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ABSTRACT
Multi-Objective Reinforcement Learning (MORL) setup naturally

arises in many places where an agent optimizes multiple objectives.

We consider the problem of MORL where multiple objectives are

combined using a non-linear scalarization. We combine the vector

objectives with a concave scalarization function and maximize

this scalar objective. To work with the non-linear scalarization, in

this paper, we propose a solution using steady-state occupancy

measures and long-term average rewards. We show that when

the scalarization function is element-wise increasing, the optimal

policy for the scalarization is also Pareto optimal. To maximize the

scalarized objective, we propose a model-based posterior sampling

algorithm. Using a novel Bellman error analysis for infinite horizon

MDPs based proof, we show that the proposed algorithm obtains a

regret bound of Õ(LKDS
√
A/T ) for K objectives, and L-Lipschitz

continous scalarization function for MDP with S states, A actions,

and diameterD. Additionally, we propose policy-gradient and actor-
critic algorithms for MORL. For the policy gradient actor, we obtain

the gradient using chain rule, and we learn different critics for

each of the K objectives. Finally, we implement our algorithms on

multiple environments including deep-sea treasure, and network

scheduling setups to demonstrate that the proposed algorithms can

optimize non-linear scalarization of multiple objectives.
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1 INTRODUCTION
In many real-world problems, an agent simultaneously optimizes

multiple rewards [7, 35, 40]. Further, more often than not, the objec-

tives can be conflicting. Typical examples for such setups include,

wireless sensor networks where the node may optimize between

the energy consumption and freshness of the sensed parameters

[8]. Another common use cases include scheduling systems which

maximize the efficiency of the system but also aim to be fair to the

multiple clients [12, 15, 16].
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A fundamental method to combine the multiple objectives is

using a scalarization function [26]. This allows an agent to eas-

ily compare two polices and select the one which optimizes the

scalar function of the multiple objectives. For K objective values

J1, · · · , JK , a basic choice of scalarization function is

∑
k wk J

k
, or

a linear combination of the multiple objectives. The linear com-

bination allows the agent to use standard RL algorithms such as

Q-learning [38] on the scalarized joint objective. The agent can

now obtain optimal policy for any particular choice ofw1, · · · ,wK .

Much of the current literature focuses on finding optimal polices

with linear preferences of the objectives [35, 40].

Another choice for scalarization function are non-linear mono-

tonically increasing functions [26]. Non-linear functions havewidely

considered in the field of economics. Utilities of certain goods and

services are often calculated using a concave function. The essential

idea is they capture the natural condition of decreasing marginal

utilities [36]. In this work, we propose a framework to learn policies

which maximizes a concave function (not necessarily monotone) of

the long-term average rewards of the multiple objectives the agent

wishes to optimize.

Figure 1: Proportional fairness for a 2 user, 2 state resource
sharing process. The optimal strategy is not deterministic as
the maximum does not lie on the boundary of the π (a |s1) −

π (a |s2) grid.

When the scalarization function is non-linear, the optimalMarkov

policies may not be deterministic [26]. As an example, consider

an extreme case where a scheduler needs to fairly allocate a re-

source between two users, and the system has only one state. In

this problem, we let the two objectives be the average individual

long-term rewards of the two users, respectively. The two objec-

tives are combined using a fairness objective, e.g., proportional-fair

objective (

∑
k log Jk , where Jk is the average long-term reward of

user k). A deterministic policy will allocate the resource to only one

of the users, and hence is not optimal in terms of fairness. Extension



to two state is provided in Figure 1 for a 2 user resource sharing

process (Implementation details are provided in the supplementary

material.The optimal policy is not deterministic as the optima does

not lie on the vertices of the probability simplex.

To optimize the concave utilities of the multiple long-term av-

erage rewards, we write the long-term average rewards as a dot

product of the steady state distribution of the state-action pairs and

the average rewards obtained in the state-action pairs [25]. This

allows to formulate a constrained convex optimization problem to

solve for the steady-state distribution, and in-turn the optimal pol-

icy. To minimize the regret, the agent may try to use the optimism

in the face of uncertainty [9]. However, to search for the optimistic

dynamics and maximize the function requires additional compu-

tational complexity [13]. Hence, to minimize regret, we propose a

model-based posterior sampling algorithm which runs in epochs.

At every epoch, the algorithm samples transition probabilities, and

solves the optimization equation and uses the optimal policy to

interact with the environment. Further, we use a novel Bellman

error based analysis to bound the regret of the algorithm instead of

the standard gain-bias based analysis proposed in [9].

Using the model-based algorithm, the agent can only interact

with an environment with finite state and actions. To eliminate

this restriction, we consider a policy gradient algorithm which

uses a simple yet elegant chain-rule to obtain true gradients of the

scalarization function with respect to the policy parameters. The

proposed policy gradient algorithm can be efficiently implemented

using deep neural networks. It is well known that policy gradi-

ent algorithms results in high-variance [14, 28, 39] in the gradient

estimates. To mitigate this issue, we derive an optimal baseline

and develop an actor-critic algorithm to maximize the scalarized

objective. The proposed actor-critic algorithm shares its actor ar-

chitecture with the proposed policy gradient algorithm. The critic

architecture learns K critic head networks to learn the value func-

tions for the K objectives.

We summarize the contributions of this work as:

(1) A per-step reward based framework tomaximize the concave

utilities of multiple objective.

(2) A model-based algorithm that learns the transition probabil-

ity. To reduce the computational complexity, the algorithm

uses posterior sampling for MDPs with Dirichlet priors.

(3) A novel Bellman error based analysis, using which we show

that the expected gap between the the overall combined

objective using the model-based algorithm and the optimal

combined objective reduces as Õ(KLDS
√
A/T ).

(4) For element-wise monotone scalarization function, the opti-

mal policy is shown to be Pareto optimal.

(5) A model-free algorithm, that uses policy gradients to find the

optimal policy and can be implemented using (deep) neural

networks for large state space.

(6) An actor-critic algorithm, with K critic heads, to minimize

the variance of the gradients for a faster training of the actor

network.

We also demonstrate the effectiveness of our proposed frame-

work on various problems including the standard deep-sea treasure

[34]. We also consider fairness maximization problems in sched-

uling applications [15] to demonstrate the practical use cases of

the proposed algorithms. We compare the proposed algorithms

with scalarized Q-learning [35], policy gradients, and actor-critic

algorithm which directly attempt to maximize the scalarization

function values as rewards. We show that the proposed algorithms

and the gradient computations significantly outperforms the exist-

ing algorithms.

The rest of the paper is organized as follows. We first discuss

the related works in detail and their differences with our work in

Section 2.We formally introduce the problem formulation in Section

3. We then present the model based algorithm and the convergence

guarantees in Section 4. This is followed by the model-free policy

gradient algorithm in Section 5, and the actor-critic algorithm in

Section 6. In Section 7, we present the evaluation results.

2 RELATEDWORK
Reinforcement learning for single objective has been extensively

studied in past [30]. Dynamic Programming was used in many

problems by finding cost to go at each stage [4, 25]. These models

optimize linear additive utility and utilize the power of Backward

Induction.

Following the success of Deep Q Networks [21], many new algo-

rithms have been developed for reinforcement learning [17, 27, 29,

37]. These papers focus on single objective control, and provide a

framework for implementing scalable algorithms. Sample efficient

algorithms based on rate of convergence analysis have also been

studied for model based RL algorithms [3, 23], and for model free

Q learning [10]. However, sample efficient algorithms use tabular

implementation instead of a deep learning based implementation.

However, many practical setups require simultaneous optimiza-

tion of multiple objectives. This setup is referred as Multi-Objective

Reinforcement Learning (MORL). Typical MORL setups involves

combining the multiple objectives using a scalarization function

[26, 34, 35]. A common choice for the scalarization function is

to use a weighted linear combination of the multiple objectives

[26, 33, 40]. For linear combination setup, when the weights are

known beforehand, the problem reduces to the standard reinforce-

ment learning algorithm. When the weights are not known apriori,

prior works attempt to learn a class of policies that work for a set of

weights [2, 40]. Compared to linear preferences, we use non-linear

scalarization function for our work.

For general Pareto frontiers, [24] proposed an algorithm which

samples neural network parameters from distribution and updates

the distribution to generate parameters corresponding to policies

which achieve the Pareto Frontier. To reduce the sample complex-

ity, they reuse the samples collected using Importance Sampling.

Compared to them, we operate in the parameter space with the

knowledge of the scalarization function to update the model pa-

rameter. Recently, [1] proposed a policy iteration method using

which they obtain a policy that improves each objective by finding

the optimal action following the current policy. Compared to the

prior works, our work directly uses the scalarization function to

obtain Bayesian regret bounds for a model-based tabular setup, and

provide optimal state-dependent baselines for model-free policy

gradient approach.



For the setup where the scalarization function is non-linear, the

optimal policies may be stochastic [26] or non-stationary [7]. Hence,

finding optimal policies using standard single objective reinforce-

ment learning algorithms may become intractable. Many works

cast the scalarization function as a function of average per-step

rewards and steady-state. [18] studied MORL with the scalariza-

tion function of long-term average rewards and present asymptotic

guarantees of their algorithm. [32] studied ergodic MDPs, or MDPs

where every stationary policy results in an ergodic Markov chain

over the states, to balance the state exploration.

For scalarization function as functions of long-term average

rewards, [7] present a Frank-Wolfe based algorithm which uses

dynamic linear preferences as the gradient of the scalarization

function. They also provided non-asymptotic results for their al-

gorithm. Recently, [41] provided an algorithm for finite horizon

multi-objective RL with non-linear scalarization which uses dual

updates to solve for a dynamic policy after every episode. However,

their algorithm cannot be used in a train and deploy setup where

an agent uses a policy trained by another agent. [5] provided an

optimism based algorithm which solves for the optimal policy for

a finite horizon MDP with concave utility. Their algorithm could

be extended to multiple objectives, however, it is computationally

complex as it involves finding the optimistic policy. In this paper,

we consider stochastic policies which can be used in a train-then-

test setup. To learn the stochastic policies for unknown MDPs with

non-linear scalarization, we use posterior sampling to reduce the

computational burden and average per-step reward criteria to solve

for optimal policies. Additionally, we present the regret guarantees

for the learned stochastic policies.

Prior MORL algorithm which use deep neural networks mostly

focus on learning class of policies whichwork on linear combination

scalarization functions. [2, 40] presented algorithm which learns

policies for a convex converage set, or a set of policies in which

all policy is optimal for some linear combination. In contrast, we

study policy gradient algorithms which can work with non-linear

scalarization functions. We also present the baseline which help in

reducing the variance of the gradient estimates.

3 PROBLEM FORMULATION
We consider an infinite horizon discountedMarkov decision process

(MDP)M, defined by the tuple

(
S,A, P ,K , r1, r2, · · · , rK ,γ , ρ0,D, f

)
.

S denotes a finite set of state space with |S| = S , and A denotes

a finite set of actions with |A| = A. P : S × A → S denotes the

probability transition distribution. We use [K] = {1, 2, · · · ,K} to

denote the set of K objectives. rk : S × A → [0, 1] denotes re-

ward generated by objective k ∈ [K]. γ is the discount factor and

ρ0 : S → [0, 1] is the distribution of initial state. f : RK :→ R
denotes the scalarization function. D is the diameter of the MDP

M, which is the maximum expected number of steps needed to

reach any state s ′ ∈ S from some state s ∈ S. We also assume that

the diameter D of the MDP, M, is bounded and the Markov Chain

induced by any stationary policy is irreducible.

We use a stochastic policy π : S × A → [0, 1], which returns

the probability of selecting action a ∈ A for any given state s ∈ S.

The expected long term reward and expected per step reward of the

objective k are given by Jkπ and λkπ , respectively, when the policy

π is followed. Formally, Jkπ and λkπ are defined as

Jkπ = Es0,a0,s1,a1, · · ·

[
lim

τ→∞

∑τ

t=0

γ t rk (st ,at )
]

(1)

λkπ = Es0,a0,s1,a1, · · ·

[
lim

τ→∞

1

τ

τ∑
t=0

rk (st ,at )

]
= lim

γ→1

(1 − γ )Jkπ (2)

s0 ∼ ρ0(s0), at ∼ π (at |st ), st+1 ∼ P(st+1 |st ,at )

Equation (2) follows from the Laurent series expansion of Jkπ us-

ing Corollary 8.2.4 of [25]. For brevity, in the rest of the paper,

Est ,at ,st+1;t ≥0[·]will be denoted asEρ,π ,P [·], where s0 ∼ ρ0(s0), at ∼
π (st |at ), st+1 ∼ P(st+1 |st ,at ).

The objectives aim to collaboratively optimize the scalarization

function f , which is defined over the long-term rewards of the

individual objectives. We make certain practical assumptions on

this scalarization function f , which are listed as follows:

Assumption 1. The scalarization function f is jointly concave.
Hence for any arbitrary distribution D, the following holds.

f (Ex∼D [x]) ≥ Ex∼D [f (x)] ; x ∈ RK (3)

The objective function f represents the utility obtained from

the expected per step reward of each objective. Many practically

implemented fairness objectives are concave, for example cellular

scheduling uses proportional fairness [15]. To model this concave

utility function of the long-term average rewards, we assume the

above form of Jensen’s inequality. For optimizing risk, negative

variance can be maximized. The negative of the variance of the K
long-term average rewards will satisfy our concavity assumption

and hence is a special case of our formulation.

Assumption 2. The function f is assumed to be a L− Lipschitz
function, or

| f (x) − f (y)| ≤ L ∥x − y∥
1

; x, y ∈ RK (4)

Lipschitz continuity is a common assumption for optimization lit-

erature [6, 11]. Additionally, in practice this assumption is validated,

often by adding some regularization.

Based on these assumptions, and to keep the formulation in-

dependent of time horizon or γ , we maximize the function over

expected per-step rewards of each objective. Hence, our goal is to

find the optimal policy as the solution for the following optimiza-

tion problem.

π∗ = arg max

π
f (λ1

π , · · · , λ
K
π ) (5)

Any online algorithm starting with no prior knowledge will

require to obtain estimates of transition probabilities P and obtain

rewards rk ,∀ k ∈ [K] for each state action pair. Initially, when

algorithm does not have good estimates of themodel, it accumulates

a regret for not being efficient for joint objectives as it does not

know the optimal policy. We define a time dependent regret RT to

achieve an optimal solution defined as the difference between the

optimal value of the function and the value of the function at time

T , or

RT =

�����f (
λ1

π ∗ , · · · , λ
K
π ∗

)
− f

(
1

T

T∑
t=0

r1(st ,at ), · · · ,
1

T

T∑
t=0

rK (st ,at )

) �����
(6)



We also note that the proposed framework allows for obtaining

Pareto optimal policies using non-linear scalarization function in

the following sub-section.

3.1 Pareto Optimality of the proposed
framework

If f (·) is also element-wise monotone, we note that the optimal

policy in (5) can be shown to be Pareto optimal. We define Pareto

optimal strategy as follows.

Definition 1. A policy π∗ is said to be Pareto optimal if and
only if there is exists no other policy π such that the average per-step
reward is at least as high for all agents, and strictly higher for at least
one agent. Or

∀ k ∈ [K], λkπ ∗ ≥ λkπ and ∃ k, λkπ ∗ > λkπ (7)

The following result shows that the optimal policy satisfying

Equation (5) is Pareto optimal when the function is element-wise

strictly increasing.

Theorem 1. If f is an element-wise monotonically strictly increas-
ing function, i.e., for all xk > yk , we have

f
(
· · · ,xk , · · ·

)
> f

(
· · · ,yk , · · ·

)
, (8)

then the solution of Equation (5), or the optimal policy π∗ is Pareto
Optimal.

Proof. We will prove the result using contradiction. Let π∗
be

the solution of Equation (5) and not be Pareto optimal. Then there

exists some policy π for which the following equation holds,

∀ k ∈ [K], λkπ ≥ λkπ ∗ and ∃ k, λkπ > λkπ ∗ (9)

From element-wise monotone increasing property, we obtain

f (· · · , λkπ , · · · ) > f (· · · , λkπ ∗ , · · · ) = arg max

π
f (λ1

π , · · · , λ
K
π ) (10)

This is a contradiction. Hence, π∗
is a Pareto optimal solution. □

This result shows that algorithms presented in this paper can

also be used to optimally allocate resources among multiple agents

using average per step allocations. We further note that the element-

wise monotonically strictly increasing function assumption is only

needed for the Pareto optimality of the strategy, and are not needed

for the rest of the results in this paper.

After discussing the Pareto optimality, in the following section,

we present a model-based algorithm to obtain this policy π∗
, and

regret accumulated by the algorithm.

4 MODEL-BASED ALGORITHM
Even though we work with non-linear scalarization function, we

can still leverage the linear additive property of the individual long-

term average reward for each objective (
1

τ
∑τ
t=0

rk (st ,at )). Thus,
the value function for individual objectives can be obtained using

backward induction. For infinite horizon optimization problems (or

τ → ∞), we can use steady state distribution of the state to obtain

expected cumulative rewards. For all k ∈ [K], we use

λkπ =
∑
s ∈S

∑
a∈A

rk (s,a)dπ (s,a) (11)

where dπ (s,a) is the steady state joint distribution of the state

and actions under policy π . Thus, we have the joint optimization

problem in the following form

max

dπ (s,a)
f
( ∑
s ∈S,a∈A

r1(s,a)dπ (s,a), · · · ,
∑

s ∈S,a∈A

rK (s,a)dπ (s,a)
)

(12)

with the following set of constraints,∑
a∈A

dπ (s
′,a) =

∑
s ∈S,a∈A

P(s ′ |s,a)dπ (s,a) (13)∑
s ∈S,a∈A

dπ (s,a) = 1, dπ (s,a) ≥ 0 (14)

for all s ′ ∈ S, ∀ s ∈ S, and ∀ a ∈ A. Since f (· · · ) is jointly concave,
arguments in Equation (12) are linear, and the constraints in Equa-

tion (13) and Equation (14) are linear, this is a convex optimization

problem. Since convex optimization problems can be solved in poly-

nomial time [6], we can use standard approaches to solve Equation

(12). After solving the optimization problem, we obtain the optimal

policy from the obtained steady state distribution d∗(s,a) as,

π∗(a |s) =
Pr (a, s)

Pr (s)
=

d∗(a, s)∑
a′∈A d∗(s,a′)

(15)

Remark 1. Because of linear constraints if the function f is taken
as min, the optimization problem becomes a linear program as shown
in [42].

Since we assumed that the induced Markov Chain is irreducible

for all stationary policies, we assume Dirichlet distribution as prior

for the state transition probability P(s ′ |s,a). Dirichlet distribution
is also used as a standard prior in literature [3, 23]. Proposition

1 formalizes the result of the existence of a steady state distribu-

tion when the transition probability is sampled from a Dirichlet

distribution

Proposition 1. For MDP M̂ with state space S and action space
A, let the transition probabilities P̂ come from Dirichlet distribu-
tion. Then, any stationary policy π for M̂ will have a steady state
distribution ˆdπ given as

ˆdπ (s
′) =

∑
s ∈Ŝ

ˆdπ (s)
©­«
∑
a∈Â

π (a |s)P(s,a, s ′)
ª®¬∀s ′ ∈ Ŝ.

Proof. Transition probabilities P(s,a, ·) follow Dirichlet distri-

bution, and hence they are strictly positive. Further, as the policy

π (a |s) is a probability distribution on actions conditioned on state,

π (a |s) ≥ 0,
∑
a π (a |s) = 1. So, there is a non zero transition proba-

bility to reach from state s ∈ Ŝ to state s ′ ∈ Ŝ. Since the single step

transition probability matrix is strictly positive for any policy π , a
steady state distribution exists for any policy π . □

The completemodel-based algorithm, namedNon-Linear Scalarization-

MORL-PSRL is described in Algorithm 1. The algorithm proceeds

in epochs, and a new epoch is started whenever the visitation count

in epoch e , νe (s,a), is at least the total visitations before episode
e , Ne (s,a), for any state action pair (Line 8). In Line 9, we sample

transition probabilities P̂ using the updated posterior and in Line

10, we update the policy using the optimization problem specified

in Equation (12).



Algorithm 1 Non-Linear Scalarization-MORL-PSRL

1: Input: S, A, [K ], f
2: Initialize N (s, a, s′) = 1 ∀(s, a, s′) ∈ S × A × S, π (a |s) =

1

|A|
∀ (a, s) ∈ A×S, e = 0, νe (s, a) = Ne (s, a) = 0 ∀(s, a) ∈ S×A

3: for time index t = 1, 2, · · · do
4: Observe state s
5: Play action a ∼ π (· |s)
6: Observe rewards {rk } and next state s′

7: νe (s, a)+ = 1, N (s, a, s′)+ = 1

8: if νe (s, a) ≥ max(1, Ne (s, a)) for any s, a then
9: P̂ (s |a, s′) ∼ Dir (N (s, a, s′)) ∀ (s, a, s′)
10: Solve steady state distribution d (s, a) as the solution of the

optimization problem in Equations (12-14)

11: Obtain optimal policy π as

π (a |s) =
d (s, a)∑

a′∈A d (s, a′)
12: e = e + 1

13: νe (s, a) = 0, Ne (s, a) =
∑e
e′=0

νe′ (s, a) ∀(s, a)
14: end if
15: end for

4.1 Regret
We now prove the regret bounds for Algorithm 1. We first give the

high level ideas used in obtaining the bounds on regret. We start by

dividing the regret into regret incurred in each epoch e . Then, we
use the posterior sampling lemma (Lemma 1 from [23]) to obtain

the equivalence between the value of the function f for the optimal

policy of the true MDP M and the value of the function for the

optimal value of the sampled MDP M̂.

To compute the regret incurred by the optimal policy π̃e for

the sampled MDP on the true MDP M, we define Bellman error

Bπ , P̃ (s,a) for the infinite horizon MDPs as the difference between

the cumulative expected rewards obtained for deviating from the

system model with transition P̃ for one step by taking action a in

state s and then following policy π . We have:

Bπ , P̃ (s,a) = lim

γ→1

(
Qπ , P̃
γ (s,a) − r (s,a)

− γ
∑

s ′∈S
P(s ′ |s,a)V π , P̃

γ (s,a)
)

(16)

We relate the Bellman error defined in Equation (16) to the gap

between the expected per step reward
˜λπ̃e for running policy π̃e

on sampled MDP and the expected per step reward λπ̃e for running

policy π̃e on the true MDP in the following lemma:

Lemma 1. The difference of long-term average rewards for running
the policy π̃e on the MDP, ˜λπ̃e , and the average long-term average
rewards for running the policy π̃e on the true MDP, λπ̃e , is the long-
term average Bellman error as

˜λπ̃e − λπ̃e =
∑
s,a

dπ̃eB
πe , P̃e (s,a) (17)

where dπ̃e is the occupancy measure generated by policy π̃e on the
true MDP.

Use the Lemma 1, and Posterior Sampling Lemma from [23], we

can now bound the regret of MORL-PSRL algorithm in the form of

following theorem.

Theorem 2. The expected regret E [RT ] of Algorithm 1 is bounded
as

E [RT ] ≤ O

(
LDKS

√
A logT

T

)
(18)

Proof Outline. We use the Lipschitz continuity of the function

to break the scalarized objective into long-term average reward

regrets of individual objecectives. Using Lipschitz continuity, the

total regret becomes the sum of individual regrets.

E [RT ] = E

[���f (
· · · , λkπ ∗ , · · ·

)
− f

(
· · · ,

1

T

T∑
t=0

rk (st ,at ), · · ·

) ���]
(19)

= E

[
L

T

K∑
k=1

���Tλkπ ∗ −

T∑
t=0

rk (st ,at )
���] (20)

≤
LK

T
max

k ∈[K ]
E

[���Tλkπ ∗ −

T∑
t=0

rk (st ,at )
���] . (21)

Following this, we break the cumulative regret into the regret in-

curred in each epoch e , and then use Posterior Sampling Lemma

from [23] to get,

E

[���Tλkπ ∗ −

T∑
t=0

rk (st ,at )
���]

= E

[��� E∑
e=1

te+1−1∑
t=te

(
λkπ ∗ − rk (st ,at )

) ���] (22)

≤ E

[��� E∑
e=1

te+1−1∑
t=te

(
˜λkπ̃e − rk (st ,at )

) ���] . (23)

We now break the regret into two terms as follows:

E

[��� E∑
e=1

te+1−1∑
t=te

(
˜λkπ̃e − rk (st ,at )

) ���]
≤ E

[��� E∑
e=1

te+1−1∑
t=te

(
˜λkπ̃e − λkπ̃e + λ

k
π̃e

− rk (st ,at )
) ���] (24)

The first term denotes the gap of running the optimal policy for

the sampled policy on the true MDP in an epoch e . We bound this

term with the Bellman error defined in Equation (16). The second

term denotes the regret incurred from the deviation of the observed

rewards and the expected per step rewards. The complete proof

provided in the supplementary material. □

We note that for the fundamental setup of single objective with

linear scalarization function (K = 1,L = 1), the bound becomes

similar to that of UCRL2 algorithm [9].

5 MORL MODEL FREE ALGORITHM
In the previous section, we developed a model based tabular algo-

rithm for joint function optimization. However, as the state space,

action space, or number of agents increase, the tabular algorithm

becomes infeasible to implement. In this section, we consider a pol-

icy gradient based algorithm which can be efficiently implemented



Algorithm 2 Non-Linear Scalarization MORL-PG

1: Input:S, A, [K ], T , γ , f , N , η
2: Initialize πθ0

(a, s) with random weights θ
3: for i = 0, 1, · · · , until converдence do
4: Collect N trajectories using policy πθi
5: Estimate gradient using Equation (31)

6: Perform Gradient Ascent as

θi+i = θi + η ∇̂θ f , (25)

7: end for
8: Return πθ

using (deep) neural networks thus alleviating the requirement of a

tabular solution for large MDPs.

We note that in many practical scenario as RL environments

are typically halted after a certain number of steps. Hence, for the

model free policy gradient algorithm, wewill use finite time horizon

MDP, or T < T in our MDP M. We now describe a model free

construction to obtain the optimal policy. We use a neural network

parameterized by θ . The objective thus becomes to find optimal

parameters θ∗, which maximizes,

arg max

θ
f

(
(1 − γ )J1

πθ , · · · , (1 − γ )JKπθ

)
. (26)

For the model-free algorithm, we assume that the scalarization func-

tion is differentiable. In case the function is not differentiable (such

as maximin fairness), sub-gradients of f can be used to optimize

the objective [22]. Gradient for Equation (26) can be obtained using

chain rule:

∇θ f =
∑

k ∈[K ]

∂ f

∂Jkπ
∇θ J

k
π (27)

= (∇ J̄π f )
T (∇θ J̄π ), J̄π = (J1

π , · · · , J
K
π )⊺ (28)

Note that, J̄π is the expected cumulative reward. J̄π can be re-

placed with averaged cumulative rewards over N trajectories for

the policy at ith step, where a trajectory τ is defined as the tuple

of observations, or τ = (s0,a0, r
1

0
, · · · , rK

0
, s1,a1, r

1

1
, · · · , rK

1
, · · · ).

Further, ∇θ J̄π is estimated using REINFORCE algorithm proposed

in [31, 39], and is given as

∇̂θ J̄π =
1

N

∑N

j=1

∑T

t=0

∇θ logπθ (at, j |st, j )
∑T

τ=t
γ τ r̄ (sτ , j ,aτ , j ),

(29)

where sτ , j and aτ , j are the state and actions at time step τ of

trajectory j respectively. Further, J̄π is estimated as

ˆ̄J =
1

N

∑N

j=0

∑T

t=0

γ t r̄ (st, j ,at, j ). (30)

Thus, the overall estimate of ∇θ f , ∇̂θ f is given as

∇̂θ f =
(
∇ J̄π f

(
ˆ̄J
))⊺ (

∇̂θ J̄π
)
, (31)

where ∇̂θ J̄π is given in (29) and
ˆ̄J is given in (30). On a careful

inspection, we note that the gradient in Equation (31) takes the

from of the Frank-Wolfe reward [7], and hence the proposed MORL-

PG algorithm can be used to extend the TFW-UCRL2 algorithm [7],

which uses Frank-Wolfe reward, to continuous state spaces. Based

on gradient change, we present the Model Free Policy Gradient

algorithm for non-linear scalarized MORL in Algorithm 2. The

algorithm takes as input the parameters S,A, [K],T ,γ , f of MDP

M, number of sample trajectories N , and learning rate η as input.

The policy neural network is initialized with weights θ randomly. In

optimization step of Line 6, the weights are updated using gradient

ascent.

We note that the Model free policy gradient RL algorithms are

notorious for their high variance in the gradient estimate [20, 28].

In the next section, we present an optimal baseline to reduce the

variance of gradient estimates.

6 MORL ACTOR CRITIC ALGORITHM
To reduce the variance of the gradient estimate used in the policy

gradient algorithm, a constant value is often subtracted from the

reward. In the following section, we analyze the effect of subtracting

a constant value (called shift) from the gradient of the scalarization

function and then find the optimal shift to reduce the variance of

the gradient.

To ensure that we can indeed subtract a baseline, we begin with

the Policy Gradient Theorem [31] which states

∇θ J
k
π = Eπ

[
∇θ logπθ (a |s)Q

k
π (s,a)

]
, (32)

Qk
π (s,a) = Eπ

[ T∑
t=0

γ t rk (st ,at )|s0 = s,a0 = a

]
.

Note that we are using the gradient of the expected total rewards

of individual agents to calculate the gradient of the scalarization

function f . Hence, the gradients of the expected total rewards of

individual agents impacts the gradient of function f via a linear

function, where the weights are dependent on the function f . We

first show that a state dependent shift b(s) inQk
π (s,a) for any agent

k does not change the expected value of the gradient of the expected

total rewards of individual agents. This combined with the chain

rule shows that the shift in turn does not bias the gradient of the

scalarization function f . Hence we can easily subtract b(s) from

Qk
π (s,a) for all k without biasing the gradient of f . The result is

formalized in the following lemma.

Lemma 2. Subtracting a constant term b(s) from Qk
π (s,a),∀k ∈

{1, · · · ,K} does not bias the gradient of joint objective in Equation
(28).

Proof. Using the policy gradient theorem in Equation (33), we

have,

∇θ f =
∑

k ∈[K ]

∂ f

∂Jkπ
∇θ J

k
π (33)

=
∑

k ∈[K ]

∂ f

∂Jkπ
Eπ

[
∇θ logπθ (a |s)Q

k
π (s,a)

]
(34)

To show that that shift does not bias the gradient, we want to

show that,

K∑
k=1

∂ f

∂Jkπ
Eπ

[
∇θ logπθ (a |s)

(
Qk
π (s,a) − b(s)

)]
= ∇θ f



(a) Wireless Scheduling (b) Deep Sea Treasure (c) Queuing System

Figure 2: Learning curves for the three environments considered for the proposed algorithm against standard Actor Critic,
Policy Gradient, and SQN algorithms. The proposed algorithm learns policies which maximizes the scalarized rewards in all
three setups. (a)Wireless Scheduling: For this setup we plot the performance of the learned policies usingmultiple algorithms.
(b) For the episodic Deep Sea Treasure problem, we compare the MORL-PG algorithm with Scalarized-DQN (SDQN) [35]. (c)
For the queuing system we compare MORL-AC algorithm with MORL-AC, and their vanilla implementations.

Hence, it would suffice to show that Eπ [∇θ logπθ (a |s)b(s)] = 0.

Eπ [∇θ logπθ (a |s)b(s)]

= Es

[
Ea∼π (· |s) [∇θ logπθ (a |s)b(s)]

���s] (35)

= Es

[
b(s)

∑
a∈A

πθ (a |s)∇θ logπθ (a |s)
���s] (36)

= Es

[
b(s)

∑
a∈A

∇θπθ (a |s)
���s] (37)

= Es

[
b(s)∇θ

∑
a∈A

πθ (a |s)
���s] (38)

= Es
[
b(s)∇θ 1

��s] = 0 (39)

□

We can now attempt to find an optimal value of the shift b(s) to
reduce the variance of the policy gradient. The result is stated in

the following theorem, with proof in the supplementary material.

Theorem 3. The state dependent shift b(s) that minimizes vari-
ance of ∇θ f is given as:

b∗(s) =
E

[
G(s,a)

(∑K
k=1

∂f
∂ J kπ

Qk
π (s,a)

)]
E

[
G(s,a)

(∑K
k=1

∂f
∂ J kπ

)] (40)

where G = (∇θ logπ (a |s))T (∇θ logπ (a |s)).

Note that the optimal shift b∗(s) is similar to a weighted average

of the value functions of agents in state s . In practice, it is convenient
to excludeG in optimal baseline [19], and hence, we use a modified

shift
˜b∗(s) as

˜b∗(s) =

∑K
k=1

∂f
∂ J kπ
Eπ [Q

k
π (s,a)]∑K

k=1

∂f
∂ J kπ

=

∑K
k=1

∂f
∂ J kπ

V k
π (s)∑K

k=1

∂f
∂ J kπ

(41)

Using this idea, we can now construct an actor-critic-based algo-

rithm where, along with the actor network, we train a K head critic

network Vϕ that approximates value functions for each of the K
objectives. We now describe the construction of the actor network

with weights θ which will be followed by the description of the

critic network with weights θ .
5.1 Actor Network

The network is almost identical to Section 5 with a baseline sub-

tracted from the the gradient. From Equation (41), the optimal

baseline is a weighted sum of the value functions of the individ-

ual objectives. We use the objective function f to determine the

baseline
ˆb∗(s) as:

b̂∗(st, j ) =

(∑K

k=1

∂ f

∂Jkπ
V k
ϕ (st, j )

)−1
(∑K

k=1

∂ f

∂Jkπ

)
(42)

Using the baseline calculated in Equation (42) and the gradient

estimate ∇̂θ f can be obtained as

∇̂θ f =
1

N

∑N

j=1

∑T

t=0

∇θ logπθ (at, j |st, j ) × ζt (43)

ζt =
(∑T

τ=t
γ τ rk (st ′, j ,at ′, j ) − b̂∗(st, j )

)
5.2 Critic Network

Note that, the baseline which reduces the variance of the policy

gradient depends on the value function of the individual objectives.

Hence we construct a critic networkwhich learns the value function

of the individual objectives. Note that to learn the critic network,

we do not require the knowledge of the function.

For learning rate ηc , we can learn the critic network using gradi-

ent descent as:

ϕi+1 = ϕi − ηc

(
1

N

∑N

j=0

∑T

t=0

(
γ t r̄ (st, j ,at, j ) −Vϕ (st, j )

))
where r̄ (st, j ,at, j ) = (r1(st, j ,at, j ), · · · , r

K (st, j ,at, j ))
T

(44)

5.3 Proposed MORL Actor Critic Algorithm
The proposed actor-critic algorithm is described in Algorithm 3.

The algorithm takes as input the same parameters as Algorithm 2

but with two learning rates, ηa for the actor network and ηc for the
critic network. The actor neural network is initialized with random

weights θ and the critic neural network is initialized with random

weights ϕ. It then collects N sample trajectories using the policy



Algorithm 3 Non Linear Scalarized MORL-AC

1: Input: S, A, [K ], T , γ , f , N , ηa, ηc
2: Initialize πθ (a, s), Vϕ (s) ▷ Initialize the neural network with random

weights θ for actor and ϕ for Value Estimator

3: for i = 0, 1, · · · , until converдence do
4: Collect N trajectories using policy πθ
5: Estimate Actor gradient using Equation (43)

6: Update Actor and Critic Networks using Equations (25) and (44)

7: end for
8: Return πθ

with current weights in Line 4. Using the sampled trajectories, it

obtains the gradients using the shift with updated critic network

using Equation (43), and updates the actor network . After collecting

the trajectories, it updates the critic network using Equation (44).

7 EVALUATIONS
We evaluate the proposed MORL algorithms on different setups.

We include standard MORL setup such as Deep Sea Treasure [34],

and many practical setups from wireless scheduling, and a queuing

system. We use different concave utilities to demonstrate the effec-

tiveness of the algorithm proposed on a large range of non-linear

scalarization functions. We compare all the algorithm with Scalar-

ized Q-learning [35], and a vanilla policy gradient, and a vanilla

actor-critic algorithm which takes the scalarized rewards directly

as rewards. Implementation details for all the algorithms is pro-

vided in the supplementary material. We begin with introducing

the environments and the scalarization functions as follows:

(1.) A 2 state wireless scheduling system system with 4 users.

This simple setup consists of 16 states. For this setup, we use an

α-concave utility (for α = 2) of the data transmitted to each user

which is defined as:

f (λ1

π , λ
2

π ) =
∑

4

k=1

(
λkπ

)
1−α

1 − α
(45)

(2.) A 10 × 5 grid Deep Sea Treasure, which is a classic MORL

benchmark. This environment is episodic where the episode ends if

the treasure is found or if the maximum time allowed is consumed.

The task requires maximizing the treasure R and minimizing the

time t required to reach the treasure. For this task, we use the

following reward scalarization.

f (R, t) =
√
R +

√
50 − t (46)

(3.) A 4-queue system with heterogeneous arrival rates, with a

proportional-fairness utility function of the average number of

packets routed from each queue. The non-linear scalarization func-

tion becomes:

f ((1 − γ )J1

π , · · · , (1 − γ )J4

π ) =
∑

4

k=1

log

(
(1 − γ )Jkπ

)
(47)

We compare the performance of the proposed algorithms with

other algorithms in Figure 2. In each sub-figure, we plot the mean

and standard deviation error bars calculated using 10 independent

iterations. For thewireless scheduling example, we note that the per-

formance of Scalarized Q-learning [35] is the worst. This is because

of the use of deterministic policies. The MORL-AC and MORL-PG

algorithms outperforms the vanilla actor critic algorithm because

of the use of the scaled gradients and giving different weights to

the objective which results in a higher scalarized value. The conver-

gence plots for the policy gradient and actor-critic algorithms are

presented in the supplementary material. The performance of the

MORL-PSRL is the best among all the algorithms. This is expected

as the model based algorithm will converge to the optimal policy

while model free algorithm can get stuck in local optimas because

of parameterization.

For the episodic Deep Sea Treasure, we found that the Scalarized

Q-learning algorithm is able to learn good policies which maximize

the scalarized rewards because there is a unique optimal treasure

which maximizes Equation 46, and the optimal policy becomes

deterministic. However, the learning rate is too slow compared to

the policy gradients and actor-critic algorithms. Further because of

this, performance of the proposed algorithms is marginally better

because standard policy gradients.

For the Queuing system, we first note that the scalarized Q-

learning algorithm performs significantly worse than the standard

algorithms which are able to learn stochastic policies and hence we

exclude the plot for clarity of Figure 2(c). We note that the standard

policy gradient and actor critic algorithms which take scalarized

objectives as rewards are able to learn some policy which tries to

maximize the sclarized objective. Both MORL-AC algorithm and

MORL-PG algorithm outperform the standard policy gradient and

actor critic algorithm. This is because the gradient dynamically

weighs the objective which pushes the network to a higher scalar-

ized reward value. Additionally, the MORL-AC algorithm converges

faster compared to the MORL-PG algorithm because of reduced

variance of gradient estimates.

8 CONCLUSION
This paper, considers the problem of Multi-Objective Reinforce-

ment Learning (MORL) with non-linear scalarization using concave

utilities. To optimize the concave utility, we proposed an average

per step reward based formulation using long-term rewards of each

agent. Under certain assumptions, the optimal policy is also Pareto

Optimal. We proposed a model based algorithm that progresses in

epochs and samples transition probabilities using posterior sam-

pling for known priors. Following optimal policy for the sampled

MDP at every epoch, using a novel Bellman error based analysis,

we show that the proposed algorithm converges towards the op-

timal L-Lipschitz scalarized objective as Õ(LKDS
√
A/T ). We also

proposed a model free algorithm which can be efficiently imple-

mented using neural networks. We find the optimal baseline to

reduce the variance of the policy gradient algorithm and propose

an actor-critic based algorithm. Finally, we evaluate the proposed

algorithms on various scheduling problems, where we show that

the proposed algorithms work well with non-linear scalarizations

and outperforms existing algorithms.
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