-times. In [1]–[3],
similar techniques are applied to scheduling in data centers,
where the focus is on hard-deadline jobs and soft-deadline
jobs. While the high level goal of this paper is similar, note that
we make no assumptions about the client utility functions apart
from the fact it should be non-decreasing. Further, we focus
on the optimality of our solution as opposed to the heuristics
presented in these prior works.

There has been previous work on ensuring fairness in
resource-allocation. The authors in [26] present a method
to incorporate data locality to allocate an equal share of
resources to all jobs in the cluster. Proportional fairness is
achieved in [5] in the context that all jobs are allocated equal
resources independent of target completion-times. However,
all of these previous works consider fairness in terms of
resource-allocation, rather than fairness in terms of utilities
or completion-times. In many cases, it may be necessary to
allocate a disproportionate share of resources to a job that is
completion-time-critical.

Deadline-aware scheduling has been investigated for
Hadoop-based data processing [4]–[7]. The authors in [5]
present a Hadoop scheduler to solve the conflict between
fair scheduling of jobs and the latency inherent in obtaining
non-local data. So when a job cannot be launched to due to
unavailability of data, is it delayed to accommodate other jobs.
This approach speeds up job processing, but does not optimize
resource-allocation to meet specific requirements in terms of
completion-times. In [7], the authors present a technique for
job scheduling in MapReduce clusters that incorporates two
types of jobs: high priority production jobs and lower priority
research jobs. Further they discuss job eviction policies to
accommodate such a mixture of jobs. While they do consider
different types of jobs and their target completion-times, they
do not consider the completion-time-sensitivity of jobs to
perform resource-allocation.

In [27] the authors propose a job execution model and
design a scheduler that accounts for various parameters that
affect job completion-times. However, this does not incorpo-
rate any optimization for resource-allocation and jobs are only
scheduled if specified target completion-times can be met. In
[28], the authors present a Nash Bargaining problem formula-
tion for completion-time-aware resource-allocation. However,
they define job utilities in terms of the resources allocated by
the target completion-time. In this paper, we model utilities
as a function of completion-time. Such utility functions is
much more expressive and relevant in terms of client service
requirements.

2015 IEEE Conference on Computer Communications (INFOCOM)

898

9

V. CONCLUSION AND FUTURE WORK

Client specifications on completion-times is an important
way to measure the utility clients obtain from the cloud. Due
to the nature of heterogeneity in the cloud, it is a hard prob-
lem to allocate resources to optimize such utilities. Popular
scheduling schemes such as fair and FIFO scheduling fail
to achieve good performance when job utilities are measured
based on completion times. Further, utility-based heuristics for
resource allocation, which do not perform optimal allocation,
are insufficient to address this problem. This is primarily
because in a resource constrained set-up, even a few wrong
decisions can lead to poor performance. In this paper, we
take a significant step towards addressing this problem and
present a resource allocation scheme (CORA) that optimizes
specifically for completion-times. To enable widespread usage
of our technique, we implement a utility-aware scheduler for
the Hadoop data processing framework and using real-world
data sets confirm the efficacy of our scheduler.

There are several avenues for future work. While we exploit
job heterogeneity in this paper, we wish to consider metrics
to quantify this heterogeneity and evaluate the utility achieved
as a function of heterogeneity. Currently, we do not consider
cluster-node-failures explicitly in our model and assume that
the data processing framework handles it internally. An explicit
focus on resource-allocation in the presence of failures is an
important avenue of research. The approach introduced in
this paper may be extended beyond resource-allocation in the
cloud. We wish to apply the proposed problem formulation
to other areas such as packet/flow scheduling and wireless
networking with a specific focus on completion-times.

REFERENCES

[1] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better Never
Than Late: Meeting Deadlines in Datacenter Networks,” in Proceedings
of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11, (New York,
NY, USA), pp. 50–61, ACM, 2011.

[2] M. N. Bennani and D. Menascé, “Resource Allocation for Auto-
nomic Data Centers using Analytic Performance Models,” in ICAC
’05: Proceedings of the Second International Conference on Automatic
Computing, (Washington, DC, USA), pp. 229–240, IEEE Computer
Society, 2005.

[3] A. Chandra, W. Gong, and P. Shenoy, “Dynamic Resource Allocation
for Shared Data Centers Using Online Measurements,” in Proceedings of
the 2003 ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’03, (New York, NY,
USA), pp. 300–301, ACM, 2003.

[4] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica,
“Improving mapreduce performance in heterogeneous environments,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, (Berkeley, CA, USA), pp. 29–
42, USENIX Association, 2008.

[5] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: a simple technique for achieving locality
and fairness in cluster scheduling,” in Proceedings of the 5th European
conference on Computer systems, pp. 265–278, ACM, 2010.

[6] B. Rao and D. L.S.S.Reddy, “Article: Survey on improved scheduling
in hadoop mapreduce in cloud environments,” International Journal of
Computer Applications, vol. 34, pp. 29–33, November 2011. Published
by Foundation of Computer Science, New York, USA.

[7] B. Cho, M. Rahman, T. Chajed, I. Gupta, C. Abad, N. Roberts, and
P. Lin, “Natjam: Design and evaluation of eviction policies for support-
ing priorities and deadlines in mapreduce clusters,” in Proceedings of
the 4th Annual Symposium on Cloud Computing, SOCC ’13, (New York,
NY, USA), pp. 6:1–6:17, ACM, 2013.

[8] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st ed.,
2009.

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, EuroSys ’07, (New York, NY, USA), pp. 59–
72, ACM, 2007.

[10] “Hadoop Fair Scheduler.” https://hadoop.apache.org/docs/r1.2.1/fair
scheduler.html.

[11] S. Shakkottai and R. Srikant, “Scheduling real-time traffic with deadlines
over a wireless channel,” in Proceedings of the 2nd ACM international
workshop on Wireless mobile multimedia, WOWMOM ’99, (New York,
NY, USA), pp. 35–42, ACM, 1999.

[12] K. Johnsson and D. Cox, “An adaptive cross-layer scheduler for im-
proved qos support of multiclass data services on wireless systems,”
Selected Areas in Communications, IEEE Journal on, vol. 23, no. 2,
pp. 334–343, 2005.

[13] “CORA Hadoop Scheduler.” http://cloudfleet.ece.ust.hk/∼ecefelix/
CORA.

[14] D. E. Irwin, L. E. Grit, and J. S. Chase, “Balancing risk and reward
in a market-based task service,” in Proceedings of the 13th IEEE
International Symposium on High Performance Distributed Computing,
HPDC ’04, (Washington, DC, USA), pp. 160–169, IEEE Computer
Society, 2004.

[15] “Puma: Purdue Mapreduce benchmarks suite.” https://sites.google.com/
site/farazahmad/pumabenchmarks.

[16] R. Meyer, “A class of nonlinear integer programs solvable by a single
linear program,” SIAM Journal on Control and Optimization, vol. 15,
no. 6, pp. 935–946, 1977.

[17] A. Ghouila-Houri, “Caractérisation des matrices totalement unimodu-
laires,” CR Acad. Sci. Paris, vol. 254, pp. 1192–1194, 1962.

[18] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and
D. H. K. Tsang, “Need for speed: Cora scheduler for optimizing
completion-times in the cloud,” technical report, 2014. Available as
http://cloudfleet.ece.ust.hk/∼ecefelix/CORA/techReport.pdf.

[19] L. Schrage, Linear, integer, and quadratic programming with LINDO:
user’s manual. Scientific Press, 1986.

[20] E. Andersen and K. Andersen, “The mosek interior point optimizer
for linear programming: An implementation of the homogeneous al-
gorithm,” in High Performance Optimization (H. Frenk, K. Roos,
T. Terlaky, and S. Zhang, eds.), vol. 33 of Applied Optimization, pp. 197–
232, Springer US, 2000.

[21] “Hadoop Capacity Scheduler.” https://hadoop.apache.org/docs/r1.2.1/
capacity scheduler.html.

[22] L. D. Briceno, B. Khemka, H. J. Siegel, A. A. Maciejewski, C. Groer,
G. Koenig, G. Okonski, and S. Poole, “Time utility functions for
modeling and evaluating resource allocations in a heterogeneous com-
puting system,” 2013 IEEE International Symposium on Parallel and
Distributed Processing, Workshops and Phd Forum, vol. 0, pp. 7–19,
2011.

[23] B. Ravindran, E. D. Jensen, and P. Li, “On recent advances in time/utility
function real-time scheduling and resource management,” 2008 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), vol. 0, pp. 55–60, 2005.

[24] F. I. Popovici and J. Wilkes, “Profitable services in an uncertain world,”
in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,
SC ’05, (Washington, DC, USA), pp. 36–, 2005.

[25] A. Auyoung, L. Grit, J. Wiener, and J. Wilkes, “Service contracts
and aggregate utility functions,” in Proceedings of the 15th IEEE
International Symposium on High Performance Distributed Computing,
pp. 119–131, 2006.

[26] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg, “Quincy: fair scheduling for distributed computing clusters,” in
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles, pp. 261–276, ACM, 2009.

[27] S. Wagner, E. V. D. Berg, J. Giacopelli, A. Ghetie, J. Burns, M. Tauil,
S. Sen, M. Wang, M. Chiang, T. Lan, et al., “Autonomous, collaborative
control for resilient cyber defense (accord),” in Self-Adaptive and Self-
Organizing Systems Workshops (SASOW), 2012 IEEE Sixth International
Conference on, pp. 39–46, IEEE, 2012.

[28] Y. Xiang, B. Balasubramanian, M. Wang, T. Lan, and C. Mung,
“Self-adaptive, deadline-aware resource control in cloud computing,”
technical report, 2013. Available as http://www.seas.gwu.edu/∼tlan/
papers/deadlineaware.pdf.

2015 IEEE Conference on Computer Communications (INFOCOM)

899

