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Abstract—Traffic engineering (TE) in multi-region networks is
a challenging problem due to the requirement that each region
must independently compute its routing decisions based on local
observations, yet with the goal of optimizing global TE objectives.
Traditional approaches often lack the agility to adapt to changing
traffic patterns and thus may suffer hefty performance loss under
highly dynamic traffic demands. In this paper, we propose a
data-driven framework for multi-region TE problems, which
makes novel use of multi-agent deep reinforcement learning. In
particular, we propose two reinforcement learning agents for each
region, namely T-agents and O-agents, to control the terminal
traffic and outgoing traffic, respectively. These distributed agents
collect local link utilization statistics within their regions, opti-
mize local routing decisions, and observe the resulting congestion-
related reward. To facilitate these agents for optimizing global
TE objectives, we tailor the agent design carefully including
input, output, and reward functions. The proposed framework is
evaluated extensively using real-world network topologies (e.g.,
Telstra and Google Cloud) and synthetic traffic patterns (e.g.,
the Gravity model). Numerical results show that comparing
with existing protocols and single-agent learning algorithms,
our solution can significantly reduce congestion and achieve
nearly-optimal performance with both superior scalability and
robustness. Throughout our simulations, over 90% of tests limit
congestion within 1.2 times the global optimal solution.1

I. INTRODUCTION

Traffic Engineering (TE), which aims to optimize traffic
routing for network performance and resource utilization, is
fundamental to networking research. In practice, large net-
works are often divided into multiple (logical or physical)
regions, e.g., to facilitate decentralized scalable management
[1], to satisfy domain/enterprise requirements [2], or in ac-
cordance with geographical locations [3] and heterogeneous
routing technologies [4]. In such multi-region networks, each
region typically makes its own local TE decisions based on
regional network observations. While significantly improving
the scalability of network management, the use of multiple
regions makes it difficult to achieve global TE objectives due
to the lack of a joint effort and coordination.

Distributed TE in multi-region networks is a very chal-
lenging problem. In contrast to traditional TE focusing on

1This paper was completed when Nan Geng was a visiting student at George
Washington University.

a fully-controlled and fully-observable network (also known
as intra-region TE) [5]–[10], existing approaches often rely
on simple routing heuristics (e.g., directing outgoing traffic
to the closest border routers in hot potato routing [11]) or
leveraging distributed optimization techniques to decouple
a global TE problem [1] [12] [13]. In particular, iterative
algorithms like [1] [12] [13] for distributed TE require adjacent
regions to share necessary information (e.g., gradients) through
real-time communication, incurring communication overhead
and slow convergence. As a result, these algorithms lack the
agility to adapt to changing traffic patterns and thus suffer
hefty performance loss under highly dynamic traffic demands.
Another line of work develops a hierarchical SDN architecture
[3] [14], where a set of slave controllers are designated to
different regions, and a super controller coordinates these slave
controllers globally to compute routing decisions. Besides
communication cost, it still requires a controller having full
control over the entire network albeit in a hierarchical manner.

In this paper, we propose a data-driven framework based on
Deep Reinforcement Learning (Deep RL) for distributed TE
in multi-region networks. The proposed framework provides
a refreshing perspective to this problem by modeling each
network region as an individual learning agent that has only
local network information and interacts with other agents
to make decisions on the fly for performance optimization.
Compared with traditional TE approaches, Deep RL, as one of
the leading Machine Learning (ML) techniques, has the poten-
tial of solving complex and dynamic control problems. Deep
RL algorithms can automatically exploit hidden patterns in
training data and continue improving its TE strategy over time.
Well-trained Deep RL models can do inference efficiently
even for the inputs that never appeared before. Besides, Deep
RL models can be trained by interacting with the network
environment without requiring labeled data that are usually
hard to obtain in real networks [15]. Several recent proposals
[15]–[17] have capitalized on these advancements to tackle
the crucial and timely challenge of TE. However, We hasten to
emphasize that these RL-based approaches only focus on intra-
region TE problems within a single, fully-controlled region
(regarded as a single agent) and thus cannot be applied to the
distributed TE problem in multi-region networks.978-1-7281-6992-7/20/$31.00 c©2020 IEEE



Entire network (n nodes)

Multi-agent

Single-agent
A problem of routing 

 traffic demands𝑂( )𝑛
2

division

region 
 (nm nodes)

A few subproblems of
routing  traffic

demands ( )

𝑂( )𝑛
2
𝑚

= 𝑛∑
𝑚

𝑛𝑚

region 
 (nm+1 nodes)

 
 

Fig. 1. Multi-agent design has potentially better scalability
than single-agent design by dividing a large problem into a
few small subproblems.

We argue that investigating multi-agent Deep RL in the
context of distributed TE is important in a number of respects:
(i) Modeling network regions as individual agents that seek to
jointly optimize global TE objectives naturally captures the
interplay between them; (ii) Improving network performance
through distributed agents has the potential of scaling up as
shown in Fig. 1; (iii) More robust TE performance can be
obtained for random link failures since small-size regions
decrease the probability of having more than one random link
failures within a region; and (iv) It provides an exciting new
“playground” for multi-agent RL posing unique research chal-
lenges. Particularly, we need to come up with new algorithm
structures that not only are suitable for implementation in
practical networks even under highly dynamic traffic demand
and potential link failures, but also facilitate quick convergence
and low communication overhead.

A feature of our proposed framework is the design of two
separate learning agents for TE in each individual region.
This allows us to capitalize on the observation that network
traffic in each region can be classified into two categories:
terminal traffic that remains in the region and outgoing traffic
that traverses multiple regions. Clearly, the routing of terminal
traffic directly affects the status of the current region, while
the routing of outgoing traffic affects the status of not only
the current region but also the other regions, because traffic
leaving the region from different border routers has different
effects on the other regions. Since providing proper rewards is
very important for training Deep RL models and achieving fast
convergence, we decided to introduce two types of learning
agents, for terminal and outgoing traffics, respectively, and
provide them with different reward structures. More precisely,
we use a T-agent to observe local network status within the
region and to route terminal traffic for optimizing a local
TE objective. Another O-agent is designed to solicit reward
feedback from neighboring regions and to route outgoing
traffic for optimizing a cooperative TE objective. Such a
design is also consistent with the design philosophy of existing
routing algorithms on border and interior routers. It allows
a straightforward implementation in practical networks and
strikes a good balance in terms of allowing quick convergence
for O-agents and facilitating communication between T-agents.
In addition, the separation of T-agent and O-agent also leads
to smaller action space in Deep RL.

Unlike most of the existing Deep RL-based approaches
[15]–[17] which take real-time traffic matrix (TM) as the

input of agents, both T-agent and O-agent in our framework
take local link utilizations as the input. These link statistics
can be obtained much more easily than real-time TMs. Links
with relatively high utilization usually indicate link congestion.
Besides, link statistics are also sensitive to link failures. By
manually setting the utilization values of broken links to a
relatively large value, the agents can adapt to link failures in
a way similar to dealing with link congestion.

Two techniques are leveraged to reduce the decision space
in the learning algorithm. First, we use the same routing to
deliver the traffic demands entering the region from the same
ingress router and leaving the region from the same egress
router instead of dealing with traffic demands individually.
Second, we distinguish elephant flows (with large traffic
demand) and mice flows (with small traffic demand). Mice
flows below a demand threshold are delivered on statically
configured routes to reduce the decision space. For elephant
flows, we take splitting ratios of traffic over several pre-
computed forwarding paths as the output of agents. Computing
and constructing paths in advance is consistent with previous
works [5] [9] [17]. Our evaluations show reduced decision
space accelerates the convergence speed of the system greatly.

We train T-agents and O-agents using a combined offline
and online strategy. In our design, the agents are first trained
offline in simulated networks. We adopt an advanced Deep
RL algorithm and leverage incremental training to make agents
able to accommodate highly heterogeneous traffic patterns and
even link failures. We dynamically change traffic in simulated
networks in which agents update algorithm parameters incre-
mentally and improve their behaviors continuously. During the
online stage, the system can continue to improve with little
communication among regions and make near-optimal routing
decisions quickly.

We implement our framework using TensorFlow [18] and
evaluate its performance using both real-world network topolo-
gies (Telstra and Google Cloud) and large-scale synthetic net-
work topologies (with hundreds of nodes). We use the Gravity
model [19] to generate highly dynamic traffic including burst
demands. Simulation results show that our framework signifi-
cantly outperforms existing protocols and single-agent learning
algorithms and achieves 90-percentile congestion within 1.2
times the optimal for all the simulated topologies. Compared
with the single-agent approach [16], our framework achieves
20×-100× the learning speed of [16] and gets at most 72%
of congestion reduction in random link failure scenarios.

II. RELATED WORK

Existing TE approaches can be largely classified into tradi-
tional model-based routing and data-driven routing.

Traditional model-based routing usually formulates TE
problems as an optimization problem and solves the problem
through optimization approaches. Most approaches focus on
intra-region TE problems [5]–[10]. There are also some ap-
proaches proposed for TE in multi-region networks [1], [3],
[11]–[14]. The most popular approach is hot potato routing



[11], which, however, usually leads to unexpected conges-
tion. Some approaches [1] [12] [13] solve the TE problem
iteratively by exchanging information (e.g., gradients) among
regions. However, frequent communication and iterative opti-
mization process lowers the speed of traffic adaption. Some
approaches are based on hierarchical SDN architecture [3]
[14], which also require full control over the entire network.

Data-driven routing leverages ML techniques to compute
routing decisions. Valadarsky et al. [16] use Deep RL to learn
the mapping from a sequence of TMs to link weights. These
link weights can be used to compute traffic splitting ratios on
each router so as to minimize the maximum link utilization.
Xu et al. [17] design a Deep RL agent which takes throughputs
and average packet delay as the inputs and outputs splitting
ratios of traffic over a set of pre-computed paths. However, as
described previously, single-agent algorithms face the problem
of low scalability and low robustness as networks expand. Lin
et al. [20] leverage multi-agent RL and propose a QoS-aware
adaptive routing scheme in hierarchical SDN scenarios. Each
slave controller computes the routing for the traffic flows in
its located region with the help of a super controller. However,
global control is not available in many multi-region cases.
Besides, flow-level control has been shown to be impractical
in high-speed networks [15]. There are also some approaches
[21] [22] using supervised learning techniques such as deep
belief network (DBN), and graph neural network (GNN),
etc. However, labeled data may be unavailable or difficult to
measure due to the large size of operational data [15].

Our approach belongs to the second category. We propose
a Deep RL-based TE framework for multi-region networks
where routing is computed in each region independently and
no much overhead is introduced.

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW

A. Problem Statement

We consider a network consisting of multiple regions.
Generally, the entire network can be modelled as a directed
graph G(V,E), where V is the node (router/switch) set and E
is the edge set. Each edge e(u, v) ∈ E has a capacity ce(u,v)
denoting the maximum traffic amount that can pass the edge
from node u to adjacent node v. Note that, edges e(u, v) and
e(v, u) can have different capacities. Each region m can be
considered as a directed sub-graph Gm(Vm, Em). We assume
that

⋃
m Vm = V with Vm

⋂
Vm′ = ∅ (m 6= m′), and that

Em = {e(u, v)|u ∈ Vm}. There may be several peering edges
connecting two adjacent regions, and the end nodes of these
peering edges are border nodes of the regions.

We denote the network traffic as traffic matrix which is a
set of traffic demands. Each traffic demand in a TM represents
the total traffic amount that needs to be delivered from the
source node to the destination node. In a region, demands
enter the region from ingress nodes and leave the region from
egress nodes. An ingress node can be the source node of some
demands or the border node through which some demands
come into the region from neighboring regions. An egress node
can be the destination node of some demands or the border

node through which some demands get out of the region and
go to other regions. According to the destination node, we
classify the traffic demands in any given region into terminal
demands and outgoing demands. Terminal demands reach their
destination nodes in the local region no matter where they
come from. In contrast, outgoing demands have destination
nodes in other regions no matter where they are from.

The routing task of each region is to properly deliver
two kinds of demands from the corresponding ingress nodes
to the corresponding egress nodes, i.e., intra-region routing.
Particularly, a terminal demand leaves the region from one
egress node which is also the destination node. In contrast,
an outgoing demand may leave the region from multiple
egress nodes (border nodes) since there are usually multiple
peering edges connecting the next-hop region and there may
be multiple next-hop regions. For inter-region routing, we can
use any existing routing algorithms. In this paper, we use the
shortest path routing, and our framework can also work with
other inter-region routing algorithms.

The goal of TE in multi-region networks is to optimize
each region’s local routings and achieve a global TE objective,
i.e., minimizing the maximum edge cost. The cost of an edge
reflects the congestion status of the edge. In particular, the

cost of edge e(u, v) is computed by h(e(u, v)) =
f1+α
e(u,v)

c1+α
e(u,v)

(1+α)
,

where fe(u,v) is the total traffic amount on edge e(u, v) and
α ≥ 0. The edge cost function h(·) is a general form of cost
functions for the scenarios of load balancing [5] [23] or power
saving [24]. Our proposed approach can also be extended to
other edge congestion-related objectives.

B. Solution Overview

In our design, we take Deep RL agents as the decision
makers of routing. Deep RL is a combination of RL and
deep neural network (DNN) and is more powerful to tackle
complex tasks than RL. Different from supervised learning
techniques with external knowledge guidance, a Deep RL
agent learns its behavior through interactions with an envi-
ronment iteratively for a specific objective. At each iteration
step, the agent observes the current state of the environment
and makes a decision, i.e., an action. Then, the environment
evolves transforms from the current state to a new state and
returns a reward value to the agent. The reward is a feedback
value indicating the quality of the agent’s action. The goal
of the agent is to learn a policy which is a DNN mapping
state to action so as to maximize the discounted cumulative
reward [25]. To find a satisfactory policy, Deep RL takes
an exploration-exploitation-based method. The agent can take
a large-reward action learned so far, which is called action
exploitation. The agent can also try a new action for a possibly
higher reward, which is called action exploration. A good
tradeoff between exploitation and exploration helps the agent
“understand” the environment well and learn an optimized
policy through enough iterations.

As mentioned previously, the routing of terminal traffic
directly affects the status of the current region, while the
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Fig. 2. An illustration of our solution. “state” means edge
utilizations of the local region. “action” means traffic splitting
ratios over the forwarding paths connecting each pair of
ingress and egress node. “reward” means feedbacks which
reflect current TE objective values.

routing of outgoing traffic affects the status of not only
the current region but also the other regions, because traffic
leaving the region from different border routers has different
effects on the other regions. In our framework, we propose
to use two separate Deep RL agents for traffic engineering in
each individual region: T-agent and O-agent. Their definitions
are given as follows:

Definition 3.1: T-agent is the Deep RL agent that controls
the routing of terminal demands in each region.

Definition 3.2: O-agent is the Deep RL agent that controls
the routing of outgoing demands in each region.

Fig. 2 illustrates our proposed solution. For each region, a
locally centralized server maintains a T-agent and an O-agent
for the region. Each server collects local state information (i.e.,
edge utilizations) from the corresponding region periodically.
Then, the agents take actions (i.e., traffic splitting ratios over
pre-computed paths) independently based on the local state
information for TE performance improvement. Reward values
returned to the T-agents are computed with respect to a local
TE objective (i.e., minimizing the maximum edge cost of the
local region). While the O-agents get their reward values for
a cooperative TE objective by combining the reward values
of the T-agents in the local and neighboring regions. The
details of link statistics-based state, reduced action space,
and congestion-related reward functions will be presented in
Section IV-A and IV-B.

To make our framework work well after deployment, we
need to train the agents efficiently. Since Deep RL agents learn
policies through the exploration-exploitation-based method,
online learning from scratch has been widely known to result
in poor performance at the beginning [26]. In this paper, we
take a combined offline and online strategy. In the offline
phase, the agents are trained in a simulated network which
has the same topology and capacity settings as the real
one. The simulated network will be initialized with offline
TMs captured from the real network. We train these agents
incrementally using various TMs. After training, the learned
DNN parameters will be loaded to online agents for inference
(i.e., decision making). During the online stage, the system
can continue to improve with little communication among
regions and make near-optimal routing decisions quickly. We
demonstrate how to train agents in Section IV-C.

IV. OUR PROPOSED SOLUTION

In this section, we describe the development of T-agent and
O-agent separately, followed with the training method.

A. T-agent Development

State space. State space is the input of agents, which should
capture the key status of the network environment. Most of
the existing Deep RL-based approaches take traffic statistics
(e.g., TM) as the state input of the agents [15]–[17]. However,
it is not easy to obtain real-time TM statistics in multi-region
networks which are lack of global view and control. In our
design, we use edge statistics, i.e., edge utilizations, which
can be measured easily. Edge utilization is determined by
both traffic demand and routing decisions. So, it implicitly
reflects the traffic demand change, as well as the impact of
current actions. Link utilization values provide an indication
of which links are congested, so the learning agents can update
the current policy accordingly, in order to reduce traffic and
congestion on these links.

Formally, we denote sm,Tt as the state vector of the T-agent
in region m at iteration step t. The state vector can be generally
expressed as

sm,Tt =

[
fe
ce

]
e∈Em

,

where fe
ce

is the current utilization of edge e. The size of the
state vector sm,Tt depends on how many edges region m has.

Specifically, the edge utilization being zero indicates that
edge failure happens, i.e., the edge is broken down. We
manually set the utilization of broken edges to a relatively
large value (e.g., 1.0) in sm,Tt , so that the agents can output
actions to reduce the traffic amount on the broken edges (just
like the process of lightening congestion at bottleneck edges).
Action space. Action space is the output of agents and also
routing decisions. Some approaches like [16] decide how to
split traffic at every router node. However, such a hop-by-
hop method may induce routing inconsistency or even loops if
agents make bad actions. So we decide to use routing decisions
which distribute traffic demands onto multiple forwarding
paths. To simplify the action space and reduce the overhead
of path maintenance, we compute and construct K forwarding
paths connecting each pair of ingress and egress node in
advance, which is consistent with previous works [5] [9] [17].
Thus the routing decision is a set of traffic splitting ratios
over these paths. In this paper, we compute forwarding paths
using the traffic-oblivious path selection algorithm proposed
in [5], which seems to be most suitable for our TE problem
(considering the path properties, overhead, etc.). The computed
paths have been validated to have some attractive properties
such as good load balancing, high diversity, and low stretch.
This makes our scheme be able to deal with traffic dynamics
and topology changes even when we compute and construct a
small number of paths in advance.

The number of paths for an ingress-egress node pair (i.e., K)
introduces a tradeoff between potential TE performance and
the overhead of Deep RL. While, considering more candidate



paths always leads to better path diversity and are more
likely to achieve better network performance, it also increases
the action space in Deep RL, resulting in higher overhead
and slower convergence. In this paper, we set K to three
after an empirical study, as the additional benefit of K > 3
becomes marginal. Our evaluations show that a small number
of carefully selected forwarding paths in each path set are
able to balance various TMs well, which is in line with the
observations in [5] [9] [17].

As defined previously, T-agent focuses on how to properly
deliver terminal demands from their ingress nodes to their
egress nodes (also destination nodes) in the local region.
Note that there are many terminal demands between the same
ingress node and the same egress node. To reduce the action
space, we do not consider each terminal demand individually.
We design to use the same set of forwarding paths and splitting
ratios for the terminal demands between the same ingress node
and the same egress node.

Formally, we denote Pmi,j as the set of pre-computed for-
warding paths connecting ingress node i and egress node j
in region m. Let am,Tt be the action vector of the T-agent in
region m at iteration step t. The action vector of the T-agent
can be expressed as

am,Tt =
[
ai,jp
]
p∈Pmi,j ,i6=j,i,j∈Vm

,

where ai,jp ∈ [0, 1] means the fraction of traffic amount
delivered from ingress node i to egress node j on path p. The
terminal demands between the same ingress node i and the
same egress node j may have different source nodes but will
take the same set of splitting ratios {ai,jp |p ∈ Pmi,j}. Clearly,∑

p∈Pmi,j

ai,jp = 1,∀i, j ∈ Vm, i 6= j, (1)

which means that all the traffic amount must be delivered from
ingress node i to egress node j.

Although the action space has been reduced, it is still
potentially very large, i.e., O(K · |Vm|2). The agents need to
do plenty of explorations so that the whole system can con-
verge well. We observe that the aggregated traffic amount of
terminal demands between some ingress-egress node pairs is
usually very large compared to that between other node pairs.
Empirically, the aggregated traffic with large amount is more
likely to induce congestion if it is improperly routed. Thus we
propose to distinguish elephant flows (the aggregated traffic
with large traffic amount) and mice flows (the aggregated
traffic with relatively small traffic amount). We consider that
the agents only learn and adjust the routing for elephant flows
and we just use static routing (e.g., ECMP) for mice flows.
Such a design holds the same idea of large flow-based routing
in many previous works [7] [27]. Through this mechanism,
the action space can be reduced further.

In practice, we can obtain the average aggregated traffic
amount of terminal demands between every ingress-egress
node pair by analyzing the region’s local offline traffic traces.
Then we sort the traffic amount and take a certain proportion of

the aggregated traffic as mice flows. We define mice flow ratio
ρ which means the proportion of the selected small aggregated
traffic with respect to all the aggregated traffic.
Reward. Reward values are computed through a reward
function based on current network status, which guides the
improvement of agents’ policies. A large reward value indi-
cates that the action taken by the agent is good for the TE
objective. We denote rm,Tt as the reward value of the T-agent
in region m at iteration step t. Recalling that our TE objective
is to minimize the maximum edge cost of the whole network,
a direct design of the reward function is

rm,Tt = −1 ·max
e∈E
{h(e)}, (2)

where h(e) calculates the cost of edge e. A small TE objective
value means a large reward value. However, the computed
reward based on the global objective value cannot correctly
evaluate the quality of T-agents’ actions. For example, if a T-
agent in some region takes an action and causes extremely high
edge cost, other T-agents will receive a small reward value
even if the actions they took are actually good. Inaccurate
rewards will mislead the update of T-agents’ DNN parameters.

In our design, we make each T-agent learn its policy for a
local objective, i.e., minimizing the maximum edge cost of its
located region. Then the reward function can be expressed as

rm,Tt = −1 · max
e∈Em

{h(e)}. (3)

With the reward function in Eq. (3), each T-agent will improve
the policy only according to the status of its local region,
which, actually, will also benefit the optimization of the global
objective. This is because T-agents will adjust the routing of
terminal demands to adapt to the routing taken by O-agents
and always keep the maximum edge cost in each region small.

B. O-agent Development

State space. In our design, the T-agent and the O-agent of the
same region use the identical state input, i.e., edge utilizations
of the located region. Formally, we denote sm,Ot as the state
vector of the O-agent in region m at iteration step t. Similar
to T-agents, the state vector of O-agents can be expressed as

sm,Ot =

[
fe
ce

]
e∈Em

.

In practice, the edge statistics can be collected together for the
two agents in the same region.
Action space. Similar to T-agents, the action of O-agents also
consists of splitting ratios of traffic over a set of pre-computed
forwarding paths. Different from T-agents, O-agents aim at
how to properly deliver outgoing demands which may leave
the region from multiple egress nodes (also border nodes)
and enter the next-hop neighboring regions. Therefore, the
routing of outgoing demands not only decide how to deliver
traffic from the traffic’s ingress node to the traffic’s egress
node but also decide how to balance traffic among multiple
egress nodes. To reduce the action space, we take a similar
mechanism to T-agent development. Particularly, we use the



same set of forwarding paths and splitting ratios for the
outgoing demands coming from the same ingress node and
going to the same neighboring region.

Formally, we denote am,Ot as the action vector of the O-
agent in region m at iteration step t. Let Vm,m′ represent the
set of region m’s border nodes connecting to the neighboring
region m′ through peering edges. Let neighbor(m) be the
set of neighboring regions of region m. The action vector of
O-agent can be expressed as

am,Ot =
[
ai,m

′

p

]
p∈Pmi,j ,i6=j,i∈Vm,j∈Vm,m′ ,m′∈neighbor(m)

,

where ai,m
′

p means the splitting ratio of the outgoing demands
from the ingress node i to the neighboring region m′ on path
p. We have∑

p∈Pmi,j ,j∈Vm,m′

ai,m
′

p = 1,∀i ∈ Vm,∀m′ ∈ neighbor(m). (4)

Any outgoing demands originating from the same ingress node
i and going to the same neighboring region m′ will take the
same set of splitting ratios {ai,m′

p |p ∈ Pmi,j , j ∈ Vm,m′}.
We compute forwarding paths connecting each ingress node

and each egress node using the same algorithm as the T-agent
development. To reduce the overhead of path maintenance and
agent training, we choose a limited number of border nodes
(also egress nodes) from which outgoing demands can leave
the region. Generally, traffic, leaving the region from a border
node far way from its ingress node, usually increases the
burden of the local region and induces unavoidable path stretch
(i.e., long path length). Thus we select the candidate border
nodes following the hot potato principle [11], i.e., leaving
the region as fast as possible. Particularly, given the outgoing
demands from an ingress node to the same neighboring region.
We first compute the smallest hop number from the ingress
node to each possible border node. Then a few border nodes
with a shorter distance to the ingress node than the other border
nodes will be selected as the candidate border nodes of the
outgoing demands. In our design, we use one forwarding path
for each pair of ingress and egress node and three candidate
border nodes for delivering outgoing demands.

We do not distinguish elephant and mice flows for O-agent.
Recall that outgoing traffic controlled by O-agent can affect the
congestion of all regions on its path. Thus, correctly routing
a “long” mice flow (that traverses a long forwarding path and
has an impact on a large number of links) may even be more
crucial than routing a “short” elephant flow. We cannot make
the simplification by separating mice and elephants flows for
O-agent and ignoring the outgoing mice flows.
Reward. Recall that the routing of outgoing demands affects
the traffic distribution of both the local region and the other
regions. To reduce congestion of the local region as well as
the whole network, the reward value of O-agents should not
only reflect the network status of the local region but also
reflect the network status of the other regions. Therefore,
neither Eq. (2) nor Eq. (3) can be used directly. We observe
that the routing of outgoing demands can directly affect the

neighboring regions besides the local region. To accurately
evaluate the quality of O-agents’ actions, the reward values can
be calculated based on the status of the local region and the
neighboring regions. Therefore, we consider a cooperative TE
objective (i.e., minimizing the maximum edge cost of multiple
regions) when computing reward values for O-agents. Note
that, the T-agent’s reward value calculated by Eq. (3) reflects
the status of the local region. We propose that adjacent regions
can exchange their T-agents’ rewards at each iteration step to
help compute O-agents’ reward values.

Formally, we denote rm,Ot as the reward value returned to
the O-agent in region m at iteration step t. The reward value
of O-agents can be calculated by

rm,Ot = β · rm,Tt + (1− β) ·Em′∈neighbor(m)[r
m′,T
t ], (5)

where β is a non-negative constant and β ∈ [0, 1]. In the
right hand side of Eq. (5), the first part is the scaled reward
value of the T-agent in region m, and the second part is the
scaled average reward value of the T-agents in the neighboring
regions m′ ∈ neighbor(m). The parameter β is used to adjust
the weight of the two parts. With the reward function of Eq.
(5) for O-agents and the reward function of Eq. (3) for T-
agents, the maximum edge cost of each region can be lowered
together.

C. Training Algorithm

We construct a numerical network environment to train the
agents. The simulated network has the same topology and the
same edge capacity settings as the real target network. Given a
TM and the actions of all the agents, the state vectors and the
rewards for each agent can be easily calculated. We adopt an
advanced Deep RL algorithm and leverage incremental train-
ing to make agents able to accommodate highly heterogeneous
traffic patterns and even link failures. We show the Deep RL
algorithm and incremental training next.

Recall that the purpose of training is to make each agent
learn a policy mapping from state vector to action vector so
as to maximize the discounted cumulative reward as described
in Section III-B. In this paper, we adopt DDPG [25], one of
the state-of-the-art Deep RL algorithms, to help the agents
learn policies. DDPG supports high dimension state space as
well as deterministic and continuous actions, which matches
the requirements of our system. In DDPG, there is an online
actor network and an online critic network. The online actor
network is the DNN of policy. The online critic network is
for approximating the expected discounted cumulative reward
called Q-value. Briefly speaking, the online critic network
evaluates the behavior of the actor network and helps the
actor network update parameters. The online critic network
is trained by minimizing the loss function with respect to
the evaluated Q-value and a target Q-value. To improve the
updating stability, DDPG maintains two separate networks,
i.e., a target actor network and a target critic network, to help
estimate the target Q-value. Two target networks have the same
DNN structures as the corresponding online networks and are
updated slowly from the two online networks.



We formulate and construct the DNNs of DDPG in our
design. Since agents update DNN parameters in the same
way, we consider a general agent next and remove the index
of region (i.e., m) and agent type (i.e., T and O) from
the notations for brevity. In a general agent, there is a
DDPG instance consisting of four DNNs, i.e., online actor
network π(st|θθθπ), target actor network π′(st|θθθπ

′
), online critic

network Q(st, at|θθθQ) and target critic network Q′(st, at|θθθQ
′
)

parameterized by θθθπ , θθθπ
′
, θθθQ, and θθθQ

′
, respectively. In our

implementation, actor network contains two fully-connected
hidden layers with 64 and 32 neurons respectively, and the
activation function is Leaky Rectifier function [28]. The input
layer (output layer) has a number of units matching the length
of the state vector (action vector). The output layer takes
Softmax function [28] as the activation function so as to
follow the action constraints as shown in Eq. (1) and Eq. (4).
Critic network contains three hidden layers with 64, 32, and
64 neurons respectively, and the activation function is Leaky
Rectifier function. The input includes state vector as well as
action vector output by actor network. The first two hidden
layers are fully-connected and take state vector as the input.
The third hidden layer takes the concatenation of action vector
and the outputs of the second hidden layer as the input and is
fed into a one-unit output layer.

At each iteration step t, online actor network takes an action
based on the environment. Then, a four-tuple sample can be
collected which consists of st, at, rt, and st+1. st+1 is the new
state vector after action at is taken in state st. The new sample
will be stored in a buffer with fixed size and will overwrite
the oldest sample in the buffer if the buffer is full. Then, we
select a batch of samples (indexed by k) randomly from the
buffer. The online critic network can be updated by θθθQ :=

θθθQ + ηQ∇θθθQL, where L = E[
∑
k (yk −Q(s(k), a(k)|θQ)2],

and yk = r(k) + γQ′(s(k + 1), π′(s(k + 1))). yk is the target
Q-value for sample k and is computed with the help of two
target networks. γ ∈ [0, 1] is a discount factor. ηQ decides the
learning rate of the online critic network. Next, actor network
can be updated by θθθπ := θθθπ + ηπ∇θθθπJ , where

∇θθθπJ = E[∇aQ(s, a|θQ)|s=s(k),a=π(s(k)) · ∇θππ(s|θπ)|s=s(k)]

ηπ decides the learning rate of the online actor network.
Finally, target actor network and target critic network are
slowly updated based on online networks respectively, i.e.,
θθθQ

′
= τθθθQ + (1− τ)θθθQ′

and θθθπ
′
= τθθθπ + (1− τ)θθθπ′

. τ is a
small value for adjusting the learning rate of the networks.

To learn satisfactory DNN parameters, the online actor net-
work will add a noise value to its output for action exploration
during the training stage as described previously. Particularly,
at each iteration step, the action is computed by

at = π(st|θθθπ) + ε(t) · N (t), (6)

where N (t) is a random noise for action exploration and ε(t)
is a parameter for balancing action exploration and action
exploitation. We use ε(t) = ε0 ·ζt where ε0 is the initial value
and the constant parameter ζ has 0 < ζ < 1. We can find
ε(t) decreases as t increases, and finally a(t) ≈ π(s(t)|θθθπ).

Suppose there are totally T iterations and t = 1, 2, ..., T . ε(T )
should be small enough so that the action output becomes

stable. Given ε0, ε(T ), and T , we have ζ =
(
ε(T )
ε0

)1/T
.

Using the above algorithm, the agents can learn good
policies after enough iteration steps (i.e., a large enough T )
for the simulated network with a given TM. While, it is
desired that traffic dynamics, as well as link failures, can be
accommodated well during the online stage. Thus, we leverage
the method of incremental training to enhance the adaptiveness
of the agents. Particularly, we use a set of TMs (called training
dataset) to train the agents. The agents will be trained for T
iteration steps in the environment set with every TM in the
training dataset, and the parameters of agents will be updated
incrementally. By creating a dynamic environment, the agents
can learn policies that are able to adapt to various traffic
patterns. Since the agents deal with link failures in a way
similar to dealing with link congestion as described previously,
incremental training can also facilitate the improvement of TE
performance in link failure scenarios. In practice, the TMs for
offline training can be extracted from captured data offline.

The offline training process can be executed either in a
centralized manner or in a decentralized manner. For the
former, a centralized server will be used in which the whole
network environment and all the agents are maintained. That
is to say, the centralized server is reliable for all the regions.
After training, the centralized server will distribute well-
trained agents (i.e., DNN parameters) to the corresponding
regions. For the latter, agent training is conducted in individual
regions simultaneously. In particular, each region uses a local
server to maintain a partial environment only simulating its
own region as well as the region’s two agents (one T-agent
and one O-agent). At each iteration step, adjacent regions
will exchange some information such as traffic statistics and
reward values. Thus regions can compute states and rewards
of O-agents normally. The second training manner makes
the regions avoid sharing some sensitive internal information
such as region structure, edge capacities, and edge weights.
During the online stage, the agents can extend their knowledge
continuously with little communication among regions in a
way similar to the second manner.

V. SIMULATIONS

We implement our proposed framework using TensorFlow
[18] and conduct extensive simulations.

A. Simulation Setup

We do evaluation using both real-world and synthetic net-
work topologies. First, we use a measured topology called
Telstra (AS 1221) obtained from the Rocketfuel project [29].
The network nodes are scattered across Australia. We consider
each state or territory of Australia as a region and ignore
the regions with few nodes. Thus we obtain five regions.
We also remove the nodes whose degree is no larger than
one, which does not affect the evaluation of routings [30].
Particularly, the reduced Telstra topology contains 38 nodes
and 152 edges. Second, we use a real topology obtained from



Google cloud [31]. Particularly, we consider three regions:
Europe, Asia, and North America, and there are a total of
44 nodes and 160 edges. Third, we use a large-scale synthetic
topology whose region-level topology is a 2D 4×4 grid. Thus
there are 16 regions in total. We use BRITE [32] to generate
each region’s topology randomly. In particular, each region’s
topology contains 10 to 15 nodes, and the link density (the
ratio of link number divided by node number) is set to 2 (i.e.,
20 to 30 pairs of edges in one region) according to our analysis
of many available topologies [33] [29]. For any two adjacent
regions, we generate 2 to 4 pairs of edges by selecting border
nodes in each region randomly. Particularly, we use a synthetic
topology (named as BRITE) with 204 nodes and 964 edges.

The edge capacities of the above three topologies are
determined based on the fact that a node with a big degree is
likely to hold edges with a large capacity [34]. In particular,
an edge’s capacity is set to 10 Gbps if either end node of the
edge has a degree no smaller than four. Otherwise, the edge
capacity is set to 5 Gbps.

We use the Gravity model [19] to generate synthetic TM
sequences. In the Gravity model, demand sizes in a TM
are proportional to the source node’s and the destination
node’s outgoing capacities and are inversely proportional to
the square of the distance between the two nodes. To generate
gravity TM sequences, we first compute a base TM using the
Gravity model, and dbase(s, t) is denoted as the demand size
between source node s and destination node t in the base
TM. Then we generate TMs one by one by choosing the
value of each demand size d(s, t) from the uniform distribution
[−0.5·dbase(s, t), 3.0·dbase(s, t)]. Given a node pair (s, t), the
demand size in some generated TMs can be at most 3.5 times
larger than that in other TMs, which is used to simulate traffic
dynamics. In our simulations, we use a sequence of 40 TMs
for training agents and a sequence of 160 TMs for testing.

We set α=0 in the edge cost function h(·), i.e., the objective
of TE is to minimize the maximum edge utilization of the
whole network. By default, mice flow ratio ρ is set to 0.8, and
mice flows are determined according to the TMs in the training
dataset. β in the O-agent’s reward function is set to 0.7. We set
ε0=1.0, ε(T )=0.05. T is set to 3,000 for the Telstra topology
and the Google cloud topology for enough action explorations,
and we set T=6,000 for the BRITE topology which is larger
than the first two topologies. We set the discount factor γ=0.99
following [35]. To update DNN parameters smoothly, we use
small learning rates: ηπ=0.0001, ηQ=0.001, and τ=0.001.

For convenience, we use MRTE (Multi-Region Traffic Engi-
neering) to represent our proposed framework in the following.
We compare MRTE with both traditional and data-driven TE
approaches. First, we compare with hot potato routing (HPR),
which is the most popular method in multi-region networks
and does not import communication overhead during routing
computation. In our implementation, HPR delivers outgoing
demands to the nearest border node and computes optimal
routing for terminal demands by solving MCF problems
[36] so as to minimize the maximum edge utilization of
each region. Second, we compare with equal-cost multi-path

(ECMP) routing which means splitting traffic among the pre-
computed paths evenly. ECMP is used to demonstrate that
multi-path alone does not lead to superior performance. Third,
we implement the single-agent scheme (named as TRPO in our
paper) proposed in [16], which is one of the state-of-the-art
data-driven TE approaches. The scheme assumes the Deep RL
agent has a global view and control of the whole network. The
Deep RL agent takes a continuous of TMs as the input and
outputs link weights for routing computation. We implement
the system and set parameters following [16], and the Deep
RL agent is trained sufficiently.

We define normalized congestion which can be computed
by the maximum edge utilization under our scheme divided by
that under the globally optimal routing. The globally optimal
routing can be obtained by solving the MCF problem of the
TE problem described in Section III-A. In addition, the results
of running time are measured on a server with a 4-core Intel
3.6 GHz CPU and 32 GB memory.

B. Simulation Results

Normalized congestion. Fig. 3 shows the empirical CDF
of normalized congestion in the Telstra topology. We can
find that our scheme, i.e., MRTE, outperforms all the other
compared schemes. Particularly, MRTE gets normalized con-
gestion smaller than 1.2 in around 97% of tests. TRPO
also performs well, and the normalized congestion of TRPO
is smaller than 1.2 in around 91% of tests. However, the
performance of TRPO is unstable. For example, TRPO gets
result values larger than 1.6 sometimes. ECMP performs worse
and HPR performs the worst. HPR always gets normalized
congestion larger than 1.3. As described previously, delivering
outgoing traffic to the closest border node will overuse some
critical edges and may also lead to unexpected congestion in
neighboring regions. In such a case, the global TE performance
is limited even under locally optimal routing for minimizing
each region’s maximum edge utilization. Similar results can
be found in the Google cloud topology as shown in Fig. 4.

Fig. 5 shows the simulation results of the BRITE topology
with over 200 nodes. We can find that our system shows good
scalability and performs the best. In contrast, TRPO performs
the worst in Fig. 5. This is because the agent of TRPO can
hardly converge well due to the high dimension of input and
output. Overall, the results in Fig. 3 - Fig. 5 indicate that
our proposed scheme limits congestion within 1.2 times of
the global optimal solution in over 90% of tests for all the
three topologies. Therefore, MRTE is able to achieve stable
performance gains under different topologies and TMs.
Normalized congestion in single link failure scenarios. We
consider the scenarios where one random link (one pair of
edges between two adjacent nodes) is broken down. We man-
ually set the utilization of broken edges to a relatively large
value (i.e., 1.0) in the state input so that the corresponding
agents can adjust the actions to accommodate the failures just
like dealing with edge congestion. On the other hand, as the
failure will break down some pre-computed paths, we take a
heuristic method that the traffic on the broken paths will be
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Fig. 6. Normalized congestion under single link failures for the
three topologies.

rescaled to other normal paths in the same path set by taking
their splitting ratios as rescaling weights. We do 100 tests by
generating TMs and selecting broken edge pairs randomly.

Fig. 6 shows the results for all the three topologies. Each
bar shows the average value and variance. We can see that
MRTE performs the best all the time. TRPO achieves similar
TE performance to MRTE for the first two topologies but
gets very bad results for the largest topology, i.e., BRITE.
For example, MRTE improves the average performance in the
BRITE topology by 75.4%, 54.2%, and 15.5% compared with
TRPO, HPR, and ECMP, respectively. The results in Fig. 6
illustrate that our scheme using multiple learning agents (as
opposed to single-agent RL like TRPO) enables more robust
TE performance with respect to random link failures.
Effect of the number of regions. Given a network with a
fixed topology, dividing it into more regions tends to make
smaller region sizes. We explore the effect of the number of
regions (also region size) on TE performance to investigate
how MRTE benefits from decentralized control. We do tests on
the BRITE topology by re-dividing the topology into different
numbers of regions. Obviously, there will be only one region if
we consider the topology as a whole. Recalling that the region-
level structure of BRITE is originally a 2D 4×4 grid, we can
divide the whole topology into two parts evenly, and each part
is a 2×4 grid. Then we get a topology with two regions by
considering each 2×4 grid as one new region. Similarly, we
can divide the network into four regions (four 2×2 grids),
eight regions (eight 1×2 grids), and sixteen regions (same as
the originally generated multi-region topology).

We train the agents for 6,000 iteration steps with respect to
a random TM. Fig. 7 shows the average normalized congestion
after convergence and the training time. We can find that
more regions lead to better TE performance because of smaller
state/action space, which, in some way, illustrates why multi-

Table I: A comparison of training speed (per 1k iterations).
Telstra Google BRITE

TRPO 2.1h 4.0h 7.7h
MRTE 1.3min 2.4min 21min

agent design has potentially better scalability than single-agent
design like TRPO. What needs to be pointed out is that too
many regions will instead limit the flexibility of traffic routing
and harm TE performance. In an extreme case, every router
node belongs to one individual region. Then, the demands
can only be delivered through the static inter-region path
like shortest path routing (see Section III-A). In our test, the
normalized congestion in the extreme case is 1.8, which is
much larger than all the congestion values shown in Fig. 7.

Fig. 7 also shows more regions lead to longer training time
because of more agents for training. For example, having 16
regions reduces normalized congestion by 22.7% but increases
training time by 29.9% compared with having only one region.
Even so, we note that our system can be trained much more
efficiently than existing single-agent approaches like TRPO.
Table I compares the time of training MRTE and TRPO for
1,000 iteration steps. We can find that MRTE gets 20×-100×
the training speed of TRPO.
Investigation of framework design. We evaluate the effec-
tiveness of the framework design, i.e., maintaining two agents
for each region instead of one agent. In our design, two agents
in the same region use different reward functions as described
previously. Particularly, T-agents have the reward function of
Eq. (3), and O-agents use the reward function of Eq. (5). Now,
we compare our proposed design with another two designs that
maintain only one agent for each region. Using one agent for
each region means both terminal and outgoing demands are
controlled by only one agent. The agents in the first compared
design use the reward function of Eq. (3). The agents in
the second compared design use the reward function of Eq.
(5). We use “one-agent design with Eq. (3)” and “one-agent
design with Eq. (5)” to represent the two compared designs,
respectively. The systems of the two compared designs are
trained and tested in a way similar to our system.

To evaluate the effectiveness of these framework designs,
we define five metrics. The first metric is the maximum edge
utilization of the whole network, which is our TE objective.
The second metric (resp. the third metric) is the average value
of the top 5% (resp. 10%) largest edge utilization. The second
and third metrics consider a set of top congested edges instead
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the Telstra topology.
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of only the most congested edge. The fourth metric is defined
as the product of the maximum edge utilization of each region.
The fifth metric is the sum of the maximum edge utilization of
each region. The last two metrics are used to validate whether
each region’s local objective can be optimized simultaneously.

We evaluate reduced congestion which is defined as the
reduced metric value of the design compared with our pro-
posed design. Fig. 8 shows the results of reduced congestion
in the Telstra topology. We can find the five metric values of
the two “one-agent” designs are reduced greatly. The results
demonstrate the effectiveness of our system design.
Parameter setting investigation. First, we explore the effect
of β in Eq. (5) on TE performance. Fig. 9 shows the nor-
malized congestion of different β values in the Telstra topol-
ogy. Each box contains the median value, 5%-quantile, 25%-
quantile, 75%-quantile, and 95%-quantile. As the increment of
β, the result values get smaller at the beginning and become
larger when β is too large. When β=0.7, our scheme gets the
smallest median value and the most stable results.

Second, we explore the effect of mice flow ratio ρ which
is defined for terminal traffic in Section IV-A. A larger ρ
means that more terminal demands will use static routing
(i.e., ECMP) and that the action space becomes smaller.
ρ=1.0 means all terminal demands are delivered through static
routing. Fig. 10 shows the results in the Telstra topology. We
can observe that the normalized congestion is close to 1.0
when ρ≤0.8 and that the normalized congestion is large (i.e.,
over 1.1) when ρ=1.0. This is because too large ρ limits the
potential of balancing traffic loads. We can also find that the
training time gets smaller as ρ increases. This is because a
larger ρ leads to smaller action space, which introduces fewer
DNN parameters for updating. Therefore, a proper ρ value
makes efficient training while the TE performance is good.

Third, we investigate the influence of parameter T and ρ in
the convergence of our system. We perform 20 runs of inde-
pendent simulations for different TMs and find ρ=0.8 requires
significantly less steps for good convergence compared with
ρ=0.0 due to reduced action space. Fig. 11 and Fig. 12 show
the convergence results for a random TM when ρ=0.0 and
ρ=0.8, respectively. We can see ρ=0.8 makes at least 2 times
improvement of convergence speed in the simulation.

VI. CONCLUSION

In this paper, we propose a novel framework for distributed
TE in multi-region networks. Two types of agents, namely
T- and O-agents, are designed to optimize the routing of
terminal and outgoing traffics in each region, respectively.
In particular, the agents collect local link statistics, make
their own decisions in reduced action space, and measure
congestion-related rewards. Simulations based on real-world
network topologies show that over 90% of tests are able to
limit congestion within 1.2 times the optimal. Note that we
set the number of forwarding paths by making a tradeoff
between potential TE performance and the overhead of Deep
RL. More detailed explorations on this are left to our future
work. Investigation of robust algorithms that can cope with
topology changes and some other TE objectives (e.g., end-to-
end QoE metrics) is also an important future direction.
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