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ABSTRACT
In this paper, we propose an adaptive learning paradigm for resource-

constrained cross-device federated learning, in which heteroge-

neous local submodels with varying resources can be jointly trained

to produce a global model. Different from existing studies, the sub-

model structures of different clients are formed by arbitrarily as-

signed neurons according to their local resources. Along this line,

we first design a general resource-adaptive federated learning algo-

rithm, namely RA-Fed, and rigorously prove its convergence with

asymptotically optimal rate𝑂 (1/
√
Γ∗𝑇𝑄) under loose assumptions.

Furthermore, to address both submodels heterogeneity and data
heterogeneity challenges under non-uniform training, we come up

with a new server aggregation mechanism RAM-Fed with the same

theoretically proved convergence rate. Moreover, we shed light

on several key factors impacting convergence, such as minimum

coverage rate, data heterogeneity level, submodel induced noises.

Finally, we conduct extensive experiments on two types of tasks

with three widely used datasets under different experimental set-

tings. Compared with the state-of-the-arts, our methods improve

the accuracy up to 10% on average. Particularly, when submodels

jointly train with 50% parameters, RAM-Fed achieves comparable

accuracy to FedAvg trained with the full model.
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1 INTRODUCTION
In recent years, with the promulgation of kinds of data regulations

such as GDPR and individuals’ awareness of privacy data protec-

tion, federated learning has drawn rapidly growing interest from

both academia and industry. The classical federated learning is cen-

tralized with a parameter server, in which model parameters can be

learned from local dispersed datasets and then sent to the server for

aggregation without sharing local data. Particularly, with the rapid

increase of the volume of data generated by massive mobile and

IoT devices [11–13, 24], the cross-device federated learning [8, 22]

has become a popular distributed computing paradigm.

In real-world cross-device federated learning scenarios, mobile

devices are usually equipped with limited resources for computa-

tion and communication which seriously restrict the convergence

performance of the federated learning algorithms. It would be diffi-

cult and unaffordable for the resource-constrained clients to run

the full model for coordination in federated learning, especially

for the arising large models like ChatGPT [6]. Therefore, kinds of

technologies such as model compression [19], model pruning [5],

splitting learning [20] have been introduced to reduce model size

or communication cost to facilitate cross-device federated learning

feasible. For instance, PruneFL [5] selects the important parame-

ters to train with adaptive pruning. SplitFL [20] combined splitting

learning with federated learning to split the full model into smaller

parts and train them on a server, and distributed clients separately.

In this work, we consider a novel learning paradigm in resource-

limited federated learning. Different from the traditional federated

learning in which each client needs to update the full model in each
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Figure 1: The novel learning paradigm in resource-limited
federated learning. Submodels are formed by arbitrarily as-
signed neuron regions for clients according to local resources.
Training round 𝑞 is depicted and the training repeats until
convergence.

global epoch, different clients can train different submodels accord-

ing to their own resource constraints. Thus the resource-adaptive

learning paradigm aims to train heterogeneous local submodels with
varying resources and still produce a single global inference model.
Recently, independent subnet training (IST) [26] belongs to this

kind of learning paradigm with a strong assumption that hidden

neurons are all random uniformly assigned to disjoint computing

nodes. Literature [30] achieves this goal by adaptively pruning

the shared global full model and establishing sufficient conditions

for the heterogeneous submodels to converge. In this work, we

consider more general cases without these strong assumptions

where existing works would become special cases of our proposed

learning paradigm. An example is shown in Fig. 1, the submodel

structures of different clients are formed by arbitrarily assigned
neurons according to their local resources. As the training con-

tinues, the submodel structure within the same client could also

change continuously due to the changing resources.

Thus in order to achieve this goal, several non-trivial challenges

arise. (1) Submodel heterogeneity. The arbitrary submodels train-

ing induced uncontrollable noises compared with the full model

training, which would affect the performance of federated mod-

els. (2) Non-uniform training. Due to the arbitrarily constructed

submodels, it is obvious that not all the neurons of the whole net-

work can be trained in each round. As shown in the depicted Fig. 1,

neuron region A is never trained by any clients in this training

epoch. The insufficient training would make the convergence of the

federated model difficult, which has never been addressed by exist-

ing IST and literature [30]. (3) Data heterogeneity denotes one

same neuron region might be trained in different clients whose data

distributions could be not independent and identically distributed

(data heterogeneity) [27, 28]. Taking neuron region B in Fig. 1 as

an example, which is trained by submodel 2, 3, 4 simultaneously

in a certain training round. Especially mixing with submodels het-

erogeneity, different neuron regions of the full models might be

trained by different subsets of clients, which further exacerbates

slow convergence [23] and has also been ignored by existing IST

and literature [30]. (4) Theoretical guarantee. Under the arbitrar-
ily assigned neurons training paradigm, arising with the submodel
heterogeneity, non-uniform training, and data heterogeneity chal-

lenges, how to theoretically guarantee the convergence rate of

our proposed algorithm is unprecedentedly challenging. Little is

known about whether such algorithms can converge like standard

federated learning methods.

Along this line, we first propose a general resource-adaptive
federated learning framework, namely RA-Fed, under arbitrary neu-
ron assignments. Within every training round, the server sends the

global model to all clients, different clients leverage adaptive on-

line masks to train heterogeneous submodels with varying neuron

regions, and then the server receives and aggregates accumulated lo-

cal updates for each neuron. We give detailed convergence analysis

with loose assumptions (e.g., remove bounded gradient and assume

the biased mask and compression), which can achieve asymptoti-

cally optimal rate𝑂 (1/
√
Γ∗𝑇𝑄), where 𝑄 is the number of commu-

nication rounds, 𝑇 is the number of local iterations and Γ∗ is the
minimum coverage rate defined in Section 3. Moreover, to mitigate

the effects of both submodel heterogeneity and data heterogeneity
under non-uniform training, we further proposed RAM-Fed with a

new server aggregation mechanism, in which the server stores the

latest updates for different regions of global model in each client,

and reuses it as an approximation for current regions update. We

also prove that RAM-Fed can achieve the same convergence rate

with RA-Fed. Finally, extensive experiments are conducted on two

widely used datasets, both RA-Fed and RAM-Fed demonstrating its

superiority over other baselines. Our source code is available on

github
1
. The main contributions of this paper are summarized as

follows:

• To the best of our knowledge, we are the first to propose the

arbitrarily assigned neurons based resource-adaptive feder-

ated learning paradigm. The heterogeneous local submodels

with varying resources can be jointly trained to produce a

single global model.

• We design a general resource-adaptive learning algorithm

RA-Fed under arbitrary neuron assignments. We give de-

tailed convergence analysis with loose assumptions to prove

RA-Fed can achieve asymptotically optimal rate𝑂 (1/
√
Γ∗𝑇𝑄),

which can achieve speedup with coverage level Γ∗.
• Furthermore, in order to mitigate the effects of both submodel
heterogeneity and data heterogeneity under non-uniform train-
ing, we further propose RAM-Fed with a new server aggre-

gation mechanism. We also theoretically prove the RAM-Fed
can also converge with 𝑂 (1/

√
Γ∗𝑇𝑄).

• Based on the theoretical convergence analysis, we investi-

gate several key factors impacting convergence rate, such

as the minimum coverage rate Γ∗, data heterogeneity level,

submodel induced noises.

• We perform extensive experiments on two different tasks

with three datasets by comparing with state-of-the-art algo-

rithms under different experimental settings. Our algorithms

improve 10% accuracy compared with the optimal results in

baselines. Particularly, RAM-Fed with 50% model achieves

comparable accuracy to FedAvg trained with the full model.

1
https://github.com/wyy-123-xyy/RA-Fed
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In summary, the proposed novel resource-adaptive learning par-

adigm provides a new insight and rigorously theoretical guarantee

for the real-world deployment of arising large models on massive

resource-limited devices. Moreover, existing studies would become

special cases of our learning paradigm. When Γ∗ = 𝑁 , RAM-Fed
achieves the same convergence rate 𝑂 (1/

√
𝑁𝑇𝑄) as the vanilla

FedAvg [16, 25]. When Γ∗ = 1, RAM-Fed achieves the same conver-

gence rate 𝑂 (1/
√
𝑇𝑄) as OAP2 [30].

2 RELATEDWORK
In traditional federated learning [22], FedAvg [16] is the widely

used aggregation algorithm, which achieves 𝑂 (1/
√
𝑁𝑇𝑄) conver-

gence rate with training full global model in each client. However,

with the popularity of large models, it would be difficult for devices

with limited resources to run the full model under classic federated

learning. In recent years, kinds of approaches [14, 15, 21, 26, 30] has

been proposed to address the resource-constrained problem. For

example, literature [30] focuses on training heterogeneous mod-

els with online global model pruning and achieves convergence

with strong assumptions (e.g. bounded gradient). IST [26] is pro-

posed by decomposing the fully connected neural network into

multiple subnetworks with the same depth. HeteroFL [1] designs a

stable framework to train heterogeneous fixed sub-network without

theoretical convergence analysis. In addition, to address the lim-

ited communication problem, several works [17–19] are proposed.

DGC [10] combines gradient sparsity and multiple optimization

technologies to greatly reduce communication costs with compa-

rable accuracy. CHOCO-SGD [9] is proposed to realize arbitrary

compression level with theoretical convergence on non-convex

assumption. Different from any existing studies, in this work, we

consider more general cases by proposing a resource-adaptive fed-

erated learning paradigm under arbitrarily assigned neurons. We

also demonstrate theoretical convergence analysis for the proposed

algorithms, existing studies would become special cases of our

learning paradigm.

3 PRELIMINARIES
Given the resource-constrained cross-device federated learning

paradigm, there exist 𝑁 clients, and all clients collaboratively learn

a single global inference model with parameter \ . The goal is to

optimize the empirical risk minimization like traditional setting:

𝑚𝑖𝑛\ ∈R𝑑 𝐹 (\ ) :=
1

𝑁

𝑁∑︁
𝑛=1

𝐹𝑛 (\ ) (1)

where 𝐹𝑛 (\ ) := Eb𝑛∼𝐷𝑛 [𝐹𝑛 (\, b𝑛)] is the local loss function of client
𝑛 on local dataset 𝐷𝑛 .

Definition 1. Neuron regions. The global inference model con-
tains |K | neuron regions with varying number of neurons. In extreme
cases, each model neuron can be regarded as a separate region.

In our proposed resource-adaptive learning paradigm, due to the

arbitrarily assigned neurons, each client can train a submodel with

2
In our paper, 𝑇𝑄 denotes the total number of SGDs. While in some related work,

only one notation is utilized to represent the total number of SGDs in convergence

rate.

Table 1: Frequently used notations

Notations Descriptions

∥ · ∥ the vector ℓ2 norm or the matrix spectral norm depending on

the argument

K the set of all neuron regions

𝑆𝑞 the trained neuron regions set in round 𝑞

|𝑆𝑞 | the number of trained neuron regions in round 𝑞

𝑆∗ minimum number of trained neuron regions:𝑆∗ = min

𝑞
|𝑆𝑞 |, ∀𝑞

𝑁 𝑖𝑞 the set of clients training neuron region 𝑖 in round 𝑞

Γ𝑖𝑞 Γ𝑖𝑞 = |𝑁 𝑖𝑞 | the number of clients in 𝑁 𝑖𝑞
Γ∗ minimum coverage rate: Γ∗ = min

𝑞,𝑖
Γ𝑖𝑞 , 𝑖 ∈ 𝑆𝑞 , ∀𝑞

Δ𝑞,𝑛 the accumulated local updates from client 𝑛 on itself submodel

in round 𝑞

Δ𝑖𝑞,𝑛 the accumulated local updates from client 𝑛 on neuron region

𝑖 in round 𝑞

𝑚𝑞,𝑛 the mask of client 𝑛 in round 𝑞

𝑢𝑖
𝑞+1,𝑛 the latest update from client 𝑛 on neuron region 𝑖 in round 𝑞

\𝑖𝑞 the neuron region 𝑖 of global model in round 𝑞

∁ ( ·) the arbitrary compressor

𝛾 the step size (learning rate)

multiple varying neuron regions according to their own online het-

erogeneous resource constraints. Specifically, the adaptive online

mask strategy is utilized to obtain the submodel for each client. For

instance, \𝑞 is defined as the initial global model in round 𝑞,𝑚𝑞,𝑛
denotes the mask generated by client 𝑛 in round 𝑞. Thus, \𝑞 ⊙𝑚𝑞,𝑛
defines the submodel with multiple neuron regions of client 𝑛 in

round 𝑞. Comparing with the full model training, the submodels

training induced noises are assumed as follows:

Assumption 1. Mask-induced noises: Existing 𝑤1 ∈ [0, 1), the
mask-induced noise on client 𝑛 and any 𝑞 is bounded:

∥\𝑞 − \𝑞 ⊙𝑚𝑞,𝑛 ∥ ≤ 𝑤2

1
∥\𝑞 ∥2 (2)

Since every submodel is constructed by arbitrarily multiple neu-

ron regions, we let 𝑆𝑞 be the trained neuron regions set in round

𝑞. It is worth noting that 𝑆𝑞 = K denotes all neuron regions can

be trained in round 𝑞, while 𝑆𝑞 ⊆ K denotes only parts of neuron

region are trained in round 𝑞, which is the main difference from

any existing learning paradigms. Then we let N𝑖
𝑞 be the clients set

whose submodels train neuron region 𝑖 ∈ 𝑆𝑞 in round 𝑞 and Γ𝑖𝑞 be

the number of clients in N𝑖
𝑞 .

For algorithm design and convergence analysis, we define a

crucial indicator namely minimum coverage rate Γ∗ as follows:

Γ∗ = min

𝑞,𝑖
Γ𝑖𝑞, 𝑖 ∈ 𝑆𝑞,∀𝑞 (3)

Γ∗ measures the minimum number of submodels training the cor-

responding neuron region 𝑖 in all rounds. Intuitively, the larger Γ∗

indicates the neuron region 𝑖 can be trained sufficiently but might

face higher data heterogeneity.

4 ALGORITHM DESIGN
In this section, we design a novel resource-adaptive learning para-

digm in cross-device federated learning scenarios. Due to the limited

and continuously changing resources in device clients, different

submodels can be trained with arbitrarily varying neuron regions

2446
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Algorithm 1: RA-Fed
1 Initialize: subdataset D𝑛 on 𝑁 clients, mask policy 𝑃 , \1 for 𝑞 = 1

to𝑄 do
2 for 𝑛 = 1 to 𝑁 (all workers in parallel) do
3 Generate mask𝑚𝑞,𝑛 = 𝑃 (∁ (\𝑞 ), 𝑛)
4 Generate submodel \𝑞,𝑛,0 = ∁ (\𝑞 ) ⊙𝑚𝑞,𝑛
5 # Update local submodel with multiple neuron regions:
6 for epoch 𝑡 = 1 to𝑇 do
7 \𝑞,𝑛,𝑡 = \𝑞,𝑛,𝑡−1 − 𝛾∇𝐹𝑛 (\𝑞,𝑛,𝑡−1, b𝑛,𝑡−1 ) ⊙𝑚𝑞,𝑛
8 endfor

9 Δ𝑞,𝑛 =
\𝑞,𝑛,0−\𝑞,𝑛,𝑇

𝛾

10 endfor
11 # Update all neuron regions of global model:
12 for region 𝑖 = 1 to 𝐾 do
13 Find 𝑁 𝑖𝑞 = {𝑛 :𝑚𝑖𝑞,𝑛 = 1}
14 if Γ𝑖𝑞 = 0 then
15 Update \𝑖

𝑞+1 = \
𝑖
𝑞

16 else
17 Update \𝑖

𝑞+1 = \
𝑖
𝑞 − 𝛾 1

Γ𝑖𝑞

∑
𝑛∈𝑁 𝑖𝑞

Δ𝑖𝑞,𝑛

18 end
19 endfor

20 \𝑞+1 =
𝐾∑
𝑖=1
\𝑖
𝑞+1

21 endfor

according to their own resource constraints in our work. The non-

uniform training leads to that not all the neuron regions of the full

model can be trained in each round. In addition, one same neuron

region might be trained by different clients in each round, which

might face high data heterogeneity. Therefore, we first propose a

general resource-adaptive learning algorithm, namely RA-Fed to

address the arising challenges. Moreover, to further mitigate the

effects of both submodel heterogeneity and data heterogeneity, we

propose RAM-Fed with a new server aggregation mechanism. The

details are shown as follows.

4.1 RA-Fed Algorithm
In order to achieve resource-adaptive learning, we propose the RA-
Fed algorithm, whose training process is shown in Algorithm 1.

First, the server sends the globally full model to all clients, different

clients leverage adaptive online masks to train heterogeneous sub-

models with varying neuron regions, and then the server receives

and aggregates accumulated local updates for each neuron. The

details of RA-Fed in the 𝑞-th round are described as follows:

• Mask generation: Online mask 𝑚𝑞,𝑛 would be generated

according to its resource constraints within each client.

• Submodel construction: Each client 𝑛 leverage adaptive on-

line mask𝑚𝑞,𝑛 to generate heterogeneous local submodel

\𝑞,𝑛,0 with multiple neuron regions.

• Local submodel update: Each client 𝑛 calculates local gradi-

ents and update local submodel with 𝑇 iterations: \𝑞,𝑛,𝑡 =

\𝑞,𝑛,𝑡−1 − 𝛾∇𝐹𝑛 (\𝑞,𝑛,𝑡−1, b𝑛,𝑡−1) ⊙𝑚𝑞,𝑛 .
• Uploading local updates: Each client 𝑛 calculates accumu-

lated local updates on local submodel: Δ𝑞,𝑛 =
\𝑞,𝑛,0−\𝑞,𝑛,𝑇

𝛾 .

• Neuron regions aggregation: For each neuron region 𝑖 , the

server calculates the number of clients which local submod-

els contains neuron region 𝑖: Γ𝑖𝑞 . 1) If Γ
𝑖
𝑞 = 0, neuron region

𝑖 in round 𝑞 is not trained: Update \𝑖
𝑞+1 = \

𝑖
𝑞 . 2) Otherwise,

the neuron region 𝑖 is trained by at least one client: Update

\𝑖
𝑞+1 = \

𝑖
𝑞 − 𝛾 1

Γ𝑖𝑞

∑
𝑛∈𝑁 𝑖𝑞

Δ𝑖𝑞,𝑛 .

• Full global model generation: The full model is constructed

based on all neuron regions: \𝑞+1 =
𝐾∑
𝑖=1

\𝑖
𝑞+1.

The convergence of the RA-Fed algorithm is theoretically proved

in Sec. 5.1.

4.2 RAM-Fed Algorithm
Except for the submodel heterogeneity and the non-uniform train-

ing, data heterogeneity also seriously restricts the convergence and

performance of the proposed resource-adaptive learning algorithms.

The core challenge of the mixed heterogeneity is that one neuron

region might be trained by partial clients simultaneously, or even

not be trained in one round due to arbitrariness. Obviously, the key

is to ensure each neuron region can be updated by all clients in

each round. Inspired by the idea of memorized latest updates [2, 4],

we further propose the RAM-Fed algorithm with a new server ag-

gregation mechanism to further mitigate the effects of the mixed

heterogeneity.

In RAM-Fed, the server stores the latest updates from all clients

on each neuron region. Specifically, in Algorithm 2, Δ𝑖𝑞,𝑛 represents

the current updates from client 𝑛 (𝑛 ∈ 𝑁 𝑖𝑞) on neuron region 𝑖 in

round 𝑞. To maintain the latest updates from client 𝑛 (𝑛 ∈ 𝑁 ), after

each round, we perform the following step for all clients:

𝑢𝑖𝑞+1,𝑛 =

{
Δ𝑖𝑞,𝑛 𝑖 𝑓 𝑛 ∈ 𝑁 𝑖𝑞
𝑢𝑖𝑞,𝑛 𝑖 𝑓 𝑛 ∉ 𝑁 𝑖𝑞

(4)

By this way, 𝑢𝑖
𝑞+1,𝑛 maintains the latest updates from all clients

on neuron region 𝑖 in round 𝑞.

Then, when updating the neuron region 𝑖 , we can use the latest

updates 𝑢𝑖𝑞,𝑛 (𝑛 ∈ 𝑁 ) in round 𝑞 − 1 and current updates Δ𝑖𝑞,𝑛 (𝑛 ∈
𝑁 𝑖𝑞) in round 𝑞 to compute an approximation aggregated update

v
𝑖
𝑞 from all clients. Specifically, in round 𝑞, if the neuron region

𝑖 is not trained, then the neuron region 𝑖 will be updated by the

average latest update from all clients: v
𝑖
𝑞 = 1

𝑁

𝑁∑
𝑛=1

𝑢𝑖𝑞,𝑛 . Otherwise,

if the neuron region 𝑖 is trained by clients 𝑁 𝑖𝑞 , then the neuron

region 𝑖 will be updated by Δ𝑖𝑞,𝑛 (𝑛 ∈ 𝑁 𝑖𝑞) and 𝑢𝑖𝑞,𝑛 (𝑛 ∉ 𝑁 𝑖𝑞): v
𝑖
𝑞 =

1

𝑁

𝑁∑
𝑛=1

𝑢𝑖𝑞,𝑛+ 1

Γ𝑖𝑞

∑
𝑛∈𝑁 𝑖𝑞

(Δ𝑖𝑞,𝑛−𝑢𝑖𝑞,𝑛). Noted that we give higher weight

to current client updates Δ𝑖𝑞,𝑛 (𝑛 ∈ 𝑁 𝑖𝑞) as compared to previous

client updates 𝑢𝑖𝑞,𝑛 (𝑛 ∉ 𝑁 𝑖𝑞 ) following FedVARP [4]. Thus, this can

correct the update bias (only partial clients update error compared

with all clients update) in neuron regions using the latest updates

from all clients in each round. The convergence of the RAM-Fed
algorithm is theoretically proved in Sec. 5.2.
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Algorithm 2: RAM-Fed

1 Initialize: subdataset D𝑛 on 𝑁 clients, mask policy 𝑃 , \1,

𝑢1,𝑛, (𝑛 = 1, ..., 𝑁 )
2 for 𝑞 = 1 to𝑄 do
3 for 𝑛 = 1 to 𝑁 (all workers in parallel) do
4 Generate mask𝑚𝑞,𝑛 = 𝑃 (∁ (\𝑞 ), 𝑛)
5 Generate submodel \𝑞,𝑛,0 = ∁ (\𝑞 ) ⊙𝑚𝑞,𝑛
6 # Update local submodel with multiple neuron regions:
7 for epoch 𝑡 = 1 to𝑇 do
8 \𝑞,𝑛,𝑡 = \𝑞,𝑛,𝑡−1 − 𝛾∇𝐹𝑛 (\𝑞,𝑛,𝑡−1, b𝑛,𝑡−1 ) ⊙𝑚𝑞,𝑛
9 endfor

10 Δ𝑞,𝑛 =
\𝑞,𝑛,0−\𝑞,𝑛,𝑇

𝛾

11 endfor
12 # Update all neuron regions of global model:
13 for region 𝑖 = 1 to 𝐾 do
14 Find 𝑁 𝑖𝑞 = {𝑛 :𝑚𝑖𝑞,𝑛 = 1}
15 if Γ𝑖𝑞 = 0 then

16 Update v
𝑖
𝑞 = 1

𝑁

𝑁∑
𝑛=1

𝑢𝑖𝑞,𝑛

17 else

18 Update v
𝑖
𝑞 = 1

𝑁

𝑁∑
𝑛=1

𝑢𝑖𝑞,𝑛 + 1

Γ𝑖𝑞

∑
𝑛∈𝑁 𝑖𝑞

(Δ𝑖𝑞,𝑛 − 𝑢𝑖𝑞,𝑛 )

19 end
20 \𝑖

𝑞+1 = \
𝑖
𝑞 − 𝛾v𝑖𝑞

21 # Store the latest update for each client:
22 for 𝑛 = 1 to 𝑁 do

23 𝑢𝑖
𝑞+1,𝑛 =

{
Δ𝑖𝑞,𝑛 𝑖 𝑓 𝑛 ∈ 𝑁 𝑖𝑞
𝑢𝑖𝑞,𝑛 𝑖 𝑓 𝑛 ∉ 𝑁 𝑖𝑞

24 endfor
25 endfor

26 \𝑞+1 =
𝐾∑
𝑖=1
\𝑖
𝑞+1

27 endfor

5 CONVERGENCE ANALYSIS
In the section, we show the convergence rate of our proposed RA-
Fed and RAM-Fed algorithms. Firstly, we give some commonly used

assumptions in federated learning:

Assumption 2. Lipschitzian Condition: Every function 𝐹𝑛 (·) is
with 𝐿-Lipschitzian gradient: ∀𝑛 ∈ [𝑁 ], \, 𝜑 ∈ 𝑅𝑑

∥∇𝐹𝑛 (\ ) − ∇𝐹𝑛 (𝜑)∥ ≤ 𝐿∥\ − 𝜑 ∥ (5)

Assumption 3. Bounded compression: An operator ∁ : R𝑑 → R𝑑
is a𝑤-approximate compressor over𝑤2 for𝑤2 ∈ (0, 1] if

E∥∁(\ ) − \ ∥2 ≤ 𝑤2

2
E∥\ ∥2 . ∀\ ∈ Ω (6)

Assumption 4. Bounded variance: There exists 𝜎 > 0:

Eb𝑛,𝑡∼𝐷𝑛 ∥∇𝐹𝑛 (\𝑞,𝑛,𝑡 ; b𝑛,𝑡 ) − ∇𝐹𝑛 (\𝑞,𝑛,𝑡 )∥2 ≤ 𝜎2, ∀𝑞, 𝑛, 𝑡 (7)

𝜎 > 0 bounds the variance of stochastic gradient.

Assumption 5. Bounded data heterogeneity level: There exists
𝛿 > 0:

∥∇𝐹𝑛 (\𝑞) − ∇𝐹 (\𝑞)∥2 ≤ 𝛿2 (8)

𝛿 > 0 bounds the effect of heterogeneous data.

5.1 Convergence analysis of RA-Fed
Lemma 1. Deviation of local submodel and global model:

Let all assumptions hold.

1

𝑇

𝑇∑︁
𝑡=1

E∥\𝑞,𝑛,𝑡−1 − \𝑞 ∥2 ≤ 4𝛾2𝑇𝜎2 + 32𝛾2𝑇 2𝛿2

+ 32𝛾2𝑇 2

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞)∥2 + 4𝑤2E∥\𝑞 ∥2

(9)

Lemma 1 bounds the difference between local submodel and global

model. It indicates that the effects of local submodel training:\𝑞,𝑛,𝑡−1−
\𝑞,𝑛,0 and mask and compression error: \𝑞,𝑛,0−\𝑞 . Note that \𝑞,𝑛,0−
\𝑞 can be split into mask error ∁(\𝑞) ⊙𝑚𝑛,𝑞 −∁(\𝑞) and compres-

sion error ∁(\𝑞) − \𝑞 .

Theorem 1. Let all assumptions hold. Suppose that the step size 𝛾
satisfies the following relationships:

8𝛾2𝐿2𝑇 2 ≤ 1

2
⇒ 𝛾 ≤ 1

4𝐿𝑇

32𝛾2𝑇 2 𝑁
Γ∗ 𝐿

2 ≤ 1

8
⇒ 𝛾 ≤

√
Γ∗

16𝑇𝐿
√
𝑁

96𝐿3𝛾3𝑇 3 𝑁
Γ∗ ≤ 1

8
⇒ 𝛾 ≤ (Γ∗ )

1

3

768

1

3 𝐿𝑇𝑁
1

3

3

2
𝐿𝛾𝑇 ≤ 1

8
⇒ 𝛾 ≤ 1

12𝑇𝐿

Therefore, the step size 𝛾 is defined as:

0 ≤ 𝛾 ≤ min{ 1

12𝑇𝐿
,

√
Γ∗

16𝑇𝐿
√
𝑁
,

(Γ∗)
1

3

768

1

3 𝐿𝑇𝑁
1

3

}

Then, for all 𝑄 ⩾ 1, we have:

1

𝑄

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞)∥2 ≤ 8E[𝐹 (\1)]

𝑇𝛾𝑄

+ (64𝑤2
𝑁

Γ∗
𝐿2 + 96𝐿3𝛾𝑇

𝑁

Γ∗
𝑤2) 1

𝑄

𝑄∑︁
𝑞=1

E∥\𝑞 ∥2

+ 8𝑁

Γ∗
(32𝛾2𝑇 2𝐿2 + 1 + 96𝐿3𝛾3𝑇 3 + 3𝐿𝛾𝑇 )𝛿2

+ 𝛾𝐿 8𝑁
Γ∗

(4𝛾𝑇𝐿 + 3

2

+ 12𝐿2𝛾2𝑇 2)𝜎2,

(10)

where 2𝑤2

1
𝑤2

2
+ 2𝑤2

1
+𝑤2

2
= 𝑤2

Theorem 1 shows the convergence rate of algorithm RA-Fed by

giving the upper bound on the average gradient of all clients for all

trained neuron regions.

Remark 1 Impact of the number of trained neuron regions |𝑆𝑞 |.
Our algorithm is novel with stronger generalization, in which

not all neuron regions can be trained in each round. Specifically,

regions (K − 𝑆𝑞) can not be trained in round 𝑞. It is obvious that in

identical settings, the larger |𝑆𝑞 |, the more neuron regions trained,

the more gradients on neuron regions can be bounded, the bet-

ter the convergence rate. Furthermore, to reduce the impact of

partial neuron regions not being updated in some rounds on the

convergence rate, we design a new server aggregation mechanism

in Algorithm 2, which achieves the same convergence rate and

ensures that all neuron regions can be updated in each round.

Remark 2: Impact of the mask-induced noise𝑤1 and compres-

sion noise𝑤2.
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Our convergence result shows that the smaller noises 𝑤2 =

2𝑤2

1
𝑤2

2
+ 2𝑤2

1
+ 𝑤2

2
would lead to a faster convergence rate and

better performance in federated learning. Besides, it is worth noting

that the mask-induced noise is also highly related to 𝑆𝑞 and Γ∗.
Remark 3: Impact of the data heterogeneity level 𝛿 .

In our learning paradigm, we consider heterogeneous data distri-

butions in real-world scenarios. The larger 𝛿 denotes the higher the

data heterogeneity level and the slower convergence rate. Therefore,

to reduce the impact of data heterogeneity on learning performance,

we propose the RAM-Fed shown in Algorithm 2.

Next, by choosing the appropriate convergence rate 𝛾 and the

parameters representing data heterogeneity levels 𝛿 , we can obtain

the following corollary.

Corollary 1. Let all assumptions hold. Supposing that the step

size 𝛾 = 𝑂 (
√︃

Γ∗
𝑇𝑄

) and that 𝛿 = 𝑂 ( 1√
𝑇𝑄

), when the constant 𝐶 > 0

exists, the convergence rate can be expressed as follows:

1

𝑄

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞)∥2 ≤ 𝐶 ( 1

√
Γ∗𝑇𝑄

+ 1

𝑄
+ 1

Γ∗𝑇𝑄
+ 1

𝑄1.5
+ 1

𝑄2
+ 1

𝑄2.5
)

(11)

Corollary 1 indicates that when 𝑄 is sufficiently large, the term
𝑂 (1/

√
Γ∗𝑇𝑄) will dominate the convergence rate and the conver-

gence increases with the number of Γ∗.

The detailed theoretical proof of Theorem 1 and Corollary 1 are

provided in Supplement.

Remark 4: Impact of the minimum coverage rate Γ∗.
The Corollary 1 demonstrates that our proposed RA-Fed algo-

rithm can converge to𝑂 (1/
√
Γ∗𝑇𝑄) under arbitrary adaptive online

mask. Except for the non-trained neuron regions from the global

model, others can be trained by at least Γ∗ submodels in each round.

Intuitively when fixing other impacting factors, as Γ∗ increases,

the more frequently the neuron region can be trained, so the faster

RA-Fed can converge to a stationary point.

5.2 Convergence analysis of RAM-Fed
Assumption 6. Number of continuously non-trained rounds: We

define the total number of rounds that client 𝑛 has not trained neuron
region 𝑖 continuously as 𝜏𝑖𝑞,𝑛 :

𝜏𝑞 = max

𝑛,𝑖
𝜏𝑖𝑞,𝑛, 𝑛 ∈ 𝑁, 𝑖 ∈ K (12)

Assumption 7. Bounded gradient: In algorithm 2, the expected
squared norm of stochastic gradients is bounded uniformly, for con-
stant 𝐺 > 0 and ∀𝑛, 𝑞, 𝑡 :

E∥∇𝐹𝑛 (\𝑞,𝑛,𝑡 , b𝑞,𝑛,𝑡 )∥2 ≤ 𝐺. (13)

Lemma 2. Deviation of average submodel stochastic gradient be-
tween round 𝑞 and round 𝑞 − 𝜏𝑞 : Let all assumptions hold.∑︁

𝑖∈𝑆𝑞
E∥ 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞,𝑛,𝑡−1, b𝑛,𝑡−1)

− 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1)∥2

≤ 6

𝑁

Γ∗
𝜎2 + 18

𝑁

Γ∗
𝐿2 (4𝛾2𝑇𝜎2 + 32𝛾2𝑇 2𝛿2 + 32𝛾2𝑇 2𝐺)

(14)

+ 36

𝑁

Γ∗
𝐿2𝑤2 (E∥\𝑞 ∥2 + E∥\𝑞−𝜏𝑞 ∥2)

+ 9

𝑁

Γ∗
𝐿2 (3(𝜏𝑞)2𝛾2𝑇 2𝐺 (1 + 2𝑁

Γ∗
) + (𝜏𝑞)2𝛾2𝑇 2𝐺)

Lemma 2 bounds the difference of average local submodel sto-

chastic gradient between round 𝑞 and round 𝑞 − 𝜏𝑞 for all trained

neuron regions 𝑆𝑞 .

Theorem 2. Let all assumptions hold. Suppose that the step size 𝛾
satisfies the following relationships:{

8𝛾2𝐿2𝑇 2 ≤ 1

2
⇒ 𝛾 ≤ 1

4𝐿𝑇
𝐿
2
𝛾2𝑇 2 − 𝑇𝛾

2
< 0 ⇒ 𝛾 < 1

𝐿𝑇

Therefore, the step size 𝛾 is defined as:

0 ≤ 𝛾 ≤ 1

4𝐿𝑇

Then, for all 𝑄 ⩾ 1, we have:

1

𝑄

𝑄∑︁
𝑞=1

E∥∇𝐹 (\𝑞)∥2 ≤ 2E[𝐹 (\1)]
𝑇𝛾𝑄

+ (48𝜏 + 384 + 1152

𝑁

Γ∗
𝐿2 + 72

𝑁

Γ∗
𝜏 + 72

𝑁

Γ∗
𝐿2𝜏 + 108( 𝑁

Γ∗
)2𝐿2𝜏)𝛾2𝑇 2𝐺

+ (48𝛾2𝑇 + 12

𝑁

Γ∗
+ 6 + 144

𝑁

Γ∗
𝐿2𝛾2𝑇 )𝜎2 + 128(3 + 9

𝑁

Γ∗
𝐿2)𝛾2𝑇 2𝛿2

+ 8𝑤2 (6 + 9

𝑁

Γ∗
𝐿2) 1

𝑄

𝑄∑︁
𝑞=1

E∥\𝑞−𝜏𝑞 ∥2 + 72

𝑁

Γ∗
𝐿2𝑤2

1

𝑄

𝑄∑︁
𝑞=1

E∥\𝑞 ∥2,

(15)

where 1

𝑄

∑𝑄
𝑞=1

(𝜏𝑞)2 = 𝜏

Theorem 2 shows the convergence rate of RAM-Fed algorithm

by giving the upper bound on the average gradient of all neuron

regions on all clients. It is worth noting that in the convergence

result, we ensure that all neuron regions can be updated in each

round compared with Algorithm 1. As shown in the theoretical

result of RAM-Fed, we remove 𝑆𝑞 to achieve the bound of gradients

on all neuron regions, which is consistent with our optimal goal.

Remark 5 Impact of the maximum number of continuously

non-trained rounds 𝜏𝑞
In our convergence analysis, we need to satisfy: 𝑞 − 𝜏𝑞 > 0 ⇒

𝜏𝑞 < 𝑞. Recall that 𝜏𝑞 = max

𝑛,𝑖
𝜏𝑖𝑞,𝑛 means until round 𝑞, the maxi-

mum number of non-trained for all neuron regions on all clients.

Therefore, in our algorithm, we can only ensure that all neuron

regions are trained on all clients in the first round. In this case,

inequality 𝜏𝑞 < 𝑞 always holds. Moreover, the result indicates that

the larger 𝜏𝑞 , the worse the convergence rate.

Next, by choosing the appropriate convergence rate 𝛾 , we can

obtain the following corollary.

Corollary 2. Let all assumptions hold. Supposing that the step

size 𝛾 = 𝑂 (
√︃

Γ∗
𝑇𝑄

) and 𝜎 is sufficiently small, when the constant
𝐶 > 0 exists, the convergence rate can be expressed as follows:

1

𝑄

𝑄∑︁
𝑞=1

E∥∇𝐹 (\𝑞)∥2 ≤ 𝐶 ( 1

√
Γ∗𝑇𝑄

+ 1

𝑄
+ 1

Γ∗𝑄
+ 1

𝑄2
) (16)
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Table 2: Performance comparison on MLP-MNIST and CNN-CIFAR10. ’-’ means this method doesn’t work under corresponding
mask level setting. Bold is the optimal result except for FedAvg with full model training, underlined is the suboptimal result.

Methods Mask level

MLP-MNIST (Accuracy %) CNN-CIFAR10 (Accuracy %)

𝛼 = 0.01 𝛼 = 0.05 𝛼 = 0.1 𝛼 = 0.15 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.4

FedAvg Full 87.9 91.2 94.2 96.4 61.9 64.5 70.6 75.8

SplitFL

SameStr. 52.2 69.9 72.4 67.6 37.6 45.8 50.1 63.8

Arb. - - - - - - -

IST

U.A. 66.9 80.5 87.0 91.5 24.5 25.0 27.1 27.9

Arb. - - - - - - - -

PruneFL

L-Arb. 80.8 87.5 91.5 94.8 48.7 51.4 53.6 60.0

S-Arb. 64.3 79.1 86.4 91.7 29.5 39.7 42.4 43.7

MIX-Arb. 78.8 85.5 90.0 94.2 38.6 49.7 53.2 56.8

OAP

L-Arb. 65.8 77.7 84.9 92.2 45.9 49.4 50.5 56.0

S-Arb. 37.8 71.7 75.9 84.4 16.8 18.0 27.9 35.4

MIX-Arb. 61.5 74.5 80.9 90.4 45.5 43.8 54.0 56.8

RA-Fed(ours)

L-Arb. 85.2 89.0 92.8 95.6 49.2 54.8 57.8 65.1
S-Arb. 78.1 86.4 90.5 94.1 33.4 44.5 46.2 51.1

MIX-Arb. 82.7 87.1 91.0 94.8 49.6 53.4 54.6 61.6

RAM-Fed(ours)

L-Arb. 88.0 90.1 95.4 96.6 52.7 55.6 61.8 65.3
S-Arb. 85.0 87.8 94.2 94.9 39.5 47.5 49.2 51.1

MIX-Arb. 86.5 89.6 94.5 95.7 50.8 53.7 60.5 61.4

Corollary 2 indicates that when 𝑄 is sufficiently large, the term
𝑂 (1/

√
Γ∗𝑇𝑄) will dominate the convergence rate and the conver-

gence increases with Γ∗.

Remark 6 Recall that Γ∗ = min

𝑞,𝑖
Γ𝑖𝑞, 𝑖 ∈ 𝑆𝑞,∀𝑞 measures the

minimum number of submodels training the corresponding neuron

region 𝑖 ∈ 𝑆𝑞 in all rounds. Thus, it is obvious that 1 ≤ Γ∗ ≤ 𝑁 .

When Γ∗ = 𝑁 , all submodels can train neuron region 𝑖 ∈ 𝑆𝑞 , which
achieves the same convergence rate 𝑂 (1/

√
𝑁𝑇𝑄) as the vanilla

FedAvg [16, 25]. When Γ∗ = 1, we achieves the same convergence

rate 𝑂 (1/
√
𝑇𝑄) as OAP [30].

The detailed theoretical proof of Theorem 2 and Corollary 2 are

provided in Supplement.

6 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate kinds

of federated learning paradigms. The details are shown as follows.

6.1 Datasets and baseliens
6.1.1 Task and dataset description. We perform all approaches on

two different types of machine learning tasks: image classification

on MNIST and CIFAR10, text classification on AGnews [29].
Image classification: We train CNN with 2 convolution layers

and 3 hidden layers on CIFAR10, MLP with 2 hidden layers on

MNIST. CIFAR10 contains 10 categories with 50k training images

and 10k testing images. MNIST contains 10 categories with 60k

training images and 10k testing images. Text classification:We

train FastText [7] with 1 embedding layer and 2 hidden layers on

AGNews, AGNews contains 4 categories with 120k training news

articles and 7600 testing news articles.

6.1.2 Dataset partition. We use Dirichlet distribution Dir(𝛼) [3] to

set up different data heterogeneity levels. The smaller 𝛼 represents

the stronger heterogeneity levels.

6.1.3 Baselines and Metrics. We compare our learning paradigm

with related state-of-the-art methods in resource-limited federated

learning: Fedavg [16], SplitFL [20] , IST [26], PruneFL [5] and

OAP [30]. We evaluate all approaches on two important evaluation

Metrics in resource-limited federated learning. The Mask level mea-

sures the average local submodel size and the arbitrariness level of

submodels. The Accuracy measures the performance of different

learning paradigms on various tasks.

6.2 Experimental setup
Submodel setup: The submodels are designed based on arbitrarily

assigned neurons, which denotes that not all the neurons of the full

network can be trained in each round. To achieve this goal, we ran-

domly select partial neuron regions not to be trained periodically.

We design three different mask levels to generate different numbers

of submodel parameters. L or S denotes that submodels train 50%

or 25% parameters of the full model respectively. Differently, MIX
denotes that 50% submodels are trained with 50% parameters, while

others are with 25% parameters. Specifically, in each round, the

global model\ can be split into 4 neuron regions,\ = {\1, \2, \3, \4}.
Considering arbitrarily assigned neuron regions, when the mask

level is set to L-Arb., each client can adaptively select 2 neuron

regions (e.g. {\1, \2}) to train. Thus, at most 6 types of heteroge-

neous submodels can be generated. Under MIX-Arb. setting, we
randomly select 50% submodels with 2 adaptively chosen neuron

regions, while others are with 1 adaptively chosen neuron region

for training. In different rounds, the submodel structure within

the same client could change due to the varying resources. It is

worth noting that for FedAvg, full models need to be trained. The
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Table 3: Performance comparison on FastText-AGNews. ’-’
means this method doesn’t work under corresponding mask
level setting.

Methods Mask level

Accuracy(%)

𝛼 = 0.05 𝛼 = 0.1 𝛼 = 0.15 𝛼 = 0.20

FedAvg Full 73.7 71.8 82.0 82.2

SplitFL

SameStr. 50.4 73.4 82.0 83.4

Arb. - - - -

IST

U.A. 51.6 52.3 57.7 62.8

Arb. - - - -

PruneFL

L-Arb. 67.3 72.0 80.3 80.4

S-Arb.. 57.8 59.6 71.2 72.2

MIX-Arb. 66.2 70.3 79.5 80.3

OAP

L-Arb. 45.8 44.1 51.7 53.3

S-Arb. - - - -

MIX-Arb. 37.3 39.7 46.2 49.4

RA-Fed

(ours)

L-Arb. 73.3 78.1 84.6 84.9
S-Arb. 66.7 72.9 83.0 84.1

MIX-Arb. 70.8 77.3 83.9 84.7

RAM-Fed

(ours)

L-Arb. 77.6 86.6 89.3 89.4
S-Arb. 73.1 85.3 87.1 88.7

MIX-Arb. 76.8 86.5 88.4 89.2

arbitrarily assigned neuron regions are not allowed in SplitFL and

IST. According to their original definitions, the same submodel

structures need to be constructed in every client in SplitFL, and
neurons are uniformly assigned (U.A.) to different clients.

Training setup: In our experiments, we train tasks with momen-

tum SGD optimizer on 10 clients. The batch size is set to 128. The

momentum parameter is set to 0.5. The number of local iterations

is set to 5. The learning rate 𝛾 is set to 0.01 on MLP-MNIST, 0.05 on
CNN-CIFAR10 and 0.1 on FastText-AGNews. For all approachs, we
use an identical experiment setup, and run all experiments on ten

GeForce RTX 3090 GPUs.

6.3 Numerical results
About the results on image classification tasks in table 2, we can

observe that:

• On the whole, our algorithms outperform all baselines under

different mask levels and data heterogeneity level settings.

Except FedAvg with full model, in testing accuracy, RA-Fed
nearly improves 2%-20% and RAM-Fed improves 4%-22%.

Comparing with the baselines excepting FedAvg, RA-Fed
and RAM-Fed improve accuracy by 8.5% and 10% on aver-

age respectively. Particularly, RAM-Fed with 25% submodel

achieves comparable accuracy to PruneFL with 50% model.

• Compared with FedAvg, we observe that FedAvg is slightly

higher than our algorithms in testing accuracy but RAM-Fed
with L-Arb. mask level slightly outperforms FedAvg on MLP-
MNIST, which demonstrates that our algorithm is robust in

the resource-limited learning environment.

• Especially in our proposed RAM-Fed algorithm, it greatly im-

proves the performance in non-uniform training and achieves

the highest accuracy under high data heterogeneity levels,

which further indicates that the new aggregation mechanism
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Figure 2: Training process of different learning paradigms.

in RAM-Fed effectively mitigates the impact of non-uniform

and data heterogeneity.

• For the impact of mask level, all algorithms nearly per-

form worse due to the larger induced noises when the mask

level varies from L-Arb. to S-Arb.. It indicates that the mask-

induced error is a key factor impacting performance which

is consistent with our theoretical analysis.

• With the increment of data heterogeneity level 𝛼 , all meth-

ods’ accuracy generally becomes worse. But RAM-Fed de-

creases slightly which demonstrates that RAM-Fed is more

robust in data heterogeneous scenarios.

• In general, comparing with other baselines, PruneFL can

achieve higher accuracy, which is due to the fact that impor-

tant parameters are selected for training in every round.

About results on text classification task in table 3, we conclude:

• Noticeably, in any mask level, RAM-Fed performs better than

other algorithms, nearly achieving 7%-30% improvements.

Comparingwith the baselines, RA-Fed and RAM-Fed improve

accuracy by 9% and 13% on average respectively.

• Surprisingly, RAM-Fed algorithmnearly performs better than

FedAvg, which might be because partial stale gradients could

be larger than the current gradients with the right direction.

This further demonstrates the effectiveness of our proposed

submodels joint novel training mechanism.

• RA-Fed and RAM-Fed algorithms all achieve higher accuracy

than PruneFL, which indicates that adaptive strategy could

perform better than high-wight parameter selection method.

• Even comparing with SplitFL and IST with uniform training,

RA-Fed and RAM-Fed all achieve better performance with

arbitrarily assigned neurons.

The convergence process of different learning paradigms on

image classification (L-Arb. mask level, 𝛼 = 0.15 on MLP-MNIST )
and text classification task (L-Arb. mask level, 𝛼 = 0.2 on FastText-
AGNews) are depicted in Fig 2.

• As shown in Fig. 2(a) and Fig. 2(b), RA-Fed and RAM-Fed have
similar convergence trends with FedAvg onMLP-MNIST, this
is because neuron regions can be trained sufficiently with

training continues. Surprisingly, RAM-Fed achieves better

performance significantly compared with other algorithms

on FastText-AGNews.
• OAP diverges with obvious fluctuations during training,

while IST converges slowly. SplitFL has the worst perfor-

mance onMLP-MNIST, which is might due to the over-fitting

of the same submodel structures across all clients.
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Figure 3: The impact of Γ∗ and 𝑆∗ of RA-Fed

6.4 Impact of key factors
6.4.1 Impact of minimum coverage rate Γ∗ and minimum number of
trained neuron regions S∗. Based on the above analysis, the proposed
adaptive learning paradigm is essential and effective. Combined

with our theoretical analysis, we study two key factors impacting

convergence and accuracy: Γ∗ and 𝑆∗. Fixing other impacting fac-

tors in RA-Fed, we set S-Arb. mask level, 𝛼 = 0.15 on MLP-MNIST
task, and 𝛼 = 0.5 on FastText-AGNews task. Through varying Γ∗ and
𝑆∗, we set three combinations: (Γ∗=1, 𝑆∗=4), (Γ∗=2, 𝑆∗=4), (Γ∗ = 10,

𝑆∗=1). As shown in Fig. 3, we have some observations:

• When fixing 𝑆∗ = 4, we find that Γ∗=2 performs slightly

better than Γ∗=1 in testing accuracy. As shown in testing

loss, the trends clearly show that Γ∗=2 can converge faster.

It is worth noting that the testing loss increases rapidly at

the initial rounds, and then decreases slowly. This is mainly

because only partial neurons can be trained at first, but as

the training continues, all neuron regions can be trained

sufficiently. In addition, we observe that in testing loss, the

Γ∗=2 curve decreases earlier than Γ∗=1, which is consistent

with our theoretical analysis.

• The larger Γ∗ does not mean the higher accuracy and faster

convergence. Considering an extreme example with the

largest Γ∗ (e.g. Γ∗ = 10, 𝑆∗=1), in this case, only one neuron

region is trained by ten submodels in each round. However,

the testing accuracy decreases significantly and testing loss

converges very slowly which indicates that when a large

number of neuron regions are not trained, the model perfor-

mance becomes poor. Therefore, we can conclude that the

performance and convergence rate are impacted by multiple

factors comprehensively.

6.4.2 Impact of the maximum number of continuously non-trained
rounds 𝜏𝑞 . We further consider two key factors impacting conver-

gence and accuracy in RAM-Fed: Γ∗ and 𝜏𝑞 . Fixing other impacting

factors in RAM-Fed: we set S-Arb. as mask level, 𝛼 = 0.15 on MLP-
MNIST task. Considering Γ∗ and 𝜏𝑞 , we set four combinations: (Γ∗=1,
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Figure 4: The impact of Γ∗ and 𝜏𝑞 of RAM-Fed

𝜏𝑞=200), (Γ
∗
=2, 𝜏𝑞=200), (Γ

∗
=1, 𝜏𝑞=4), (Γ

∗
=2, 𝜏𝑞=4). As shown in

Fig. 4, we have some observations:

• When fixing Γ∗, 𝜏𝑞=4 performs better than 𝜏𝑞=200 in testing

accuracy and loss. Thus, when 𝜏𝑞 is very larger (e.g. 𝜏𝑞=200),

some neurons can only be updated by stale gradients contin-

uously, which causes a bias compared with the right descent

direction.

• When fixing 𝜏𝑞 , it is obvious that as Γ
∗
increases, the per-

formance becomes better, which further indicates that the

larger Γ∗, the more fully training the neuron regions.

• On the whole, Γ∗ and 𝜏𝑞 play important roles in convergence.

For RAM-Fed, the optimal Γ∗ and 𝜏𝑞 can significantly improve

performance.

7 CONCLUSION
In traditional cross-device federated learning, massive devices are

usually equipped with limited resources for computation and com-

munication which would be unaffordable to run the full model

for coordination. To this end, we designed an adaptive learning

paradigm, in which heterogeneous local submodels with arbitrarily

assigned neurons can be jointly trained to produce a single global

model. In order to address the arising submodels heterogeneity, non-
uniform training and data heterogeneity challenges, we proposed

general RA-Fed algorithm and RAM-Fed with a new server aggre-

gation mechanism. We theoretically proved the proposed RA-Fed
and RAM-Fed can both converge with asymptotically optimal rate

𝑂 (1/
√
Γ∗𝑇𝑄) under given assumptions. We investigated several

key factors impacting convergence, such as minimum coverage rate,

data heterogeneity level, submodel induced noises. Extensive ex-

periments were conducted on two types of tasks with three widely

used datasets. Compared with the state-of-the-art baselines, our al-

gorithms improved the accuracy up to 10% on average. Particularly,

RAM-Fed with 50% model achieved comparable accuracy compared

with FedAvg with full model, even outperforming FedAvg.
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A SUPPLEMENT
A.1 Part One
Let us start the proof of RA-Fed from 𝐿-Lipschitzian Condition:

E[𝐹 (\𝑞+1 ) ] − E[𝐹 (\𝑞 ) ] ≤ E[< ∇𝐹 (\𝑞 ), \𝑞+1 − \𝑞 >]︸                               ︷︷                               ︸
𝑈1

+ 𝐿
2
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𝑁

Γ∗
𝐿2𝜎2 + 32𝛾3𝑇 3

𝑁

Γ∗
𝐿2𝛿2 +𝑇𝛾 𝑁

Γ∗
𝛿2

bound𝑈2:

𝐿

2

E∥\𝑞+1 − \𝑞 ∥2

≤ 3

2

𝐿𝑇𝛾2
𝑁

Γ∗
𝜎2 + 12𝐿3𝛾4

𝑁

Γ∗
𝑇 3𝜎2 + 96𝐿3𝛾4𝑇 4

𝑁

Γ∗
𝛿2

+ 96𝐿3𝛾4𝑇 4
𝑁

Γ∗

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) ∥2 + 12𝐿3𝛾2𝑇 2

𝑁

Γ∗
𝑤2E∥\𝑞 ∥2

+ 3

2

𝐿𝛾2𝑇 2

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) ∥2 + 3𝐿

𝑁

Γ∗
𝛾2𝑇 2𝛿2

Last,we have:

E[𝐹 (\𝑄+1 ) ] − E[𝐹 (\1 ) ] =
𝑄∑︁
𝑞=1

E[𝐹 (\𝑞+1 ) ] −
𝑄∑︁
𝑞=1

E[𝐹 (\𝑞 ) ]

≤
𝑄∑︁
𝑞=1

E[< ∇𝐹 (\𝑞 ), \𝑞+1 − \𝑞 >] +
𝑄∑︁
𝑞=1

𝐿

2

E∥\𝑞+1 − \𝑞 ∥2

Plugging𝑈1,𝑈2 into above equation, we have:

E[𝐹 (\𝑄+1 ) ] − E[𝐹 (\1 ) ]

𝑎
≤ −𝑇𝛾

8

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) ∥2

+ (8𝑤2𝑇𝛾
𝑁

Γ∗
𝐿2 + 12𝐿3𝛾2𝑇 2

𝑁

Γ∗
𝑤2 )

𝑄∑︁
𝑞=1

E∥\𝑞 ∥2

+𝑇𝛾𝑄 𝑁

Γ∗
(32𝛾2𝑇 2𝐿2 + 1 + 96𝐿3𝛾3𝑇 3 + 3𝐿𝛾𝑇 )𝛿2

+ 𝛾2𝑇𝐿𝑄 𝑁

Γ∗
(4𝛾𝑇𝐿 + 3

2

+ 12𝐿2𝛾2𝑇 2 )𝜎2

where 𝑎 follows because:

32𝛾2𝑇 2
𝑁

Γ∗
𝐿2 ≤ 1

8

⇒ 𝛾 ≤
√
Γ∗

16𝑇𝐿
√
𝑁

96𝐿3𝛾3𝑇 3
𝑁

Γ∗
≤ 1

8

⇒ 𝛾 ≤ (Γ∗)
1

3

768

1

3 𝐿𝑇𝑁
1

3

3

2

𝐿𝛾𝑇 ≤ 1

8

⇒ 𝛾 ≤ 1

12𝑇𝐿

Therefore, we have:

𝑇𝛾

8

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) ∥2 ≤ E[𝐹 (\1 ) ] − E[𝐹 (\𝑄+1 ) ]

+ (8𝑤2𝑇𝛾
𝑁

Γ∗
𝐿2 + 12𝐿3𝛾2𝑇 2

𝑁

Γ∗
𝑤2 )

𝑄∑︁
𝑞=1

E∥\𝑞 ∥2

+𝑇𝛾𝑄 𝑁

Γ∗
(32𝛾2𝑇 2𝐿2 + 1 + 96𝐿3𝛾3𝑇 3 + 3𝐿𝛾𝑇 )𝛿2

+ 𝛾2𝑇𝐿𝑄 𝑁

Γ∗
(4𝛾𝑇𝐿 + 3

2

+ 12𝐿2𝛾2𝑇 2 )𝜎2

dividing both sides by 𝑄 and
𝑇𝛾
8
:

1

𝑄

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) ∥2 ≤ 8E[𝐹 (\1 ) ]

𝑇𝛾𝑄

+ (64𝑤2
𝑁

Γ∗
𝐿2 + 96𝐿3𝛾𝑇

𝑁

Γ∗
𝑤2 ) 1

𝑄

𝑄∑︁
𝑞=1

E∥\𝑞 ∥2

+ 8𝑁

Γ∗
(32𝛾2𝑇 2𝐿2 + 1 + 96𝐿3𝛾3𝑇 3 + 3𝐿𝛾𝑇 )𝛿2

+ 𝛾𝐿 8𝑁
Γ∗

(4𝛾𝑇𝐿 + 3

2

+ 12𝐿2𝛾2𝑇 2 )𝜎2

Supposing that the step size 𝛾 = 𝑂 (
√︃

Γ∗
𝑇𝑄

) and that 𝛿 = 𝑂 ( 1√
𝑇𝑄

),
when the constant 𝐶 > 0 exists, the convergence rate can be ex-

pressed as follows:

1

𝑄

𝑄∑︁
𝑞=1

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) ∥2 ≤ 𝐶 ( 1

√
Γ∗𝑇𝑄

+ 1

𝑄
+ 1

Γ∗𝑇𝑄
+ 1

𝑄1.5
+ 1

𝑄2
+ 1

𝑄2.5
)

A.2 Part Two
Let us start the proof of RAM-Fed from 𝐿-Lipschitzian Condition:∑︁

𝑖∈𝑆𝑞
E < ∇𝐹 𝑖 (\𝑞 ), \𝑖𝑞+1 − \𝑖𝑞 >=

∑︁
𝑖∈𝑆𝑞
E < ∇𝐹 𝑖 (\𝑞 ), −𝛾viq >

= −𝑇𝛾
2

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) ∥2

− 𝑇𝛾
2

∑︁
𝑖∈𝑆𝑞
E∥ 1

𝑁

𝑁∑︁
𝑛=1

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 )

+ 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞,𝑛,𝑡−1, b𝑛,𝑡−1 )

− 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 ) ∥2

+ 𝑇𝛾
2

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) −

1

𝑁

𝑁∑︁
𝑛=1

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 )︸                                                                          ︷︷                                                                          ︸
𝑇1

− 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞,𝑛,𝑡−1, b𝑛,𝑡−1 )

︸                                               ︷︷                                               ︸
𝑇1
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+ 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 ) ∥2

︸                                                       ︷︷                                                       ︸
𝑇1

bound 𝑇1:∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) −

1

𝑁

𝑁∑︁
𝑛=1

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 )

− 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞,𝑛,𝑡−1, b𝑛,𝑡−1 )

+ 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 ) ∥2

≤ (32(𝜏𝑞 )2 + 256 + 1152

𝑁

Γ∗
𝐿2 + 48

𝑁

Γ∗
(𝜏𝑞 )2 + 72

𝑁

Γ∗
𝐿2 (𝜏𝑞 )2

+ 108

𝑁 2

(Γ∗ )2 𝐿
2 (𝜏𝑞 )2 )𝛾2𝑇 2𝐺

+ (32𝛾2𝑇 + 12

𝑁

Γ∗
+ 4 + 144

𝑁

Γ∗
𝐿2𝛾2𝑇 )𝜎2

+ 128𝛾2𝑇 2𝛿2 (2 + 9

𝑁

Γ∗
𝐿2 )

+ 8𝑤2 (4 + 9

𝑁

Γ∗
𝐿2 )E∥\𝑞−𝜏𝑞 ∥2 + 72

𝑁

Γ∗
𝐿2𝑤2E∥\𝑞 ∥2

For another term in 𝐿-Lipschitzian condition, we have:

𝐿

2

∑︁
𝑖∈𝑆𝑞
E∥\𝑖𝑞+1 − \𝑖𝑞 ∥2

=
𝐿

2

𝛾2𝑇 2

∑︁
𝑖∈𝑆𝑞
E∥ 1

𝑁

𝑁∑︁
𝑛=1

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 )

+ 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞,𝑛,𝑡−1, b𝑛,𝑡−1 )

− 1

Γ𝑖𝑞

∑︁
𝑛∈𝑁 𝑖𝑞

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 ) ∥2

For 𝑖 ∈ 𝑆𝑞 , we get:∑︁
𝑖∈𝑆𝑞
E < ∇𝐹 𝑖 (\𝑞 ), \𝑖𝑞+1 − \𝑖𝑞 > +𝐿

2

∑︁
𝑖∈𝑆𝑞
E∥\𝑖𝑞+1 − \𝑖𝑞 ∥2

𝑏
≤ −𝑇𝛾

2

∑︁
𝑖∈𝑆𝑞
E∥∇𝐹 𝑖 (\𝑞 ) ∥2 +

𝑇𝛾

2

(𝑇1 )

where 𝑏 follows because:
𝐿
2
𝛾2𝑇 2 − 𝑇𝛾

2
< 0 ⇒ 𝛾 < 1

𝐿𝑇
. Then:∑︁

𝑖∈𝐾−𝑆𝑞
E < ∇𝐹 𝑖 (\𝑞 ), \𝑖𝑞+1 − \𝑖𝑞 >=

∑︁
𝑖∈𝐾−𝑆𝑞

E < ∇𝐹 𝑖 (\𝑞 ), −𝛾viq >

= −𝑇𝛾
2

∑︁
𝑖∈𝐾−𝑆𝑞

E∥∇𝐹 𝑖 (\𝑞 ) ∥2

− 𝑇𝛾
2

∑︁
𝑖∈𝐾−𝑆𝑞

E∥ 1

𝑁

𝑁∑︁
𝑛=1

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 ) ∥2

+ 𝑇𝛾
2

∑︁
𝑖∈𝐾−𝑆𝑞

(𝑇2 )

For another term in 𝐿-Lipschitzian condition, we have:

𝐿

2

∑︁
𝑖∈𝐾−𝑆𝑞

E∥\𝑖𝑞+1 − \𝑖𝑞 ∥2

=
𝐿

2

𝛾2𝑇 2

∑︁
𝑖∈𝐾−𝑆𝑞

E∥ 1

𝑁

𝑁∑︁
𝑛=1

1

𝑇

𝑇∑︁
𝑡=1

∇𝐹 𝑖𝑛 (\𝑞−𝜏𝑞 ,𝑛,𝑡−1, b𝑛,𝑡−1 ) ∥2

For 𝑖 ∈ 𝐾 − 𝑆𝑞 , we get:∑︁
𝑖∈𝐾−𝑆𝑞

E < ∇𝐹 𝑖 (\𝑞 ), \𝑖𝑞+1 − \𝑖𝑞 > +𝐿
2

∑︁
𝑖∈𝐾−𝑆𝑞

E∥\𝑖𝑞+1 − \𝑖𝑞 ∥2

𝑏
≤ −𝑇𝛾

2

∑︁
𝑖∈𝐾−𝑆𝑞

E∥∇𝐹 𝑖 (\𝑞 ) ∥2 +
𝑇𝛾

2

(𝑇2 )

Combining 𝑖 ∈ 𝑆𝑞 and 𝑖 ∈ 𝐾 − 𝑆𝑞 :
E[𝐹 (\𝑞+1 ) ] − E[𝐹 (\𝑞 ) ]

≤ E < ∇𝐹 (\𝑞 ), \𝑞+1 − \𝑞 > +𝐿
2

E∥\𝑞+1 − \𝑞 ∥2

=
∑︁
𝑖∈𝑆𝑞
E < ∇𝐹 𝑖 (\𝑞 ), \𝑖𝑞+1 − \𝑖𝑞 > +𝐿

2

∑︁
𝑖∈𝑆𝑞
E∥\𝑖𝑞+1 − \𝑖𝑞 ∥2

+
∑︁

𝑖∈𝐾−𝑆𝑞
E < ∇𝐹 𝑖 (\𝑞 ), \𝑖𝑞+1 − \𝑖𝑞 > +𝐿

2

∑︁
𝑖∈𝐾−𝑆𝑞

E∥\𝑖𝑞+1 − \𝑖𝑞 ∥2

≤ −𝑇𝛾
2

E∥∇𝐹 (\𝑞 ) ∥2 +
𝑇𝛾

2

(𝑇1 +𝑇2 )

Then, we can obtain:

E[𝐹 (\𝑄+1 ) ] − E[𝐹 (\1 ) ] =
𝑄∑︁
𝑞=1

E[𝐹 (\𝑞+1 ) ] −
𝑄∑︁
𝑞=1

E[𝐹 (\𝑞 ) ]

≤ −𝑇𝛾
2

𝑄∑︁
𝑞=1

E∥∇𝐹 (\𝑞 ) ∥2 +
𝑇𝛾

2

𝑄∑︁
𝑞=1

(𝑇1 +𝑇2 )

Re-arranging the terms:

𝑇𝛾

2

𝑄∑︁
𝑞=1

E∥∇𝐹 (\𝑞 ) ∥2 ≤ E[𝐹 (\1 ) ] − E[𝐹 (\𝑄+1 ) ] +
𝑇𝛾

2

𝑄∑︁
𝑞=1

(𝑇1 +𝑇2 )

Letting
1

𝑄

∑𝑄
𝑞=1

(𝜏𝑞)2 = 𝜏 and dividing both sides by
𝑇𝛾𝑄
2

1

𝑄

𝑄∑︁
𝑞=1

E∥∇𝐹 (\𝑞 ) ∥2 ≤ 2E[𝐹 (\1 ) ]
𝑇𝛾𝑄

+ (48𝜏 + 384 + 1152

𝑁

Γ∗
𝐿2 + 72

𝑁

Γ∗
𝜏 + 72

𝑁

Γ∗
𝐿2𝜏 + 108( 𝑁

Γ∗
)2𝐿2𝜏 )𝛾2𝑇 2𝐺

+ (48𝛾2𝑇 + 12

𝑁

Γ∗
+ 6 + 144

𝑁

Γ∗
𝐿2𝛾2𝑇 )𝜎2 + 128(3 + 9

𝑁

Γ∗
𝐿2 )𝛾2𝑇 2𝛿2

+ 8𝑤2 (6 + 9

𝑁

Γ∗
𝐿2 ) 1

𝑄

𝑄∑︁
𝑞=1

E∥\𝑞−(𝜏𝑞 ) ∥
2 + 72

𝑁

Γ∗
𝐿2𝑤2

1

𝑄

𝑄∑︁
𝑞=1

E∥\𝑞 ∥2

Supposing that the step size 𝛾 = 𝑂 (
√︃

Γ∗
𝑇𝑄

) and 𝜎 is sufficiently

small, when the constant 𝐶 > 0 exists, the convergence rate can be

expressed as follows:

1

𝑄

𝑄∑︁
𝑞=1

E∥∇𝐹 (\𝑞 ) ∥2 ≤ 𝐶 ( 1

√
Γ∗𝑇𝑄

+ 1

𝑄
+ 1

Γ∗𝑄
+ 1

𝑄2
)

All proof details are available on Github
3
.

3
https://github.com/wyy-123-xyy/RA-Fed
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