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Abstract—Mobile Edge Computing has fastly become a promis-
ing diagram to meet the ever-increasing demands imposed by
emerging domains of applications and reduce the reliance on
remote data centers in traditional cloud computing. In this
paper, we address two problems unique in heterogeneous edge
computing: the cost accounting and task assignment. To deter-
mine the cost of each unit of task being concurrently processed
on an edge device, we propose to model the problem as a
multichoice game, and use Shapley Value for cost accounting.
With the total cost decoupled, we are able to leverage the
distributive Hungarian algorithm to solve the task assignment
problem efficiently. We adopt a hybrid manner for evaluations:
we profile the costs (including energy and data transmission costs)
using a fully implemented workload offloading framework in an
edge environment, then the cost profiles are used to drive the
simulations. Results show that our policy of task assignment
guided by multichoice Shapley value is able to consistently
outperform the two other baselines: Random policy and the
policy of Hungarian assignment algorithm based on Even energy
accounting. The advantage of our policy is further enlarged when
the heterogeneity level of the network or computing resource in
edge environments is increased. We also show interesting patterns
of the joint effects of different resources’ heterogeneity levels and
the weighting factor between them, which provide useful inputs
for edge resource optimization and management.

I. INTRODUCTION

With the emerging of new domains of mobile applications,
users now tend to perform more and more entertainments
and works on their mobile devices. On the other hand, the
new domains of applications, such as virtual reality, and
deep learning that comes to mobile devices [13], also impose
unprecedently strict requirements, in terms of both energy
and latency. As mobile local computing and cloud-assisted
computing [7] both fail to meet the requirements, a new
computing diagram, named edge/fog computing [21], [6] aims
to bring the computing resources closer to the users.

In an edge environment including several edge devices, a
device can serve both as the role of edge client(a device needs
to offload its workload to nearby edge devices of computing)
and edge server (a device has spare resources to assist nearby
devices to process tasks). A new property of edge environment
is the higher level of resource heterogeneity compared to
traditional cloud computing or cloud-let [19]. The edge devices
can be equipped with different types of hardware setup (e.g.,
CPU, memory, network interfaces) and service configurations.

We consider the task assignment in an edge environment,
with the goal of minimizing the total cost to process the edge
workload. The number of various types of edge applications,

edge devices make the optimization space prohibitively large
to solve in a centralized manner. We formulate such task
assignment optimization problem in this paper and prove
that it is NP-hard. Further, the distributive nature of edge
environment that each edge device self-optimizes its own
benefits also motivates a low-cost and distributive solution to
such task assignment problem. A key to achieve this is to
decouple the overall cost consumed by the concurrent tasks
on a single edge server, in other words, to determine the cost
for each unit of task when an edge server is concurrently
processing multiple units of different types.

In this paper, we propose to utilize the Shapley value
for multichoice cooperative game for cost accounting, i.e.
allocating the overall cost by an edge server to the delegated
edge clients. The concurrently processing and cost accounting
on a single edge server is modeled as the game itself, and
overall cost (including computing cost and transmission cost)
is the cost that needs to be accounted to all edge clients. Each
type of the workload is considered as a single player in the
game and the number of units for each type of workload is
the ‘choice’ (or activity levels) [5] in the multichoice game.
With the decoupled costs, the task assignment problem can be
efficiently solved by a distributive Hungarian algorithm [16].

The main contributions of our work are summarized below:
(1) We propose a novel cost accounting method based on

Shapley value for multichoice cooperative game, to allo-
cate the overall cost consumed by an edge server to each
unit of concurrently-processed tasks.

(2) We formulate the overall cost minimization in an edge
environment as a joint task assignment problem and prove
it is NP-hard. With the help of our accounting policy,
we decouple the overall cost so as to relax the task
assignment problem as a distributive problem and further
efficiently solve it by Hungarian algorithm.

(3) We fully implement an edge framework which enables
workload offloading and collaborative computing among
heterogeneous edge devices. Evaluations with a hybrid
manager of profiling and simulations using the framework
prove our proposed task assignment algorithm based on
Shapley value-based accounting policy provides consis-
tent benefits over two other baseline policies.

II. RELATED WORK

For the recently emerging area - Edge/Fog Computing
[6], [21], prior work has studied multiple aspects include
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Fig. 1. Edge computing system diagram with multiple edge devices (each
device can be part of multiple edge clouds)

edge-cloud cooperation [9], resource prediction and manage-
ment [1], workload offloading techniques [7], [11], and task
assignment optimization [14]. In specific, prior work [14] has
considered a single client when optimizing workload offload-
ing decisions, in contrast, the work in this paper considers
a more realistic model when multiple edge clients and edge
servers are active in the edge environment.

To decouple individual edge client’s offloading decision
making, we employ the Shapley value for multichoice
games [5], an extension to the Shapley Value [20], which has
been broadly utilized to solve Engineering problems, such as
bill accounting [3], incentive design, and optimization decision
decentralization [22].

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an edge computing system, as illustrated in Fig-
ure 1, which can contain multiple edge clouds. An edge cloud
consists of the edge devices supporting a given type of edge
service. Note that an edge device can concurrently support
multiple edge services, i.e., it can participate in multiple edge
clouds at the same time. An edge server contributes available
spare resources and assists edge clients in task processing.
We note that the same edge device can be both an edge server
and/or an edge client. For a given period, We use M to denote
a set of M edge servers and K a set of K edge clients.

Suppose that there are W distinct types of tasks (denoted
by a set W) supported by the edge computing system. Due
to heterogeneity of the edge servers and tasks, each server
m ∈ M is able to handle a subset of the tasks, denoted by
Wm ⊆W. Without loss of generality, we assume that each
edge client k ∈ K has only a single type of task wk ∈ W
to offload. It is easy to see that any edge devices generating
more than one type of tasks can be split into multiple (logical)
edge clients with the same physical configuration and network
conditions. An edge client k can only offload its workload to
an edge server m if it is supported by the edge server, i.e.,
wk ∈Wm. Similarly, the set of edge servers that can process
type-w workload is given by Mw = {m|w ∈ Wm}. We

use a set of binary variables xk,m for all k,m to denote our
workload offloading and assignment strategy, i.e,

xk,m =

{
1, if task k is assigned to edge server m,
0, otherwise.

(1)

Due to capacity constraints, we assume that each edge server
m is able to concurrently process at most am,w tasks of type
w. This implies that the total number of type-w tasks assigned
to edge device m (denoted by bm,w) must be bounded by
am,w: bm,w =

∑
k:wk=w

xk,m ≤ am,w, ∀m,w, where the
summation is over all edge clients that has task type wk = w.
Due to the task-processing constraints, xk,m can be 1 only if
task k is supported by edge server m, namely wk ∈ Wm.
Further, each task must be assigned to one single edge server,
resulting in another constraint

∑
m xk,m = 1.

The goal of this paper is to find the optimal offloading
strategy and task assignment to minimize the total cost in the
edge computing system. Similar to [12], we take into account
(i) network cost rk,m for data transmission (between edge
client k and edge server m) and (ii) energy consumption cm at
the edge servers to process assigned tasks. More precisely, for
each edge server m, its energy consumption jointly depends
on the numbers of tasks of different types that are assigned to
server m, i.e., {bm,w, ∀w}. We model this with an energy
consumption function: cm = vm(bm,w, ∀w). For network
cost, similar to [14], we consider the bandwidth consumption
and transmission time to offload each client’s task, and collec-
tively represent the edge network cost by rk,m, i.e., to offload
edge client k’s task to edge server m. Given equation (1), the
network cost of edge client k is

∑
m∈M rk,mxk,m. Thus, the

cost considered in our optimization objective is
C = α

∑
k∈K

∑
m∈M

rk,mxk,m +
∑
m∈M

cm, (2)

where α is a tradeoff factor reflecting the relative importance
of computing and network cost with respect to system design
preferences. In practice, prior to formulating the task assign-
ment problem, we can estimate the edge server energy cost and
edge network cost rk,m based on system traces, the transmitted
data size, and current system/network condition [14].

In this paper, we formulate a Joint Optimization of Task
Assignment (JOTA) problem of all tasks, over {xk,m, ∀k,m},
to minimize the aggregate cost C defined in equation (2). The
JOTA problem is formulated as follows:

Problem JOTA :

min α
∑
k∈K

∑
m∈M

rk,mxk,m +
∑
m∈M

(cm) (3)

s.t. cm = vm(bm,w, ∀w), ∀m (4)

bm,w =
∑

k:wk=w

xk,m ≤ am,w, ∀m,w (5)∑
m∈M

xk,m = 1, ∀k (6)

xk,m = 0 if wk /∈Wm, ∀k,m (7)
xk,m ∈ {0, 1} , ∀k,m (8)

var. {xk,m, ∀k,m}. (9)



In the JOTA problem above, the number of type-w tasks
assigned to each server m must satisfy a capacity constraint
(5). Each task must be assigned to a single edge server, i.e.,
constraint (6). Finally, edge client k’s task can be assigned to
server m only if the task type wk is supported by the edge
server, as shown in constraint (7).

IV. OUR PROPOSED APPROACH VIA MULTICHOICE
GAMES AND COST ACCOUNTING

We first prove that the JOTA problem is NP-hard even for
2 edge servers and 1 task type. The combination nature of the
problem (e.g., energy cost vm(bm,w, ∀w) is jointly determined
by all tasks assigned to an edge server) also prevents the
efficient application of existing heuristics. Then, inspired by
multichoice games in cooperative game theory, which provides
a single-valued solution to decide each player’s contribution
to the overall payoff/cost, we make novel use of Shapley
Value for multichoice game [5] - which is an extension of
traditional Shapley Value [20] taking into account different
activity levels of the players - to attribute the aggregate
cost in the JOTA problem to individual edge clients/tasks,
thus decoupling the joint optimization of task assignment.
The resulting optimization after cost accounting reduces to a
maximum bipartite matching [4] problem that can be readily
solved using Hungarian algorithm [16] in polynomial time.

We note that while Shapley Value, without considering the
multiple choices of players, has been widely applied to cost
allocation problems [3], [2], [17], including that in mobile
energy accounting [8], to the best of our knowledge, this is
the first work using multichoice games for cost accounting and
joint task assignment optimization in edge computing.

A. Problem JOTA is NP-hard

To prove the JOTA problem is NP-hard, we show a JOTA
problem with two edge servers and a single task type can be
reduced to a well-known NP-hard problem, max cut [10].

Theorem IV.1. The problem JOTA is NP-hard.

Proof. Consider a weighted undirected graph G = V,E. The
max cut problem finds a partition of the vertices in V into
two sets, S1 and S2, to maximize the weight of the cut, i.e.,
the summation of weights of the edges that connect vertices
of one set to the vertices of the other.

Now we formulate the max cut problem as a JOTA prob-
lem with two identical edge servers and a single task type
supported by both edge servers. We represent each vertex in
V as an edge client/task. Then, partitioning V into two sets is
equivalent to assigning the tasks to the two edge servers. Let
ε(a, b) be the weight of an edge (a, b) ∈ E. We consider zero
network cost rk,m = 0 and construct an energy cost function
v(Si) for any subset of the tasks Si ⊆ V as follows:

v(Si) =
∑

(a,b)∈E:a∈Si,b∈Si

ε(a, b), (10)

which is the total weights of edges connecting two vertices
within Si. Since total edge weights of the graph G is fixed,

Fig. 2. Non-linearity in energy consumed by two types of concurrently-
processed tasks

maximizing cut weight is equivalent to minimizing the total
remaining edge weight, i.e., minimizing v(S1)+v(S2), which
is exactly the objective in the JOTA problem. Therefore, the
JOTA problem is NP-hard following from the fact that max
cut is NP-hard [10].

It is worth noting that it is not possible to solve the
JOTA problem using existing heuristics developed for the max
cut problem (or other graph cut problems), not only due to
the large numbers of edge servers and task types that are
encountered in edge computing, but also because a practical
energy cost function vm(·) can be arbitrary and it is difficult
to transform it into a graph with edge weights satisfying (10).
In this paper, we utilize cost profiling with several types
of real-world mobile edge workload on real devices (with
details given in Section V) and here we present a simple
example of the cost profiles when only two applications (movie
recommendation and computation-intensive math calculation)
are active. The profiled energy costs are depicted in Figure 2 as
a 3-D plot. It can be seen that the marginal increment in energy
cost is affected by the number of tasks of both applications.
The energy cost is not linearly proportional to the unit of any
one of the two active applications.

Due to combinatorial nature of the JOTA problem, i.e.,
vm(·) depends on the combination of all tasks assigned to
an edge server, it incurs a huge solution space for arbitrary,
nonlinear energy cost functions. Even finding an approximated
numerical solution is very challenging, especially in an edge
computing environment where a distributed solution is highly
desirable due to the decentralized property of edge devices.

B. Cost Accounting via Multichoice Games and Shapley Value

The main difficulty in solving the JOTA problem is that
energy cost vm(·) is collectively determined by the combina-
tion of all tasks assigned to an edge server. To tackle such
challenge, we make novel use of Shapley value for multi-
choice game to attribute vm(·) to each task, thus decoupling



the energy cost and resulting in a linear approximation of
the JOTA problem. We focus on an energy cost accounting
problem - Given a set of tasks that are scheduled to the same
edge server, how to determine their individual contribution to
the total energy cost?

Consider a set of player denoted as N = {1, 2, . . . , n}. Each
player i has the set of activity levels, Bi = {1, 2, . . . , βi}. A
coalition in multichoice cooperative game [5] is denoted by
a vector ~b = [b1, b2, . . . , bi, . . . , bn]

T , where bi ∈ Bi shows
the activity level of player i ∈ N in the coalition ~b. Given
a payoff (or cost) function v(~b) defined for each coalition ~b,
Shapely value of this multichoice cooperative game provides
a single-value solution to distribute the grand payoff among
all players and their activity levels.

Our key idea is that the energy cost accounting problem can
be modeled as a multichoice cooperative game. For simplicity,
we suppress the subscript m representing an edge server
in Section III without causing any confusion, since each of
energy cost accounting problem is solved with the scope of a
single edge server. We denote each type of task as a player
i, the number of type-i tasks assigned to an edge server
as activity level bi, the energy cost v(~b) as the payoff if a
combination of tasks ~b are assigned to the edge server. In
particular, the activity level must satisfy edge server capacity
constraints (5) in the JOTA problem, i.e., the maximum activity
level βi denotes the highest number of type-i tasks that can
be processed by the edge server. Therefore, the energy cost
accounting problem - which determines the energy cost per
task for each task type - can be solved using Shapley value
for this multichoice cooperative game.

Let θ = [0, 0, . . . , 0] be an all-zero activity vector with size
n, A(~b) the set of active players in the game with non-zero
activity levels, ~b−i = [b1, b2, . . . , bi − 1, . . . , bn]

T the activity
vector obtained by reducing player i’s activity level by 1 from
~b. Then, Shapley value of the multichoice cooperative game is
obtained by calculating the expected marginal contributions
of individual players over all permutations of players and
different activity levels:

ψ(v,~b)(i) =
∑

θ≤~a≤~b−i

~a(N)!·(~b(N)−~a(N)−1)!
~b(N)!

·

∏
j∈A(~b)

(
b−ij
~aj

)
· [v(~a+i)− v(~a)]

(11)

where ψ(v,~b)(i) is the energy cost distributed to each unit of
type-i task (i.e., each activity level of player i) in coalition ~b.
θ ≤ ~a ≤ ~b−i if and only if 0 ≤ ~aj ≤ b−ij , ∀j ∈ {1, 2, . . . , n}.
Similar to ~b−i, ~a+i is obtained by increasing the activity
level of player i in ~a by 1. ~a(N) =

∑n
j=1 ~aj . Note that the

energy cost per activity level for player i not only depends
on the activity level of player i itself, but is also affected
by the activity levels of all other players in the game. Using
equation (11) to calculate the per unit level’s cost, we are
able to decouple the cost for each unit of tasks when they are
concurrently processed on an edge server.

Theoretically, calculating Shapley value of this multichoice
cooperative game seems to require to know the cost (i.e.,
payoff) of all coalitions ~b. When the energy cost function
is only partially known, we can calculate Shapley value
using various approximation approaches [24], [8], making the
calculation feasible in practice.

C. Task Assignment Based on Accounted Cost

We apply the multichoice game approach to each edge
server m to distribute the total energy cost vm(bm,w, ∀w) to
different tasks, i.e., the energy cost for executing each type-
w task on edge server m is ψm,w. Thus, the energy cost for
edge client k with task type wk is given by

∑
m ψm,wk

xk,m,
since xk,m is 1 if and only if edge client k’s task is assigned
to edge server m. This allows us to linearly approximate
the optimization objective in the JOTA problem, which now
becomes a Shapley-based JOTA problem:

Problem SJOTA :

min
∑
k∈K

∑
m∈M

(αrk,m + ψm,wk
)xk,m (12)

s.t.
∑

k:wk=w

xk,m ≤ am,w, ∀m,w (13)∑
m∈M

xk,m = 1, ∀k (14)

xk,m = 0 if wk /∈Wm, ∀k,m (15)
xk,m ∈ {0, 1} , ∀k,m (16)

var. {xk,m, ∀k,m}. (17)

Now α(rk,m+ψm,wk
) is the aggregate energy and network

cost for assigning edge client k’s task to edge server m. The
objective function and other constraints are linear in xk,m.

Next, it is easy to see that the SJOTA problem can be
modeled as a maximum bipartite matching [4]. We denote the
edge clients/tasks as the first set of vertices S, the servers’ task
slots (rather than the server itself) as the second set of vertices
D, the aggregate energy and network cost α(rk,m + ψm,wk

)
(accounted using Equation (11)) as an edge weight between
two vertices in S and D. Further, according to (13), each
edge server has am,w slots for type-w tasks, and we assign an
infinite cost if a task type is not supported by the slot, due to
(15). The bipartite matching assigns each task to exactly one
server slot to minimize the total weights of selected edges,
yielding a solution to the SJOTA problem. We implement a
distributive version of the Hungarian algorithm based on [16]
to solve this bipartite matching. The algorithm is summarized
in Figure 4.

V. EVALUATIONS

We utilize a hybrid manner of simulations for evaluation of
our work. We first deploy four types of mobile edge workload
to multiple types of edge devices and profile their energy costs
by different combinations of tasks. The edge devices include
commodity laptops and workstations. Their CPU frequencies
and network bandwidths are configured differently. With the
energy profiles, we simulate an edge environment with 36 edge



100%

163.3%

224.4%

100%

159.0%

217.2%

100%

147.7%

208.1%

100%
123.7%

233.3%

100%
116.8%

240.0%

100%
117.1%

245.4%

100%
119.2%

261.6%

Policy

N
o
rm

a
li
ze
d

 C
o
st

Random Even MCSV

α = 0.1 α = 0.5 α = 2 α = 10 α = 50 α = 200 α = 1000

R E M R E M R E M R E M R E M R E M R E M
0

1

2

Fig. 3. Overall costs of an edge computing system of 12 servers and 24 clients. All costs are normalized by these achieved by multichoice Shapley value
guided assignment optimization (M). α denotes the tradeoff factor reflecting the relative importance of computing cost and transmission cost

Initialization
Construct cost matrix C based on Equation (11)
Append dummy all-zero rows to make C square

// (a) Extract mins from all rows and columns
for each row i, do
Ci,j = Ci,j −min(Ci,j , ∀j),∀j

end for
for each column j, do
Ci,j = Ci,j −min(Ci,j , ∀i),∀i

end for
// (b) Find maximum matching using only edges with Ci,j = 0

if found
return

end if
find minimum vertex cover V for subgraph of edges with
Ci,j = 0

// (c) Adjust cost matrix C
let σ = min

i/∈V,j /∈V
Ci,j

for all i and j, do
if i /∈ V and j /∈ V
Ci,j = Ci,j − σ

else if i ∈ V and j ∈ V
Ci,j = Ci,j + σ

end if
end for
goto Step (b)

Fig. 4. Algorithm of maximum bipartite matching with energy accounting

devices. To simulate the heterogeneous property of the edge
environment, each device randomly picks one from the energy
profiles. Unless stated otherwise, we make 24 out of the total
36 devices as edge clients and 12 as edge servers. Each edge
server can concurrently process 3 units of edge tasks in the
experiment setup. The types and average unit data sizes for
the workload are summarized in Table I.

To verify the effectiveness of our proposed multichoice
Shapley value (MCSV) policy in guiding assignment optimiza-
tion, we compare our policy with two other baselines: (1)
Random - the offloaded workload is randomly assigned to
available edge servers; (2) Even-guided Optimization - the
total cost of an edge server is evenly allocated to all the
units of tasks processed by the server, and based on the
evenly accounted cost, the same Hungarian algorithm as our

TABLE I
FOUR TYPES OF PROFILED EDGE WORKLOAD USED FOR EVALUATION

Index Edge Workload Type Unit Data
Size (Bytes)

1 collaborative filtering-based movie recommenda-
tion [18]

5349

2 eigenface-based face recognition [23] 59454
3 neural network-based emotion detection [15] 59454
4 computation-intensive math calculation 339

policy MCSV-guided Optimization is used to optimize the task
assignment. To simplify the notation and distinguish our policy
with Even-guided Optimization policy, we simply use MCSV
and Even to denote these two policies.

A. Comparing Policies in Cost Minimization

We run 50 rounds of workload offloading and assignment
simulations. In each run, we randomize the type of workload
generated by each edge client. Considering the randomness
in mobility and each device’s network conditions, we also
randomize the pairwise transmission costs between all devices.
The results averaged over all runs are depicted as Figure 3.
The comparison between the Random group and Even group
shows the cost-saving achieved by Hungarian algorithm used
for task assignment. More importantly, the comparison of our
policy versus Even policy further demonstrates the difference
made by our proposed MCSV accounting policy in guiding
assignment optimization.

To illustrate the effects of different accounting and task
assignment policies, we show the break-down offloading deci-
sions for representative weight 50. We randomly generate one
set of tasks using 24 edge clients. The number of units for
workload with type index [1, 2, 3, 4] are [3, 6, 6, 9]. The break-
down task assignment decisions are seen in Table II. Espe-
cially, for Even policy and MCSV policy, even if both of them
adopt Hungarian algorithm in guiding task assignment, their
optimal decisions obtained vary significantly, due to the dif-
ferent accounting policies. Investigations of the edge servers’
power profiles reveal that the accounting policy adopted by
MCSV is more effective to allocate cost to individual unit of
task in a discriminative manner, so as to better reflect the
relative efficiency of edge servers in processing different types



TABLE II
TASK ASSIGNMENT DECISIONS UNDER DIFFERENT ACCOUNTING POLICIES. DETAILS FOR WORKLOAD OF EACH INDEX ARE SHOWN IN TABLE I

Edge Server Index 1 2 3 4 5 6 7 8 9 10 11 12
Random 0,0,0,0 0,1,1,1 0,0,0,1 1,1,0,0 1,0,0,2 0,1,0,0 0,2,0,0 1,0,0,1 0,0,1,1 0,0,3,0 0,0,0,2 0,1,1,1
Even 0,1,1,1 0,0,0,3 0,3,0,0 0,0,0,0 0,0,0,0 0,0,1,2 0,0,0,0 1,1,1,0 1,0,2,0 0,0,0,0 1,1,0,1 0,0,1,2
MCSV 0,0,3,0 0,0,3,0 0,3,0,0 0,0,0,0 0,0,0,0 0,0,0,3 0,0,0,0 3,0,0,0 0,0,0,3 0,0,0,0 0,3,0,0 0,0,0,3

of workload. For example, server 1 and server 2 has lower cost
in processing the type-2 workload, while server 6, 9, and 12 are
better off in processing the type-3 workload. Such differences
in different servers’ cost profiles are reflected in the accounted
cost by our proposed policy, thus serving as effective inputs in
guiding the Hungarian task assignment algorithm. In contrast,
an improper accounting policy like Even policy fails to achieve
this.

B. Studying Effects of Number of Edge Clients

To further study the effects of different ratios of clients
to servers, we fix the number of edge servers to 12 while
increasing the number of clients from 12 to the maximum
possible amount 36 (since the maximum number of units of
tasks concurrently processed by an edge server is 3). For each
setup, the same set of 50 rounds of experiments is conducted.
The results are plotted as Figure 5, from which we can see
that as the numbers of clients increase, the normalized cost of
Random policy decreases while that of Even policy increases.
Finally, when the number of clients reaches the maximum,
these two policies converge to very close numbers. In other
words, when the number of clients is large, without proper cost
accounting policies, even with Hungarian algorithm applied to
optimize task assignment, it can perform at most slightly better
than a totally random task assignment. While our approach
of task assignment algorithm guided by multichoice Shapley
value accounting policy largely and consistently outperforms
the baselines. Such pattern is also verified in experiments with
varied numbers of servers and tradeoff factors α. For the sake
of space limitation, they are left out here.

C. Studying Effects of Network and Computing Heterogeneity

The costs in an edge computing environment involve the
network cost and workload computing cost. To evaluate the
effects of different levels of heterogeneity, we tune the network
conditions and the computing capacity of edge devices, and
run the same batches of workload offloading experiments. To
test the effects of different network conditions, we add two
more groups of experiments with new environment setups:
(1) decreased network heterogeneity, in which we decrease
the differences between network conditions of different edge
servers; and (2) increased network heterogeneity, which is
with the opposite changes. The results are presented as Fig-
ure 6. Similarly, we add two more groups of experiments of
decreased computing heterogeneity and increased computing
heterogeneity, to study the effects of varying computing ca-
pacity of edge servers. The results are shown in Figure 7.

These two new sets of results firstly demonstrate that our
policy is superior to the two baselines Random and Even
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Fig. 5. Costs of two baseline policies normalized by these of our policy,
when number of edge clients increases from 12 to the maximum 36

policies, even with different conditions of network and com-
puting heterogeneity. Further, comparing the results with the
main results shown in Figure 3, it is clear that when the
heterogeneity level of either network or computing capacity
is increased, the percentage of improvements of our policy
over others is further enlarged. From this perspective, it also
demonstrates the necessity for a task assignment policy to
consider multiple resources in an edge environment, where
different devices normally are highly heterogeneous in terms
of different types of resources. Finally, these results together
with the results of Figure 3 also give more information on the
overall effects of different resources’ heterogeneity levels and
the weighting factor α. In general, which type of resource
heterogeneity outweighs the other will affect the trend of
results over the weighting factor α. For example, in Figure 3,
comparing the results of our policy with Random policy, we
can see as the α increases, the relative benefits of our policy
first diminishes, and then it begins to increase at the turning
point α = 50. This is because when α is smaller than 50,
the computing capacity heterogeneity dominates the results,
and after the turning point, the network heterogeneity begins
to dominate. With the results of Figure 6, we can verify the
fact that by increasing the network heterogeneity level, the
‘turning point’ moves to left, and decreasing it moves the
‘turning point’ to right. The results of Figure 7 shows changing
the computing heterogeneity level gives the opposite effect
with network heterogeneity. Such interesting observations give
useful insights for edge computing environment, so that the
optimization for utilization of multiple resources can accom-
modate different requirements in an informed manner.

VI. CONCLUSION

In this paper, we study two correlated problems with signif-
icant importance for heterogeneous edge environments: First,
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Fig. 6. Overall normalized costs of different policies, when varying the
network heterogeneity level.

given the tasks concurrently processed on an edge server and
the overall cost, how to determine the cost for each individual
unit of task. Second, how to assign submitted workload from
edge clients to edge servers such that the overall cost is
minimized. For the first question, we propose an answer based
on Shapley value for multichoice game. Then, with the total
cost decoupled, we utilize the distributive Hungarian algorithm
to optimize the task assignment. By hybrid evaluations with
real implementation-based cost profiling and profile-driven
simulations, we show that our policy outperforms the two other
baselines. Further, increased levels of resource heterogeneity
further enlarge the improvements of our policy, which make
our policy advantageous to fit the need of heterogeneous edge
environment. The joint effects of different resources’ hetero-
geneity levels and the weighting factor, which we present in
this paper also provide meaningful insights for edge resource
optimization.

REFERENCES

[1] M. Aazam and E.-N. Huh. Fog computing micro datacenter based
dynamic resource estimation and pricing model for iot. In AINA, pages
687–694. IEEE, 2015.

[2] L. J. Billera and D. C. Heath. Allocation of shared costs: a set of axioms
yielding a unique procedure. Mathematics of Operations Research,
7(1):32–39, 1982.

[3] L. J. Billera, D. C. Heath, and J. Raanan. Internal telephone billing rates
- a novel application of non-atomic game theory. Operations Research,
26(6):956–965, 1978.

[4] R. E. Burkard, M. Dell’Amico, and S. Martello. Assignment problems,
revised reprint, volume 125. Siam, 2009.

[5] E. Calvo and J. C. Santos. A value for multichoice games. Mathematical
Social Sciences, 40(3):341–354, 2000.

[6] M. Chiang. Fog networking: An overview on research opportunities.
arXiv preprint arXiv:1601.00835, 2016.

[7] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl. MAUI: making smartphones last longer with
code offload. In MobiSys. ACM, 2010.

100%

158.9%

206.8%

100%
128.4%

162.6%
114.3%

141.1%
111.0%

145.3%

Policy

N
o
rm

a
li
ze
d

 C
o
st

Rand Even MCSV

R E M R E M R E M R E M
0

1

2

3

4 Decreased 
Computing Heterogeneity

α = 0.1 α = 2 α = 50 α = 1000

100%100%

100%

164.1%

226.8%

100%

142.6%

260.7%

100%
120.8%

372.0%

100%
126.2%

407.4%

Policy

N
o
rm

a
li
ze
d

 C
o
st

Rand Even MCSV

R E M R E M R E M R E M
0

1

2

3

4 Increased
Computing Heterogeneity

α = 0.1 α = 2 α = 50 α = 1000

Fig. 7. Overall normalized costs of different policies, when varying the
computing heterogeneity level.

[8] M. Dong, T. Lan, and L. Zhong. Rethink energy accounting with
cooperative game theory. In MobiCom. ACM, 2014.

[9] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan. Cachier:
Edge-caching for recognition applications. In ICDCS. IEEE, 2017.

[10] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-
complete graph problems. Theoretical computer science, 1976.

[11] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
COMET: code offload by migrating execution transparently. In OSDI.
USENIX, 2012.

[12] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a
cloud: research problems in data center networks. ACM SIGCOMM
computer communication review, 39(1):68–73, 2008.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[14] Y. Li, Y. Chen, T. Lan, and V. Guru. MobiQoR: Pushing the Envelope of
Mobile Edge Computing via Quality-of-Result Optimization. In ICDCS.
IEEE, 2017.

[15] L. Ma and K. Khorasani. Facial expression recognition using construc-
tive feedforward neural networks. IEEE SMC, 34(3):1588–1595, 2004.

[16] J. Munkres. Algorithms for the assignment and transportation problems.
Journal of the society for industrial and applied mathematics, 5(1):32–
38, 1957.

[17] A. E. Roth and R. E. Verrecchia. The shapley value as applied to cost
allocation: a reinterpretation. Journal of Accounting Research, pages
295–303, 1979.

[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative
filtering recommendation algorithms. In WWW. ACM, 2001.

[19] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for
vm-based cloudlets in mobile computing. IEEE pervasive Computing,
8(4), 2009.

[20] L. S. Shapley. A value for n-person games. Contributions to the Theory
of Games, 2(28):307–317, 1953.

[21] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 2016.

[22] M. Shubik. Incentives, decentralized control, the assignment of joint
costs and internal pricing. Management science, 8(3):325–343, 1962.

[23] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In
CVPR. IEEE, 1991.

[24] S. J. Willson. A Value for Partially Defined Cooperative Games.
International Journal on Game Theory, 21:371–384, 1993.


