
204 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Optimizing Differentiated Latency in Multi-Tenant,
Erasure-Coded Storage

Yu Xiang, Tian Lan, Member, IEEE, Vaneet Aggarwal, Senior Member, IEEE, and Yih-Farn Chen

Abstract—Erasure codes are widely used in distributed storage
systems since they provide space-optimal data redundancy to
protect against data loss. Despite recent progress on quantify-
ing average service latency when erasure codes are employed,
there is very little work on providing differentiated latency
among multiple tenants that may have different latency require-
ments. This paper proposes a novel framework for providing
and optimizing differentiated latency in erasure-coded storage
by investigating two policies, weighted queue and priority queue,
for scheduling tenant requests. For both policies, we quantify
service latency for different tenant classes for homogeneous files
with arbitrary placement and service time distributions. We
develop an optimization framework that jointly minimizes differ-
entiated latency over three decision spaces: 1) data placement;
2) request scheduling; and 3) resource management. Efficient
algorithms harnessing bipartite matching and convex optimiza-
tion techniques are developed to solve the proposed optimization.
Our solution enables elastic service-level agreements to meet
heterogeneous application requirements. We further prototype
our solution with both queuing models applied in an open-
source, cloud storage deployment that simulates three geograph-
ically distributed data centers through bandwidth reservations.
Experimental results validate our theoretical delay analysis and
show significant joint latency reduction for different classes of
files, providing valuable insights into service differentiation and
elastic quality of service in erasure-coded storage systems.

Index Terms—Differentiated services, distributed storage,
erasure codes, weighted queue, priority queue, quality of service,
service-level agreements.

I. INTRODUCTION

ERASURE coding has been increasingly adopted by
storage systems such as Microsoft Azure and Google

Cloud Storage due to better space efficiency, while achiev-
ing the same or better level of reliability compared to full
data replication. As a result, the effect of coding on content
retrieval latency in data-center storage system is drawing more
and more significant attention these days. Google and Amazon
have published that every 500 ms extra delay means a 1.2%

Manuscript received May 5, 2016; revised October 12, 2016; accepted
January 23, 2017. Date of publication January 24, 2017; date of current ver-
sion March 9, 2017. This work was supported in part by the National Science
Foundation under Grant no. CNS-1618335 and CSR-1320226. This paper
was presented in part at the 35th International Conference on Distributed
Computing Systems (ICDCS) 2015 [1]. The associate editor coordinating the
review of this paper and approving it for publication was V. Fodor.

Y. Xiang and Y.-F. Chen are with AT&T Labs-Research, Bedminster,
NJ 07921 USA (e-mail: yxiang@research.att.com; chen@research.att.com).

T. Lan is with the Department of ECE, George Washington University,
Washington, DC 20052 USA (e-mail: tlan@gwu.edu).

V. Aggarwal is with the School of IE, Purdue University, West Lafayette,
IN 47907 USA (e-mail: vaneet@purdue.edu).

Digital Object Identifier 10.1109/TNSM.2017.2658440

user loss [2]. Optimizing cloud storage to meet heterogeneous
service level objectives for latency among multiple tenants is
an important and challenging problem. Yet, due to the lack
of analytic latency models for erasure-coded storage for dif-
ferentiated services, most of the literature is limited to the
analysis and optimization of average service latency of all ten-
ants, e.g., [8], [9], [13], and [16], failing to recognize cloud
applications’ heterogeneous preferences.

Providing the same level of latency to all applications is
unsatisfactory - cloud tenants may find it either inadequate or
too expensive to fit their specific requirements, which is shown
to vary significantly [2]. In fact, elastic QoS is an integral part
of cloud computing and one of its most attractive premises.
To our best knowledge, however, the optimization of differ-
entiated service latency in an erasure-coded storage system is
an open problem. First, latency is largely affected by queue-
ing, and the existence of multiple tenants causes queueing
for all requests to share the same underlying infrastructure.
Second, using (n, k) erasure coding, an access request can
be served by any k-out-of-n data chunks. It requires solving
a chunk placement and dynamic scheduling problem in line
with tenants’ latency requirements. In this paper, we study
erasure-coded storage under two request management poli-
cies, priority queuing and weighted queuing. By quantifying
service latency of these policies, we are able to propose a
novel optimization framework that provides differentiated ser-
vice latency to meet heterogeneous application requirements
and to enable Elastic Service-level Agreements (SLAs) in
cloud storage.

Much of the prior work on improving storage latency in
an erasure-coded system is limited to the easier problem of
analysing and optimizing average latency over all cloud ten-
ants, regardless of their different latency preferences. For
homogeneous files, Huang et al. [8] and Shah et al. [9]
proposed a block-t-scheduling policy that only allows the first
t requests at the head of the buffer to move forward in order
to gain tractability. A separate line of work was developed
using the fork-join queue [10]–[12] and provides different
bounds of average service latency for erasure-coded storage
systems [13]–[15]. Recently, a new approach to analyzing
average latency in erasure-coded storage was proposed in [16].
It harnesses order statistic analysis and a new probabilistic
scheduling policy to derive an upper bound of average latency
in closed-form. Not only does this result supersede previous
latency analysis [8], [9], [13] by incorporating multiple non-
homogeneous files and arbitrary service time distribution, its
closed-form quantification of service latency also enables a

1932-4537 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

XIANG et al.: OPTIMIZING DIFFERENTIATED LATENCY IN MULTI-TENANT, ERASURE-CODED STORAGE 205

joint latency and storage cost minimization that can be effi-
ciently solved via an approximate algorithm [16], [17]. The
probabilistic scheduling policy has also been shown to be
asymptotically optimal for tail latency index of heavy-tailed
files [18].

However, all these prior works are focused on analyzing
and optimizing average service latency, which is undesirable
for a multi-tenant cloud environment where each tenant has a
different latency requirement for accessing files in an erasure
coded, online cloud storage. While customizing elastic service
latency for the tenants is undoubtedly appealing, it also comes
with great technical challenges and calls for a new framework
for quantifying, optimizing, and delivering differentiated ser-
vice latency in general erasure-coded storage. In this paper,
we propose two classes of policies for providing differentiated
latency and elastic QoS in multi-tenant, erasure-coded storage
systems: non-preemptive priority queue and weighted queue
for scheduling tenant requests. Both of which partition tenants
into different service classes based on their delay requirement
and apply differentiated management policy to file requests
generated by tenants in each service class.

In particular, our first policy is modeled as a non-preemptive
priority queue. That is, a file request generated by a tenant in
high priority class (i.e., having more stringent delay require-
ments) can move ahead of all the low priority requests (i.e.,
generated by tenants in low priority class) waiting in the queue
of storage nodes, but low priority requests in service are not
interrupted by high priority requests. The second policy is
modeled as a weighted queue, where file requests submitted by
tenants in each class are buffered and processed in a separate
first-come-first-serve queue at each storage node. The service
rate of these queues are tunable with the constraints that they
are non-negative, and sum to at most the service rate of the
server. Tuning these weights allows us to provide differentiated
service rate to tenants in different classes, therefore assigning
differentiated service latency to tenants. In this paper, we apply
probabilistic scheduling in [16] and derive closed-form latency
bounds for the service policies that use non-preemptive prior-
ity queue and weighted queue, under arbitrary data placement
and service time distributions.

The goal of this paper is to quantify service latency under
these two policies and to develop an optimization frame-
work to minimize differentiated service latency for multiple
tenants. Using the latency analysis, we propose a novel
optimization framework for minimizing differentiated service
latency. More precisely, for priority queue policy, we for-
mulate a joint latency minimization problem for all tenants
over two dimensions, i.e., the placement of erasure-encoded
file chunks on distributed storage nodes and the scheduling
of chunk access requests, while the joint optimization for
weighted queue policy further minimizes latency over weights
assigned to each service class. We show that both problems
are mixed-integer optimization and difficult to solve in gen-
eral. To develop efficient algorithmic solutions, we identify
that each problem can be decoupled into two sets of sub-
problems: one equivalent to a bipartite matching and the
other proven to be convex. We develop a greedy algorithm
to solve these subproblems optimally in an iterative fashion,

therefore jointly minimizing services latency of all tenants
in different service classes. This optimization gives rise to
new challenges that cannot be addressed by scheduling algo-
rithms in Map-reduce type of framework [3]–[6], because
chunk placement in erasure-coded storage must be solved
jointly with a request scheduling problem that selects ki-out-
of-ni distinct chunks/servers with available data to service
any request.

To validate our theoretical analysis and joint latency opti-
mization for different tenants, we provide a prototype of
the proposed algorithms in Tahoe [20], which is an open-
source, distributed file system based on the zfec erasure coding
library for fault tolerance. A Tahoe storage system consist-
ing of 12 storage nodes are deployed as virtual machines in
an OpenStack-based data center environment. One additional
storage client was deployed to issue storage requests. From
the experiment results, we first find that the service time dis-
tribution is proportional to the bandwidth of the server, which
validates an assumption used in the analysis of the weighted
queue latency. Further, the experiment results validate fast con-
vergence of our differentiated latency optimization algorithms.
We see that our algorithms efficiently reduce latency both with
the priority and the weighted queues, and the results from the
experiments are reasonably close to the given latency bounds
for both the models. Finally, we note that priority queuing
could lead to unfairness since the low priority tenants only
share residual service rates left over by high priority tenants,
while weighted queuing is able to balance service rates by
optimizing weights assigned to each service class.

II. SYSTEM MODEL

In this section we introduce the system model and the two
queuing models that are used in this paper. We consider a
data center consisting of m heterogeneous servers, denoted
by M = { j = 1, 2, . . . , m}. A set of tenants store r hetero-
geneous files among those m servers. Each file is encoded
with different erasure code as follows. We divide file i into ki

fixed-size chunks then encode it using an (ni, ki) Maximum
Distance Separable (MDS) erasure code [19] to generate ni

distinct encoded chunks of equal size. Each encoded chunk is
then stored on a different storage node. Thus, we denote Si as
the set of storage nodes hosting file i chunks, which satisfy
Si ⊆ M and ni = |Si|. Thus, each selected server will have
only one chunk of file i. When processing a file-retrieving
request, the (ni, ki) MDS erasure code allows the content to
be reconstructed from any subset of ki-out-of-ni chunks, so we
need to access only ki chunks of file i to recover the complete
file, and we have to find out which ki of the ni chunks should
be accessed. We assume that the parameters ki and ni for each
file are fixed. The value of ki is determined by content size
and the choice of chunk size.

We assume that the tenants’ files are divided into 2 service
classes, R1 for delay-sensitive files and R2 for non-delay-
sensitive files. There are a series of file requests for the r files,
such that requests for each file (or content) i arrive as a Poisson
process with rate λi, i = 1, . . . , r. For a given placement (Si)
for each file, and erasure-coded parameters (ni, ki), we will use

206 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Fig. 1. System evolution for high/Low priority queuing.

probabilistic scheduling to select ki file chunks when a file is
requested. There are ni-choose-ki options, and each option is
chosen with certain probability. This scheduling strategy was
proposed in [16], and an outer bound on the latency was pro-
vided. The probabilistic scheduling for all these ni-choose-ki

options was shown in [16] to be equivalent to choosing each of
the storage nodes in Si with certain probability, say πi,j. More
formally, let πi,j ∈ [0, 1] be the probability that a request for
file i will be forwarded to and served by storage node j, i.e.,

πi,j = P

[
j ∈ Si is selected

∣∣∣ ki nodes are selected
]
. (1)

It is easy to see that πi,j = 0 if no chunk of content i is
placed on node j, i.e., j /∈ S . Further,

∑
j πi,j = ki since exactly

ki distinct storage nodes are needed to process each request.
Next, we will describe the two queuing models that are used
in this paper.

A. Priority Queuing

We assign a high priority for delay-sensitive files in R1
and a low priority for non-delay-sensitive files in R2. In order
to serve the tenants with different priorities, priority queues
involve having two sets of queues at each storage node - high
priority queues and low priority queues. The requests made by
the high priority tenant enter the high priority queues and the
requests made by the low priority tenant enters the low priority
queues. A chunk is serviced from high priority queue as long
as there is a chunk in the queue, and a chunk is serviced from
the low priority queue only if there is no chunk in the high
priority queue. We assume a non-preemptive priority queue,
where if a high priority request arrives during the waiting time
of a low priority request, the arriving high priority request will
be served first while the request which is already in service will
not be affected by the later arrival of high priority requests.

An example is shown in Fig. 1, where a server has two
queues, one for high priority requests and the other for low
priority requests, which we denote as Qh and Ql respectively.
At state 1, Qh has two jobs A2 and C1 and Ql has three
jobs B1, B2 and D2 in queue, with job A1 in service. Since
priority queues are used, a low priority request will only be
served when the high priority queue is empty and thus after
serving A1, A2 followed by C1 will be served, and all jobs in
low priority queue will wait as depicted in state 2. In state 3,

Fig. 2. System evolution for weighted queuing.

after C1 leaves, there is no new high priority request and thus
B1 from Ql will be served. State 4 shows a new high priority
request C2 arrives during when B1 is being served. Due to
the use of non-preemptive priority queue, the system will not
disrupt service for B1. After B1 is served, C2 will be served
before other low priority requests as depicted in State 5.

B. Weighted Queuing

Weighted queuing apportions service rate among different
service classes in proportion to given weights. Tenants with
higher weights receive more service rates, while tenants with
lower weights can still receive their fair share if the weights are
properly balanced. Assume that the total bandwidth B allocated
to a server is divided among two service classes by weights w1
and w2, such that all tenants’ files in class k gets bandwidth
of Bk = Bwk for k ∈ {1, 2}, satisfying

∑2
k=1 wk = 1. Thus,

the system is equivalent to dividing each physical server into
two logical servers, one with service bandwidth B1 = Bw1
and other with B2 = Bw2. We assume that the service time is
inversely proportional to bandwidth such that service time with
B/2 bandwidth will be twice as compared to that with a band-
width of B. Unlike priority queuing, each server now is able
to serve two requests from different classes at the same time,
offering different service bandwidths for different classes. In
this case, low-priority class may still get a small portion of
bandwidth, without having to wait for all the high-priority
jobs to finish.

To compare with the priority queuing model, we consider
an example as shown in Fig. 2. We have the same set of jobs
as in Fig. 1. We have A1, A2, C1, C2 as class 1 jobs, and B1,
B2, D1, D2 as class 2 jobs, where class 1 is the class with
larger weighted bandwidth resources and thus equivalent to a
higher priority. Let the jobs in service at state 1 be A1 and B1.
Each time a logical server for either class is free, the first job
of that class in queue will be served at the service bandwidth
of Bwk, k ∈ {1, 2}, as shown in all states in Fig. 2. We can see
from Fig. 2 that all class one requests are served during the 5
states, and 3 of the class 2 jobs are served. However, priority
queuing has to wait for class one requests to be served before
class 2, and thus fewer requests were served in the previous
example. Thus, weighted queuing provides more fairness to
low priority class customers.

XIANG et al.: OPTIMIZING DIFFERENTIATED LATENCY IN MULTI-TENANT, ERASURE-CODED STORAGE 207

III. UPPER BOUND: PROBABILISTIC SCHEDULING

In this section, we will derive a latency upper bound for
each file in the two service classes.

We consider two types of delay, Queuing delay which is
denoted by Qj and Connection delay, which is denoted by Nj.
Queuing delay is the waiting time a chunk request receives in
node j due to sharing of network and I/O bandwidth, and is
determined by service rates and arrival rates of chunk request
at each storage node according to our queuing models. The
connection delay includes the overhead to set up a connection
from a tenant to node j in a certain data-center. We assume that
the connection delay has a known mean ηj and variance ξ2

j , and
is independent of Qj. It is easy to see that if a subset Ai ⊆ Si

of ki nodes are selected to process a file-i request, its latency is
determined by the maximum of queuing plus connection delay
of the ki nodes in Ai. Therefore, under probabilistic scheduling
we find average latency of file i as

T̄i = E

[
max
j∈Ai

(
Nj + Qj

)]
,

where the expectation is taken over all system dynamics
including queuing at each storage node and the random selec-
tion of Ai for each request with respect to probabilities
πi,j ∀j.

We denote Xj as the service time per chunk at node j, which
has an arbitrary distribution satisfying finite mean E[Xj] =
1/μj, variance E[X2

j]−E[X2
j] = σ 2

j , second moment E[X2
j] =

�j,2, third moment E[X3
j] = �j,3. Xiang et al. [16] gave an

upper bound on T̄i using its mean and variance as follows.
Lemma 1 [16]: The expected latency T̄i of file i is tightly

upper bounded by

T̄i ≤ min
z∈R

⎧⎨
⎩z +

∑
j∈Si

πi,j

2

(
E[Dj] − z

)

+
∑
j∈Si

πi,j

2

[√(
E
[
Dj
]− z

)2 + Var
[
Dj
]]
⎫⎬
⎭, (2)

where Dj = Nj + Qj is the aggregate delay on node j with
mean E[Dj] and variance Var[Dj].

We now consider the cases when different storage nodes
manage chunk requests using priority or weighted queue
models and derive upper bounds on service latency.

A. Latency Analysis With Priority Queues

According to our system model, we consider two priority
queues for each storage node, one for requests of file in service
class R1 (high priority class), and the other for requests in
service class R2 (low priority class). Each file is either high
priority or low priority and thus all chunk requests of the same
file have the same priority level k, where k = 1, 2. We note
that the queuing delay for different priority class requests is
different. This is because low priority class requests have to
wait for the queue of high priority class to finish. Thus, we
need to find an upper bound to the expected latency of the files
in the different priority classes using probabilistic scheduling.
Let �jk =∑i∈Rk

λiπij be the aggregate arrival rate of class k

requests on node j and ρjk = �jk/μj the corresponding service
intensity. We analyze non-preemptive priority queues on each
node and use the result in Lemma 1 to obtain an upper bound
on service latency for each file in the two service classes as
follows.

Theorem 1: For non-preemptive priority queues, the
expected latency T̄i,k of file i of class k is upper bounded by
T̄i in (2), where E([Dj] and Var[Dj] for class k are denoted by
E([Djk] and Var[Djk], respectively, and are given as follows.

E
([

Dj1
] = ηj + 1

μj
+
(
�j1 + �j2

)
�j,2

2
(
1 − ρj1

) , (3)

Var
[
Dj1
] = ξ2

j + σ 2
j +

(
�j1 + �j2

)
�j,3

3
(
1 − ρj1

)

+
(
�j1 + �j2

)2
�2

j,2

4
(
1 − ρj1

)2 , (4)

E
[
Dj2
] = ηj + 1

μj
+

(
�j1 + �j2

)
�j,2

2
(
1 − ρj1

)(
1 − ρj1 − ρj2

) , (5)

Var
[
Dj2
] = ξ2

j + σ 2
j +

(
�j1 + �j2

)
�j,3

3
(
1 − ρj1

)2(1 − ρj2
)

+
(
�j1 + �j2

)2
�2

j,2

4
(
1 − ρj1

)2(1 − ρj2
)2

+ �j1
(
�j1 + �j2

)
�2

j,2

2
(
1 − ρj1

)3(1 − ρj2
) (6)

Theorem 1 quantifies the mean and variance of the delay
for retrieving a file chunk of class k from each server j and
then employs the order statistics bound in Lemma 1 to derive
a bound on the maximum latency to retrieve ki chunks from
distinct servers. In our non-preemptive queuing model, any
requests belonging to high priority class R1 are moved to
the head of line and processed as soon as the storage server
becomes free. Thus, these high priority requests are processed
as if low priority class requests do not exist, except for a
residual service time to complete any request that has already
started on the server. For low priority class R2, a new request
is served only if there is no high priority request in the queue.
The service time (i.e., queuing delay) consists of four parts:
the residual service time to complete any active request, the
total service time of high priority requests that are already in
queue, the total service time of the low priority requests that
are already in queue before target request’s arrival, and the
total service time of the high priority requests arrived during
target request’s waiting time. The detailed expressions of the
moments of the queuing delays are presented in Appendix A.

B. Latency Analysis for Weighted Queuing

We consider the weighted queue policy, where each storage
node employs a separate queue for each service class. Queuing
delay Qk

j for class k requests on node j depends on the queu-
ing weights wjk since service bandwidth on each storage node
is shared among all queues in proportion to their assigned
weights, whereas connection delay due to protocol overhead is
independent of bandwidth allocation and remains unchanged.

208 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Let μj be the overall service rate on node j. According to our
weighted queuing model, class k requests on node j receive
wjk fraction of service bandwidth and therefore have an aver-
age service time 1/(wjkμj) per chunk request. Due to Poisson
property of request arrivals, each weighted queue can be mod-
eled as a M/G/1 queue, whose mean and variance can be found
in closed-form.

Theorem 2: For weighted queues, the expected latency T̄i,k

of file i of class k is upper bounded by T̄i in (2), where E([Dj]
and Var[Dj] for class k are denoted by E([Djk] and Var[Djk],
respectively, and are given as follows.

E
[
Djk
] = ηj + 1

μj
+ �kjP2

kj�j,2

2wjk
(
wjk − �kjPkj/μj

) (7)

Var
[
Djk
] = ξ2

j + σ 2
j

+
2∑

k=1

Pkj

(
�kjPkj�j,3

3w2
jk

(
wjk − �kjPkj/μj

)

+ �2
kjP

2
kj�

2
j,2

4w2
jk

(
wjk − �kjPkj/μj

)2

⎞
⎠, (8)

where �kj = ∑
i∈Rk

λiπij is the arrival rate of class k files at

the storage node k, Pkj = �kj∑
k �kj

is the proportion of class k
files at storage node j.

With weighted queues, the two queues for different classes
are M/G/1 queues with different arrival rates and service rates
since we assumed that service time is proportional to the band-
width. Thus, we can look at each queue separately and the
analysis as in [16] can be done for each class. The mean and
variance with weighted queues can be found by summing the
mean and variance of each of the classes by weighing the sums
with the probability that a file belongs to that particular class.
The detailed proof is given in Appendix B.

IV. JOINT LATENCY OPTIMIZATION FOR

DIFFERENTIATED SERVICES CLASSES

In this section we jointly optimize differentiated service
latency for files in all service classes over three dimensions.
First, we need to decide the chunk placement of each file
i across the m servers based on the erasure code parameter
(ni, ki). Second, when a client requests a file, a subset of ki

nodes hosting desired file chunks must be selected according
to probabilities πi,j ∀j, i.e., the access probabilities for each
chunk.1 Finally, in the case of weighted queues, we also need
to decide on the weights wjk used for sharing service band-
width among different classes of files. In this section, we will
formulate the service latency optimization problem in erasure-
coded storage using priority and weighted queues, and then
propose the two algorithms, namely Algorithm JLOP (Joint
Latency Optimization in Priority Queuing) and JLOW (Joint
Latency and Weight Optimization), for solving the latency
minimization for differentiated services classes in the model
described in previous section. In an online environment with

1Note that it is possible to have πi,j = 0 even if a chunk of file i is placed
on node j, i.e., the chunk is only a cold copy to ensure fault-tolerance and is
never accessed in latency optimization.

dynamic file arrivals and removals, we can solve Problems
JLOP and JLOW repeatedly using the proposed algorithms to
update system configurations on the fly.

A. Latency Optimization for Priority Queues

For priority queues, we give preference to high-priority ten-
ants by allowing them to occupy as many system resources
as needed without consideration for low-priority requests,
while the low-priority tenants share the remaining resources
given decisions of high-priority tenants. Thus, we propose a
two-stage optimization problem as follows. First, we jointly
optimize the chunk placement and access probabilities for all
files in the high-priority class to minimize service latency they
receive. Then, latency for the low-priority files is minimized
based on the existing traffic generated by the high-priority
files.

Let λ̂k = ∑
i is file of priority class k λi be the total arrival rate

for high priority requests, and thus λi/λ̂k is the fraction of file
i requests among the class k priority files. The average latency
of all files in class k is given by

∑
i∈Rk

(λi/λ̂k)T̄ik, for k = 1, 2.
Our goal is to minimize the latency of high priority files over
their chunk placement and access probabilities regardless of
low priority requests, and based on the decision, to update
optimization variables of low priority files to minimize their
latency under existing high priority file traffic. We formulate
problem JLOP, which consists of 2 sequential optimization
problems for k = 1, 2 as follows.

JLOP:

min
∑
i∈Rk

λi

λ̂k
T̄ik (9)

s.t.
m∑

j=1

πi,j = ki, ∀i (10)

πi,j ∈ [0, 1], πi,j = 0, ∀k, ∀j /∈ Si, (11)

|Si| = ni and Si ⊆ M (12)

var. Si, πi,j, ∀i, j.

We can see this optimization problem for k = 1, 2 is a
mixed integer optimization as we have fixed n servers to select
for chunk placement for each request. It is hard to solve in
general, thus we propose to break this problem into two sub-
problems: placement and scheduling, which have an easier-to-
handle structure and can be solved efficiently.

We consider the sub-problem for optimizing scheduling
probabilities and recognize that for fixed chunk placements,
Problem JLOP is convex in πij. The scheduling algorithm for
high priority class is convex, since the low priority class does
not exist as seen by the high priority class, so the problem
becomes the optimization with only one priority class, which
can be easily proved that T̄ik is convex over �jk as shown
in [16], and �jk is a linear combination of πij, thus the opti-
mization problem is convex in πij when other parameters are
fixed. For low priority class, we have the following lemma.

Lemma 2 (Convexity of the Scheduling Sub-Problem for
Low Priority Class): When {z, Si} are fixed, Problem JLPO
is a convex optimization over probabilities {πi,j}.

XIANG et al.: OPTIMIZING DIFFERENTIATED LATENCY IN MULTI-TENANT, ERASURE-CODED STORAGE 209

Now we consider the placement sub-problem that optimiz-
ing over Si for each file request with fixed z, πij for all classes
in priority queuing. We first rewrite latency bound T̄ik as

T̄ik = z +
∑
j∈Si

πij

2
F
(
z,�jk

)
(13)

where F(z,�jk) = Ajk +
√

A2
jk + Bjk is an auxiliary function

with Ajk = E([Djk] − z and Bjk = Var[Djk]. To show that the
placement subproblem can be cast into a bipartite matching,
we consider the problem of placing file i chunks on m available
servers. It is easy to see that placing the chunks is equivalent
to permuting the existing access probabilities {πi,j, ∀j} on all
m servers, because πi,j > 0 only if a chunk of file i is placed
on server j. Let β be a permutation of m elements. Under new
placement defined by β, the new probability of accessing file
i chunk on server j becomes πi,βj. Thus, our objective in this
sub-problem is to find such a placement (or permutation) β(j)
∀j that minimizes the average service latency, which can be
solved via a matching problem between the set of existing
scheduling probabilities {πij, ∀j} and the set of m available
servers, with respect to their load excluding the contribution of
file i itself. Let �−i

jk = �jk −λiπij when request for file i is of
priority class k, be the total request rate at server j, excluding
the contribution of file i. We define a complete bipartite graph
Gr = (U, V , E) with disjoint vertex sets U, V of equal size
m and edge weights given by

Du,v =
∑

i

λiπiu

2λ̂k
F
(

z,�−i
vk + λiπiu

)
, ∀u, v (14)

which quantifies the contribution to overall latency (in objec-
tive value (9) by assigning existing πiu to server v that has
an existing load �−i

vk . It is easy to see that a minimum-weight
matching on Gr finds an optimal β to minimize

m∑
u=1

Du,β(u) =
m∑

u=1

∑
i

λiπiu

2λ̂k
F
(

z,�−i
vk + λiπiu

)
,

which is exactly the optimization objective of Problem JLOP
(except for a constant) if a file chunk with access probability
πi,u to a rack with existing load �−i

i,β(u).
Now we can propose our algorithm JLPO (described in

Fig. 3), which solves the placement and scheduling sub-
problems iteratively for each of the 2 priority classes.
Algorithm JLPO finds a solution for the joint optimization
by iteratively solving its sub-problems, i.e., requires schedul-
ing and chunk placement for the two service classes. In Step
1, we solve a convex optimization to determine the optimal
request scheduling for high priority class with all other deci-
sion variables fixed. Next, for given scheduling probabilities,
Step 2 computes an optimal matching between file chunks and
storage serves to minimize overall access latency. The same
process is repeated in Steps 3 and 4 for the low priority service
class, which also requires to solve a convex scheduling opti-
mization (due to Lemma 2) and optimal matching for chunk
placement. Finally, latency bounds for both high and low prior-
ity classes are updated via an optimization of z. The proposed
algorithm is guaranteed to converge to a local optimal point of
the joint optimization, since no local changes (in scheduling

Fig. 3. Algorithm JLOP: Our proposed algorithm for solving Problem JLOP.

or placement alone) in any sub-problems is able to further
improve the objective. The algorithm is guaranteed to converge
because the optimality in solving each sub-problem ensures a
sequence of monotonically decreasing latency objectives.

B. Latency Optimization for Weighted Queues

In the presence of weighted queues, we consider a joint opti-
mization of all files in different service classes by minimizing
a weighted aggregate latency. Let λ̂k =∑i∈Rk

λi, λ̂ =∑k λ̂k,
and T̃ik be given by the upper bound on T̄i1 in Theorem 2.
Then, we want to optimize the following.

min C1T̃1 + C2T̃2 (15)

s.t. T̃k = λ̂k

λ̂

∑
i is file of class i

T̃ik, (16)

m∑
j=1

πi,j = ki, πi,j ∈ [0, 1], πi,j = 0 (17)

∀j /∈ Si, (18)

210 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Fig. 4. Algorithm JLWO: Our proposed algorithm for solving Problem
JLWO.

N∑
i=1

∑
j �=i

wjk = 1. (19)

|Si| = ni, and S k
i ⊆ M (20)

var. Si, πi,j, wjk, ∀i, j, k.

As we have to choose fixed n servers for chunk placement
according to the (n, k) erasure code applied, problem JLWO is
a mixed integer optimization and hard to have a computational
solution. In order to solve this optimization problem, we first
break Problem JLWO into three sub-problems: (i) a weight
sub-problem for optimizing service bandwidth among different
queues by choosing weights wjk, (ii) a scheduling sub-problem
for determining accessing probabilities πi,j, and (iii) a place-
ment sub-problem that select a subset Si nodes to host encoded
chunks of file i.

We first recognize the scheduling sub-problem is convex.
It can be easily proven using the convexity of T̄k over �jk

as shown in [16], and due to the fact that �jk is a linear
combination of πij. Second, as for the placement problem we
again cast it into a matching, similar to the one proposed for
priority queuing. It results in a bipartite matching that can
be solved efficiently. Finally, we show that the weight sub-
problem is convex with respect to wjk in the following lemma.

Lemma 3: (Convexity of the bandwidth allocation
sub-problem): When {z, πi,j, Si} are fixed, Problem JLWO is
a convex optimization over weights {wjk}.

We propose Algorithm JLWO (described in Fig. 4) to solve the
differentiated latency optimization in weighted queuing by iter-
atively computing optimal solutions to the three sub-problems.
In particular, Step 1 finds optimal bandwidth allocation for
fixed chunk placement and request scheduling via a convex

optimization (due to Lemma 3) of weights wi. Next, Step
2 solves optimal scheduling probabilities, and Step 3 solves
optimal chunk placement using Bipartite matching. Since each
step finds an optimal solution for a sub-problem, the iterative
algorithm is guaranteed to generate a monotonic sequence of
objective values and is converged to a local optimal solution.

V. IMPLEMENTATION AND EVALUATION

A. Tahoe Testbed

To validate our proposed algorithms for priority and
weighted queuing models, and to evaluate their performance,
we implemented the algorithms in Tahoe [20], which is an
open-source, distributed file-system based on the zfec erasure
coding library. It provides three special instances of a generic
node: (a) Tahoe Introducer: it keeps track of a collection of
storage servers and clients and introduces them to each other.
(b) Tahoe Storage Server: it exposes attached storage to exter-
nal clients and stores erasure-coded shares. (c) Tahoe Client:
it processes upload/download requests and connects to storage
servers through a Web-based REST API and the Tahoe-LAFS
(Least-Authority File System) storage protocol over SSL.

Our experiment is done on a Tahoe testbed consists of three
separated hosts in an Openstack cluster running Havana, where
we reserved bandwidths between these hosts in different avail-
ability zones (using a bandwidth control tool from our Cloud
QoS platform) to simulate three separate data centers. The vir-
tual hosts (VM’s) on the same host are simulated as real hosts
that belong to the same availability zone and in one data center.
Out of the virtual hosts distributed across the three simulated
data centers, we ran 12 storage servers on 12 virtual hosts, and
we ran one introducer on a separate virtual host and 1 extra-
large client node (with sufficient cpu and memory capacities)
as a virtual host to initiate all client requests. The 12 storage
servers are evenly distributed onto the three data-centers; i.e.,
we have four VM instances(storage servers) in each of the
three Openstack availability zones in our cluster. We had to
use an extra-large client node since we had to initiate a large
number of requests through the client, using multiple Tahoe
ports to simulate multiple clients on this node. All VMs have
a 100GB volume attached for storing chunks in the case of
storage servers and clients, or meta information in the case of
the introducer. Our Tahoe testbed is shown in Fig. 5.

B. Basic Experiment Setup

We use (7,4) erasure code in the Tahoe testbed through-
out the experiments described in the implementation section;
however, we have two experiment setups for the two different
queuing models.

For priority queuing, Algorithm Priority provides chunk
placement and request scheduling for both high priority and
low priority classes, which we also denote as class 1 (high
priority) and class 2 (low priority). We assign the arrival rates
of the two classes and generate file requests of class 1 and
class 2 one by one based on the arrival rates. File requests are
divided into chunk requests and then dispatched to the servers.
When chunk requests arrive at the server, class 2 requests enter
at the end of the queue while class 1 requests enter at the

XIANG et al.: OPTIMIZING DIFFERENTIATED LATENCY IN MULTI-TENANT, ERASURE-CODED STORAGE 211

Fig. 5. Our Tahoe testbed with three hosts and each has 4 VMs as storage
servers.

Fig. 6. Convergence of Algorithm Priority and Algorithm Weighted for het-
erogeneous files on our 12-node testbed. Both algorithms efficiently compute
the solution in 175 iterations.

end of class 1 requests, before any class 2 request. Since we
are using non-preemptive priority queuing, class 2 requests
that are already in service before a class 1 request enters the
queue will be allowed to be completed with no interference
from class 1 requests. Chunk placement and request scheduling
decisions that will minimize average latency for both classes
will come from Algorithm JLOP.

For weighted queuing, requests are generated based on
arrival rates for the two classes, then the system calls a band-
width reservation tool to reserve the assigned bandwidth Bwi,j

based on weights of each server from the algorithm, and then
submit all the requests of the two classes. The system will
calculate the chunk placement, request scheduling and weight
assignment decisions from Algorithm JLWO.

C. Experiments and Evaluation

Convergence of Algorithm: We implemented Algorithm
JLOP and Algorithm JLWO in MATLAB, where the con-
vex optimization sub-problems are solved using MOSEK, a
commercial optimization solver (even though one can imple-
ment them with any standard algorithm). For 12 distributed
storage servers in our testbed, Figure 6 demonstrates the con-
vergence of our algorithms, which optimizes the latency for
the two classes in both queuing models over: chunk placement
Si, request scheduling πi,j and bandwidth weights distribution
wi,j (for weighted queuing model). As we have proven that
algorithm JLOP and JLWO are both convex and the optimiza-
tion is solvable earlier, now we see the convergence of the
proposed optimized queuing algorithms in Fig. 6. Our algo-
rithms for the two models efficiently solve the optimization

Fig. 7. Actual service time distribution for both classes of priority queuing
and weighted queuing; each has r = 1000 files, each of size 100MB using
erasure code (7,4) with the aggregate request arrival rate set to λi = 0.28 /sec
in each model.

problem with r = 1000 files. For weighted queuing we set
C1 = 1, C2 = 0.4 in the objective function. For priority queu-
ing, we plot latency for the two classes in such a way that
the latency for class 2 is multiplied by a factor of 0.05; this is
necessary to have T1 and T2 on the same scale since class 2
experiences a high latency. It is observed that the normal-
ized objective converges within 175 iterations for a tolerance
ε = 0.01. To achieve dynamic file management, our optimiza-
tion algorithm can be executed repeatedly upon file arrivals
and departures.

Validation of Experiment Setup: While our service delay
bound applies to arbitrary distribution and works for systems
hosting any number of files, we first run an experiment to
understand actual service time distribution for each class in
both priority queuing and weighted queuing models on our
testbed. We upload r = 1000 files of size 100MB file using a
(7, 4) erasure code. All the experiments for access were run
to account for a 10-hour duration, which would account for
efficient averaging. The experiment for priority queuing used
an aggregate request arrival rate for both classes at 0.28/sec,
out of which the arrival rate for class 1 request is 0.0122/sec
and arrival rate for class 2 is 0.2678/sec. Thus, the ratio of
class1/class2=1/22. This ratio is such that the interval between
class 1 arrivals is similar to the chunk service time so that
class 2 requests get a chance to be serviced. For weighted
queuing, the aggregate request arrival rate for both classes
is 0.28/sec, with each class having a rate of 0.14/sec, ratio
of class1/class2 requests =1/1. Then we measure the chunk
service time of class 1 and class 2 at the servers of both
models. Bandwidth weights are 0.6 for class 1 and 0.4 for
class 2 for weighted queuing. Figure 7 depicts the Cumulative
Distribution Function (CDF) of the chunk service time for each
class in each queuing model. We note that both class 1 and
class 2 for priority queuing have a mean chunk service time of
around 22 sec, and class 1 for weighted queuing has a mean
chunk service time of 35 sec and class 2 for weighted queu-
ing has a mean chunk service time of 60 sec, which means
the chunk service time is proportional to the bandwidth reser-
vation based on weight assignments for M/G/1 queues, thus
validating our assumption for the analysis of weighted queues.

Validation of algorithms and joint optimization: In order to
validate that the algorithms work for the two queuing models, we

212 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Fig. 8. r = 1000 files, each of size 100MB, aggregate request arrival rate
for both classes is 0.28/sec for both priority/weighted queuing; varying C2 to
validate our algorithms, weighted queuing provides more fairness to class 2
requests.

choose r = 1000 files of size 100MB, and aggregate arrival rate
0.28/sec. For weighted queuing, we use ratio class1/class2=1:1,
i.e., arrival rate of 0.14/sec for each class. We then upload het-
erogeneous files of size 100MB to obtain the service time
statistics for class 1 and class 2 (including mean, variance, and
second, third moment) at all storage nodes when running the
two queuing models. We fix C1 = 1 and vary C2 from 0 to
1 and run both Algorithm Priority (not affected by C2) and
Algorithm JLOP and JLWO to generate the optimal solution
for both priority queuing and weighted queuing. The algo-
rithms provide chunk placement, request scheduling for the
two models and weight assignment (for weighted queuing).
We then find the average retrieval latency of the r files. For
priority queuing, the aggregate request arrival rate is 0.28/sec
with ratio class1/class2=1:22. We repeat the experiment for
priority queuing using placement and scheduling decisions from
algorithm JLOP, and take the average latency to get enough
data points for both priority classes in Fig. 8, even though C2
does not affect latency in priority queuing. From Fig. 8 we
can see for weighted queuing, latency of class 2 increases as
C2 decreases; i.e., when class 2 becomes even less important.
Also, the average latency of class 1 requests decreases as C2
decreases. This shows the expected result that when class 2
becomes more important, more weight is allocated to class 2,
and since C2 is always smaller than C1, class 1 gets more
bandwidth. For priority queuing we can see even with a much
lower arrival rate of class 1 as compared to weighted queuing
model, class 2 requests rarely get a chance to be served due to
the priority queuing policy. Thus, they experience extremely
long latency as compared to class 1 requests, and even when
they are compared to both classes in weighted queuing. Fig. 8
shows that weighted queuing provides much more fairness for
class 2 requests than priority queuing.

Evaluation of the performance of our solution–Priority
queuing: To demonstrate the effectiveness of algorithm JLOP
for priority queuing, we vary file size in the experiments from
50MB to 250MB with an aggregate request arrival rate at 0.28,
ratio of high priority/low priority=1/22, and erasure code (7,4).
We choose r = 1000 files, with 200 files of each file size, i.e.,
200 files of 50MB, 200 of 100MB, etc. We initiate retrieval
requests of these files and plot the average latency for files of
each size. We also showed our analytic latency upper bound

Fig. 9. Evaluation of different file sizes in priority queuing. Both experiment
and bound statistics are using the secondary axis. Latency increases quickly as
file size grows due to the queuing delay of both classes in priority queuing. Our
analytic latency bound taking both network and queuing delay into account
tightly follows actual service latency.

Fig. 10. Evaluation of different request arrival rates in priority queuing.
Fixed λ2 = 0.14/sec and varying λ1. As arrival rates of high priority class
increase, latency of low priority requests shows logarithm growth.

in Figure 9. We see that the average latency increases almost
linearly with file size for high priority class since the ser-
vice time for each class increases linearly, and queuing delay
depends only on high priority requests. However, for requests
of low priority latency increases more than linearly with file
sizes since the latency depends mainly on whether a request
get a chance to be served or not, i.e., queuing delay dominates
and the service time is much smaller as compared to queuing
delay. We also observe that our analytic latency bound tightly
follows actual average service latency for both classes.

Next, we fixed the arrival rate of low priority requests to
0.14/sec and varied the file request arrival rate of high prior-
ity class from λ1 = 0.027 /sec to λ1 = 0.015 /sec with file
size 200MB. Actual service delay and our analytic bound for
each class is shown by a bar plot in Figure 10. Our bound
provides a close estimate of service latency as shown in the
figure. As arrival rates for high priority increases, latency of
low priority class shows logarithmic growth, which means the
probability that a low priority request gets served becomes
dramatically less as the arrival rate of high priority requests
increases, which leads to extremely long queuing delay for low
priority requests. This shows extreme unfairness for class 2
requests.

Evaluation of the performance of our solution–Weighted
queuing: For weighed queuing, we design a similar experi-
ment as in the case of priority queuing to compare the results.

XIANG et al.: OPTIMIZING DIFFERENTIATED LATENCY IN MULTI-TENANT, ERASURE-CODED STORAGE 213

Fig. 11. Evaluation of different file sizes in weighted queuing. Latency
increase shows more fairness for class 2 requests. Our analytic latency bound
taking both network and queuing delay into account tightly follows actual
service latency for both classes.

Fig. 12. Evaluation of different request arrival rates in weighted queuing.
As the arrival rate increases, latency increase shows more fairness for class 2
requests compared to priority queuing.

First, we varied the file size from 50MB to 250MB with
aggregate request arrival rate of 0.28/sec, and the ratio of
class1/class2=1/1. We have 1000 heterogeneous files in total,
out of which every 200 files are of the same file size. A (7,4)
erasure code is applied, C1 = 1, and C2 = 0.4. We used the
same workload combination as in the file size experiment for
priority queuing. As shown in Fig. 11, we can see for both
classes, latency increases as file size increases, but class 2
increases much faster than class 1. This is because the class 2
requests typically get a small portion of service bandwidth,
thus increasing file size will increase the service time and thus
the queuing time is a lot more than class 1 requests, which
get more bandwidth. Also the analytic bound for both classes
tightly follows the actual latency as shown in the figure as
well. However, even though class 2 requests are experiencing
longer latency than class 1 requests in this case, the latency
is still within a proper range unlike that in priority queuing.
Thus, we can see that weighted queuing provides more fairness
to different classes.

Next we varied the aggregate arrival rate of both class 1
and class 2 requests from 0.34/sec to 0.22/sec as shown in
Figure 12 with file size 200MB, while keeping the ratio of
class1/class2=1. Actual service delay and our analytic bound
for each class is shown in Figure 10, where the bound provides
a close estimate of service latency as shown in the figure. We
can see as the arrival rate for class 1 increases, latency of
class 2 also increases much faster than that of class 1. This is
because increasing the arrival rate for class 1 will give more

bandwidth to class 1 in order to reduce their latency and thus
further decreases the bandwidth to class 2. Also, increasing the
workload could not be completely compensated by increasing
the bandwidth, and thus latency of class 1 increases too.

VI. CONCLUSION

Relying on a novel probabilistic scheduling policy, this
paper develops an analytical upper bound on average ser-
vice delay of multi-tenant, erasure-coded storage with arbi-
trary number of files and any service time distribution using
weighted queuing or priority queuing to provide differenti-
ated services to different tenants. An optimized distributed
storage system is then formalized using these queues. Even
though only local optimality can be guaranteed due to the
non-convex nature of the problems, the proposed algorithm
significantly reduces the latency. Both our theoretical analysis
and algorithm design are validated via a prototype in Tahoe, an
open-source, distributed file system, in an open-source, cloud
storage deployment that simulates three geographically dis-
tributed data centers through bandwidth reservations. Note that
this paper focuses on two service classes only, and an exten-
sion to a general number of service classes is still an open
research problem.

APPENDIX A
THEOREM 1

Proof: Following the results in [21, Ch. 3] and
[22, Ch. 7], we have that the mean queuing delay for the
high priority class at server j is given as

E
[
Qj1
] = E[R]

1 − ρj1

where E[R] is the residual service time, given as

E[R] =
2∑

k=1

�jk�
2
j

2
,

and � =∑2
k=1 �jk be the aggregate request arrival rate of the

two priority classes at server j. The mean queuing delay for
the low priority class at server j is given as

E
[
Qj2
] = E[R](

1 − ρj1
)(

1 − ρj1 − ρj2
)

The second moment of the queuing delay for the high
priority class at server j is

E

[
Q2

j1

]
= 2
(
E[Qj1]

)2 + ρj1E
[
R2
]

1 − ρj1
,

where E[R] = E[X2
j]

2E[Xj]
and E[R2] = E[X3

j]
3E[Xj]

. The variance of the
queuing delay for the high priority class at server j is

Var
[
Qj1
] = E

[
Q2

j1

]
− (E[Qj1

])2

= ρj1(
1 − ρj1

)2
(
ρj1(E[R])2 + (1 − ρj1

)
E[R2]

)
(21)

214 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

The second moment of the queuing delay for the low
priority class at server j is

E

[
Q2

j2

]
= 2
(
E
[
Qj2
])2 +

(
ρj1 + ρj2

)
E
[
R2
]

(
1 − ρj1

)2(1 − ρj2
) ,

and the variance of the queuing delay for the high priority
class at server j is

Var
[
Qj2
] = E

[
Q2

j1

]
− (E[Qj1

])2

= ρj1 + ρj2(
1 − ρ2

j1

(
1 − ρj2

)2)
((

1 − ρj2
)
E[R2]

+
[(

ρj1 + ρj2
)+ ρj1

(
1 − ρj2

)

1 − ρj1

]
(E[R])2

)
(22)

This further gives

Var
[
Qj2
] =

(
�j1 + �j2

)
�j,3

3
(
1 − ρj1

)2(1 − ρj2
) +

((
�j1 + �j2

)
�j,2

2
(
1 − ρj1

)(
1 − ρj2

)
)2

+ �j1
(
�j1 + �j2

)
�2

j,2

2
(
1 − ρj1

)3(1 − ρj2
) (23)

These will further give the result as shown in Theorem 1
after simplification.

APPENDIX B
THEOREM 2

Proof: From the weighted queuing model we know that
each of them will be served at different service rate, thus ser-
vice time for each weighted queue with weight wjk would be
E[X]/wjk, with probability Pjk, thus the expected service time

would be
∑n

k=1
PjkE[X]

wjk
, variance of service time should be

E[X2
jk] − (E[Xjk)

2], thus we have Var[Xjk] as the second item
in EZj. We also have

E
[
Qj
] =

n∑
k=1

PjkE
[
Qjk
]
,

where E[Qjk] is the expected waiting time for requests in the
M/G/1 queue with weight wjk, which is the same as what
we derived for single priority class in priority queuing, with
different service rates:

E
[
Qjk
] = �jkPjkE

[
X2
]
/w2

jk

2 − �jkPjkE[X]/wjk

Then we can obtain:

E
[
Qj
] =

n∑
k=1

Pjk

�jkPjkE
[
X2
]
/w2

jk

2 − �jkPjkE[X]/wjk

After simplification, we obtain the third item in the state-
ment of the lemma. For the variance, we apply the results
we get for single priority class model with weighted service
rates and take average with the distribution probability for

each weighted queue to get:

Qjk =
n∑

k=1

Pjk

(�jkPjkE
[
X3
]
/w3

jk

3
(
1 − �jkPjkE[X]/wjk

)

+ �2
jkPjkE

[
X4
]
/w4

jk

4
(

1 − �jkPjkE[X]/w2
jk

)
)

(24)

A simplification will lead to the equation in Theorem 2.

APPENDIX C
LEMMA 2

Proof: As shown in Equation (13), T̄ik depends on F(z, πij)

for weighted queuing. Since we have:

F
(
z,�jk

) = Aj2 +
√

A2
j2 + Bj2

We find the second order derivatives of Aj2 with respect
to �j2.

∂2Ajk

d�2
j2

= �j,2(
ρj1 − 1

)(
ρj1μj + �j2 − μj

)3 (25)

We note that ρj1 −1 < 0, and (ρj1μj +�j2 −μj)
3 is negative

as long as ρj2 < 1 − ρj1, since �j2 is a linear combination of
πij for low priority class, i.e., Aj2 is convex in πij as long as
�j2 <

1−ρj1
μj

. We find the second order derivatives of Bj2 with
respect to �j2.

∂2Bj2

d�2
j2

= 2�j,3μj
(
�j1 + μj

)

3
(
1 − ρj1

)2(
μj − �j2

)3

+ �2
j,2μ

2
j

(
�j1 + μj

)(
3�j1 + μj + 2�j2

)

2
(
1 − ρj1

)2(
μj − �j2

)4

+ �j1�
2
j,2μj

(
�j1 + μj

)
(
1 − ρj1

)3(
μj − �j2

)3 (26)

Here, all the three terms are positive as long as �jk < μj.
Thus, both Aj2 and Bj2 are convex in πj2. Now we prove that
F is convex in Aj2 and Bj2:

∂2F

∂�2
j2

= ∂2Aj2

∂�2
j2

+
Aj2

∂2Aj2

∂�2
j2

+ Bj2
∂2Bj2

∂�2
j2(

A2
j2 + Bj22

)1/2

+
(

Aj2
∂Bj2
∂�j2

+ Bj2
∂Aj2
∂�j2

)2

(
A2

j2 + B2
j2

)3/2
(27)

As we have proved that
∂2Aj2

d�2
j2

> 0 and
∂2Aj2

d�2
j2

> 0 then it easy

to see from equation (27) that ∂2F
∂�2

j2
> 0. Since F is increasing

and convex in Aj2 and Bj2, and Aj2 and Bj2 are both convex
in �j2, we conclude that their composition F(z,�j2) is also
convex in �j2. This completes the proof.

XIANG et al.: OPTIMIZING DIFFERENTIATED LATENCY IN MULTI-TENANT, ERASURE-CODED STORAGE 215

APPENDIX D
LEMMA 3

Proof: As shown in Equation (13), T̄1, T̄2 depends on
F(z, πij, wjk) for weighted queuing. Since we have:

F
(
z,�jk, wjk

) = Aj +
√

A2
jk + Bjk

We find the second order derivatives of Ajk with respect to wjk.

∂2Ajk

dw2
jk

=
2∑

k=1

�jkP2
jkμj�j,2

((
3μjwjk

2 − �jkPjk

)2 + 3μ2
j w2

jk
4

)

w3
jk

(
μjwjk − �jkPjk

)3
(28)

where the numerator is positive since it’s the sum of two

squares (
3μjwjk

2 −�jkPjk)
2 and

3μ2
j w2

jk
4 . Denominator is positive

as long as wjk >
�jkPjk

μj
.

The second order derivatives of Bjk with respect to wjk is
given as

∂2Bjk

dw2
jk

= �2
jkP3

jk�
2
j,2

2w2
jk

(
wjk − �jkPjk

μj

)2

×
⎛
⎜⎝ 3

w2
jk

+ 4

wjk

(
wjk − �jkPjk

μj

) + 3(
wjk − �jkPjk

μj

)2

⎞
⎟⎠,

(29)

which is positive as long as wjk >
�jkPjk

μj
. Thus, both Ajk and

Bjk are convex in wjk. As proved in the proof of Lemma 2,
F is convex in Ajk and Bjk. Since F is increasing and convex
in Ajk and Bjk, and Ajk and Bjk are both convex in wjk, we
conclude that their composition F(z,�jk, wjk) is also convex
in wjk. This completes the proof.

REFERENCES

[1] Y. Xiang, T. Lan, V. Aggarwal, and Y.-F. R. Chen, “Multi-tenant latency
optimization in erasure-coded storage with differentiated services,” in
Proc. ICDCS, Columbus, OH, USA, Jun./Jul. 2015, pp. 790–791.

[2] E. Schurman and J. Brutlag, “The user and business impact of server
delays, additional bytes, and HTTP chunking in Web search,” in Proc.
O’Reilly Velocity Web Perform. Oper. Conf., San Jose, CA, USA,
Jun. 2009.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proc. USENIX Conf. Netw.
Syst. Design Implementation, Lombard, IL, USA, 2013, pp. 185–198.

[4] H. Xu and W. C. Lau, “Optimization for speculative execution in big
data processing clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 2, pp. 530–545, Feb. 2017.

[5] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce
clusters using Mantri,” in Proc. USENIX Conf. Oper. Syst. Design
Implementation, Vancouver, BC, Canada, 2010, pp. 265–278.

[6] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to
reduce latency in large-scale parallel computing,” ACM SIGMETRICS
Perform. Eval. Rev., vol. 43, no. 3, pp. 7–11, 2015.

[7] C. Anglano, R. Gaeta, and M. Grangetto, “Exploiting rateless codes
in cloud storage systems,” IEEE Trans. Parallel Distrib. Syst., vol. 26,
no. 5, pp. 1313–1322, May 2015.

[8] L. Huang, S. Pawar, H. Zhang, and K. Ramchandran, “Codes can reduce
queueing delay in data centers,” in Proc. IEEE Int. Symp. Inf. Theory ,
Cambridge, MA, USA, 2012, pp. 2766–2770.

[9] N. Shah, K. Lee, and K. Ramachandran, “The MDS queue: Analyzing
latency performance of codes and redundant requests,” in Proc. IEEE
Int. Symp. Inf. Theory, Honolulu, HI, USA, Jul. 2014, pp. 861–865.

[10] F. Baccelli, A. M. Makowski, and A. Shwartz, “The fork-join queue
and related systems with synchronization constraints: Stochastic order-
ing and computable bounds,” Adv. Appl. Probab., vol. 21, no. 3,
pp. 629–660, 1989.

[11] R. Pedarsani, J. Walrand, and Y. Zhong, “Robust scheduling in a flex-
ible fork-join network,” in Proc. 53rd IEEE Conf. Decis. Control,
Los Angeles, CA, USA, 2014, pp. 3669–3676.

[12] E. Özkan and A. R. Ward, “On the control of fork-join networks,”
arXiv:1505.04470v2, Jun. 2016.

[13] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 989–997, May 2014.

[14] S. Chen et al., “When queueing meets coding: Optimal-latency data
retrieving scheme in storage clouds,” in Proc. IEEE Infocom, Toronto,
ON, Canada, Apr./May 2014, pp. 1042–1050.

[15] A. Kumar, R. Tandon, and T. C. Clancy, “On the latency of erasure-coded
cloud storage systems,” arXiv:1405.2833, May 2014.

[16] Y. Xiang, T. Lan, V. Aggarwal, and Y.-F. R. Chen, “Joint latency and cost
optimization for erasure-coded data center storage,” IEEE/ACM Trans.
Netw. vol. 24, no. 4, pp. 2443–2457, Aug. 2016.

[17] Y. Xiang, V. Aggarwal, Y.-F. R. Chen, and T. Lan, “Differentiated
latency in data center networks with erasure coded files through traffic
engineering,” IEEE Trans. Cloud Comput., to be published.

[18] V. Aggarwal and T. Lan, “Tail index for a distributed storage system
with Pareto file size distribution,” arXiv:1607.06044, Jul. 2016.

[19] F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North-Holland, 1977.

[20] B. Warner, Z. Wilcox-O’Hearn, and R. Kinninmont. “Tahoe-LAFS
Docs.” [Online]. Available: https://tahoe-lafs.org/trac/tahoe-lafs

[21] L. Kleinrock, Queueing Systems Volume 2: Computer Applications.
New York, NY, USA: Wiley, 1976.

[22] J. Sztrik, Basic Queueing Theory. Saarbrücken, Germany: GlobeEdit and
OmniScriptum GmbH & Co, KG, 2016.

Yu Xiang received the B.A.Sc. degree from the
Harbin Institute of Technology in 2010, and the
Ph.D. degree from George Washington University
in 2015, both in electrical engineering. She is cur-
rently a Senior Inventive Scientist with AT&T Labs-
Research. Her current research interests are in cloud
resource optimization, distributed storage systems,
and cloud storage charge-back.

Tian Lan (S’03–M’10) received the B.A.Sc. degree
from Tsinghua University, China, in 2003, the
M.A.Sc. degree from the University of Toronto,
Canada, in 2005, and the Ph.D. degree from
Princeton University in 2010. He is currently an
Associate Professor of Electrical and Computer
Engineering with George Washington University.
His research interests include cloud resource opti-
mization, mobile networking, storage systems, and
cyber security. He was a recipient of the 2008 IEEE
Signal Processing Society Best Paper Award, the

2009 IEEE GLOBECOM Best Paper Award, and the 2012 INFOCOM Best
Paper Award.

216 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 1, MARCH 2017

Vaneet Aggarwal (S’08–M’11–SM’15) received
the B.Tech. degree from the Indian Institute of
Technology, Kanpur, India, in 2005, and the
M.A. and Ph.D. degrees from Princeton University,
Princeton, NJ, USA, in 2007 and 2010, respectively,
all in electrical engineering.

He was a Senior Member of Technical Staff
Research with AT&T Labs-Research, NJ, USA,
and an Adjunct Assistant Professor with Columbia
University, NY, USA. He is currently an Assistant
Professor with Purdue University, West Lafayette,

IN, USA. His research interests are in applications of statistical, algebraic,
and optimization techniques to distributed storage systems, machine learning,
and wireless systems. He was a recipient of the Princeton University’s Porter
Ogden Jacobus Honorific Fellowship in 2009, the AT&T Key Contributor
Award in 2013, the AT&T Vice President Excellence Award in 2012, and the
AT&T Senior Vice President Excellence Award in 2014. He is serving on the
Editorial Board of the IEEE TRANSACTIONS ON COMMUNICATIONS and the
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING.

Yih-Farn (Robin) Chen received the B.S. degree
in electrical engineering from National Taiwan
University, the M.S. degree in computer science
from the University of Wisconsin, Madison, and
the Ph.D. degree in computer science from the
University of California at Berkeley. He is a
Director of Inventive Science, leading the Cloud
Platform Software Research Department with AT&T
Labs-Research. His current research interests include
cloud computing, software-defined storage, mobile
computing, distributed systems, World Wide Web,

and IPTV. He is an ACM Distinguished Scientist and a member of the
International World Wide Web Conferences Steering Committee (IW3C2).
He also serves on the editorial board of the IEEE Internet Computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

